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Abstract.
We study the following class of double-phase nonlinear eigenvalue problems

−div [φ(x, |∇u|)∇u + ψ(x, |∇u|)∇u] = λ f (x, u)

in Ω, u = 0 on ∂Ω, where Ω is a bounded domain from RN and the potential functions
φ and ψ have (p1(x); p2(x)) variable growth. The primitive of the reaction term of
the problem (the right-hand side) has indefinite sign in the variable u and allows us to
study functions with slower growth near +∞, that is, it does not satisfy the Ambrosetti–
Rabinowitz condition. Under these hypotheses we prove that for every parameter λ ∈
R∗+, the problem has an unbounded sequence of weak solutions. The proofs rely on
variational arguments based on energy estimates and the use of Fountain Theorem.

Keywords: double-phase differential operator, continuous spectrum, variable exponent,
multiplicity of eigenvalues, infinitely many solutions.
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1 Introduction

The study of variational problems with nonstandard growth conditions has been developed
extensively over the last years. Moreover as the technology development in some important
areas like robotics, aircraft and airspace and the image restoration was very intensive, and in
order to obtain important results, new mathematical models arose.

The p(x)-growth conditions can be regarded as a key factor in the modelling of some
fluids which have different inhomogeneities, for instance we can mention here the lithium
polymetachrylate , which is an electrorheological fluid. The main characteristic of these types
of fluids is the fact that their viscosity depends on the electric field in the fluid, that is the
viscosity of the fluid is inverse proportional to the strength of the electric field.

As new types of materials arose in the domains that we mentioned before, new problems
arose also in the field of variable exponent analysis and partial differential equations which
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involve several variable exponents. Therefore in the last years, double-phase problems which
involve several variable exponents and some nonstandard (p1(x), p2(x))-growth behavior for
potential functions have been extensively studied.

In this paper we are concerned with the study of a class of non-autonomous eigenvalue
problem with variable (p1(x); p2(x))-growth rate condition in the left hand side of the problem
and a general reaction term (that is in the right-hand side of the problem), which is p+2 -
superlinear at infinity and whose primitive may be sign changing. An important characteristic
of the above mentioned problem is the fact that the associated energy density changes its
ellipticity according to the point.

The research in this paper in based on some new type of differential operators, which have
been introduced by I. H. Kim and Y. H. Kim [8], which enables us to solve some problems
which imply the possible lack of uniform convexity. In this paper we extend the results of
I. H. Kim and Y. H. Kim by studying a double-phase problem and we use a new type of
reaction term which require weaker conditions than the Ambrosetti–Rabinowitz condition
(for the sake of simplicity we will denote this condition as the (AR)-condition) and allows us
to study functions that have a p+2 -superlinear growth near infinity but the growth is too slow
to satisfy the (AR)-condition. Also,the primitive of the reaction term is allowed to be sign-
changing. An example of this type of reaction term will be presented in the last section of this
paper together with some important examples and new directions of research. Furthermore,
for the best of our knowledge for this type of operators even in the simpler cases, when the
differential operator is driven by only one potential function the possibility that the primitive
of the reaction function to be sign-changing has not been considered.

This paper also aim to extend some spectral results for some simpler cases studied in the
following works: S. Baraket, S. Chebbi, N. Chorfi, V. Rădulescu [2], M. Rodrigues [19], V. F.
Ut,ă [22] and K. Q. Wang, M. Zhou [23]. A comparison between these results will be made
later in this paper.

Hence, we consider the following double-phase nonlinear eigenvalue problem:{
−div [φ(x, |∇u|)∇u]− div [ψ(x, |∇u|)∇u] = λ f (x, u), in Ω,

u = 0, on ∂Ω,
(P)

where Ω is a bounded domain in RN with Lipschitz boundary and λ ∈ R is a real parameter.
These types of problems generalize a broad variety of models. We will briefly describe the

most important ones.
For instance if we may need to model a composite that changes its hardening point expo-

nent according to the point. To this end we refer to the work of M. Colombo, G. Mingione [3],
where the associated energies are of type:

u 7→
∫

Ω
|∇u|p1(x)dx +

∫
Ω

a(x)|∇u|p2(x)dx (1.1)

and
u 7→

∫
Ω
|∇u|p1(x)dx +

∫
Ω

a(x)|∇u|p2(x) log(e + |x|)dx, (1.2)

where p1(x) ≤ p2(x), p1 6= p2, for all x ∈ Ω and a(x) ≥ 0.
Also a comprehensive study of this variety of models is presented in the following sur-

vey paper of G. Mingione, V. Rădulescu [9]. For the regularity of the minimizers func-
tionals for double phase operator we recommend for more details the paper of M. Ragusa,
A. Tachikawa [15].
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The models presented above describe the behavior of two materials with variable power
hardening exponents p1(x) and p2(x), with the geometry of a composite for one of the mate-
rials described by the coefficient a(x).

As the potentials that drive our nonhomogeneous double-phase operator are very general
we will consider the following special cases:

(C1) The potential functions φ and ψ may describe a weighted p(x)-Laplacian-like operator

−div [φ(x, |∇u|)∇u]− div [ψ(x,∇u)∇u] = − div
[

a(x)|∇u|p1(x)−2∇u
]

− div
[
b(x)|∇u|p2(x)−2∇u

]
,

where the functions a(x), b(x) ∈ L∞(Ω), and there exist some constant α0 such that
a(x) ≥ α0, b(x) ≥ α0 for almost all x ∈ Ω;

(C2) The potential functions φ and ψ may describe the generalized mean curvature operator,
thus we obtain the following differential operator:

−div [φ(x, |∇u|)∇u]− div [ψ(x,∇u)∇u] = − div
[(

1 + |∇u|2
) p1(x)−2

2 ∇u
]

− div
[(

1 + |∇u|2
) p2(x)−2

2 ∇u
]

(C3) The potential functions φ and ψ may describe the differential operator that describe the
capillary phenomenon:

− div [φ(x, |∇u|)∇u]− div [ψ(x,∇u)∇u]

= − div

[(
|∇u|p1(x)−2 +

|∇u|2p1(x)−2(
1 + |∇u|2p1(x)

)1/2

)
∇u

]

− div

[(
|∇u|p2(x)−2 +

|∇u|2p2(x)−2(
1 + |∇u|2p2(x)

)1/2

)
∇u

]
.

Remark 1.1. Also there can be considered more complex cases where the potential functions
have different behavior, for example potential φ may describe the case (C1), and the potential
ψ could describe any of the other cases.

It is obvious that the case (C1) generalize the relation described by (1.1). In order to obtain
the case described by (1.2) we will have to study the following differential operator:

− div [φ(x, |∇u|)∇u]− div [a(x)ψ(x, |∇u|) log(e + |x|)∇u] . (1.3)

The study of the case (C3) is motivated by its important applicabilities in various fields
varying from the industrial, biomedical and pharmaceutical to the microfluidic systems. In
order to describe the capillarity phenomenon we must consider the effects of two opposing
forces: adhesion, that is, the attractive (or repulsive) force between the molecules of the liquid
and those of the container; and cohesion, that is, the attractive force between the molecules of
the liquid.

Problems involving this type of differential operator were intensely studied in the last
years. For example we consider the following works: [8, 17–19, 22]. Also, more closely related
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results for anisotropic problems with unbalanced growth may be found in [1] and for the
double phase operators with lack of compactness we refer to [20].

The main results of this paper consist in two theorems which ensures us that for every
λ > 0, λ ∈ R, the problem (P) admits an unbounded sequence of solutions with higher and
higher energies. Both of the proofs are based on variational arguments, energy estimates and
the use of the Fountain Theorem.

High energy solutions for similar problems were studied under more restrictive hypothe-
ses in the following works: [19, 22], where the reaction function is supposed to satisfy the
so called (AR)-condition, or in [23] where the differential operator enables us to study some
simple case, where in order to make connections to our problem the potential function φ is
supposed to verify just the case (C2) and the potential function ψ ≡ 0, but the nonlinearity in
the right-hand side of the problem is more general than the one used in [19] and [22]. This
generality comes at a cost, that is, the parameter λ is allowed to take values just in a bounded
interval near the origin.

In the last section of this work we give some striking examples and some remarks in order
to illustrate the validity of our results. Moreover, we draw a parallel between previous results
and the new results presented in this paper as well as some future perspectives of research in
this direction.

2 The functional framework

Through this section we will introduce the basic properties of variable exponent spaces, that
will constitute necessary the functional framework that we need in the study of problem (P).

These results are described in the following books: J. Musielak [10], L. Diening, P. Hästö,
P. Harjulehto, M. Růžička [4], V. Rădulescu and D. Repovš [17]. We also refer to the survey
paper by V. Rădulescu [16].

Let Ω be a bounded domain in RN .
For a measurable function p : Ω→ R we define:

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).

Set:
C+(Ω) =

{
p ∈ C(Ω) : p(x) > 1, for all x ∈ Ω

}
.

The variable exponent Lebesgue space Lp(x)(Ω) is defined

Lp(x)(Ω) =

{
u; u : Ω→ R a measurable function :

∫
Ω
|u|p(x)dx < ∞

}
,

and with the norm:

|u|p(x) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)
µ

∣∣∣∣p(x)

dx ≤ 1

}
,

Lp(x)(Ω) becomes a Banach space whose dual is the space Lp′(x)(Ω), where 1
p(x) +

1
p′(x) = 1.

Remark 2.1. If 1 < p(x) < ∞, Lp(x)(Ω) is reflexive Banach space. Moreover, if p is measurable
and bounded, then Lp(x)(Ω) is also separable.
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Remark 2.2. If 0 < |Ω| < ∞ and h(x), r(x) with h(x) < r(x) almost everywhere in Ω, are two
variable exponents then the following continuous embedding holds

Lr(x)(Ω) ↪→ Lh(x)(Ω).

Let Lp′(x)(Ω) denotes the dual space of Lp(x)(Ω). For all u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω)

the following Hölder type inequality holds:∣∣∣∣∫Ω
uv dx

∣∣∣∣ ≤ ( 1
p−

+
1

p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2.1)

A key role in the studies which imply the variable exponent Lebesgue spaces is played by
the modular of Lp(x)(Ω), which is ρp(x) : Lp(x)(Ω)→ R and is defined by

ρp(x)(u) =
∫

Ω
|u(x)|p(x)dx.

Remark 2.3. If p(x) 6≡ constant in Ω, for u, (un) ∈ Lp(x)(Ω), the following relations hold true:

|u|p(x) < 1⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|
p−

p(x), (2.2)

|u|p(x) > 1⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|
p+

p(x), (2.3)

|u|p(x) = 1⇒ ρp(x)(u) = 1, (2.4)

|un − u|p(x) → 0⇔ ρp(x)(un − u)→ 0. (2.5)

The variable exponent Sobolev space W1,p(x)(Ω) is defined by

W1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)
}

.

On W1,p(x)(Ω) we may consider the following equivalent norms:

‖u‖p(x) = |u|p(x) + |∇u|p(x)

and

‖u‖ = inf

{
µ :

∫
Ω

(∣∣∣∣∇u(x)
µ

∣∣∣∣p(x)

+

∣∣∣∣u(x)
µ

∣∣∣∣p(x)
)

dx ≤ 1

}
.

We define W1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) with respect to the norm ‖ · ‖p(x) or

W1,p(x)
0 (Ω) =

{
u; u|∂Ω = 0, u ∈ Lp(x)(Ω), |∇u| ∈ Lp(x)(Ω)

}
.

Taking account of [8] for p ∈ C+(Ω) we have the p(·)-Poincaré type inequality

|u|p(x) ≤ C|∇u|p(x), (2.6)

where C > 0 is a constant which depends on p and Ω.
For Ω ⊂ RN a bounded domain and p a global log-Hölder continuous function, on

W1,p(x)
0 (Ω) we can work with the norm |∇u|p(x) equivalent with ‖u‖p(x).
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Remark 2.4. If p, q : Ω → (1, ∞) are Lipschitz continuous, p+ < N and p(x) ≤ q(x) ≤ p∗(x),
for any x ∈ Ω, where p∗(x) = Np(x)

N−p(x) , the embedding

W1,p(x)
0 (Ω) ↪→ Lq(x)(Ω)

is compact and continuous.

Remark 2.5. If 0 < |Ω| < ∞, and p2(x) < p1(x) in Ω, then there holds the following continu-
ous embedding

W1,p1(x)
0 (Ω) ↪→W1,p2(x)

0 (Ω).

Remark 2.6 ([5]). Let p(x) and q(x) be measurable functions such that p(x) ∈ L∞(Ω) and
1 ≤ p(x)q(x) ≤ ∞ almost everywhere in Ω. Let u ∈ Lq(x)(Ω), u 6= 0. Then

|u|p(x)q(x) ≥ 1⇒ |u|p
−

p(x)q(x) ≤
∣∣∣|u|p(x)

∣∣∣
q(x)
≤ |u|p

+

p(x)q(x)

|u|p(x)q(x) ≤ 1⇒ |u|p
+

p(x)q(x) ≤
∣∣∣|u|p(x)

∣∣∣
q(x)
≤ |u|p

−

p(x)q(x).

In particular, if p(x) = p is a constant, then ||u|p|ppq(x).

3 Basic hypotheses and auxiliary results

In this section we will give the basic properties of the potential functions φ and ψ which
drive us to the differential operator described in the first section. Also we impose the new
conditions on the reaction function and the theoretical auxiliary results we need in order to
achieve the solutions of problem (P).

Therefore, we assume that the reaction function f (x, z) satisfies the following conditions:

(R1) f : Ω×R→ R is a Carathéodory function, that is:
→ f (·, z) is measurable for all z ∈ R;
→ f (x, ·) is continuous for almost all x ∈ Ω.

(R2) There exists C > 0, a nonnegative constant such that

| f (x, z)| ≤ C
(

1 + |z|q(x)−1
)

for all x ∈ Ω and z ∈ R, where q ∈ C+(Ω).

Define

F(x, z) =
∫ z

0
f (x, t)dt. (3.1)

(R3) lim|z|→∞
|F(x,z)|
|z|p

+
2

= +∞ uniformly in x, and there exists q0 > 0, such that

F(x, z) ≥ 0 for all x ∈ Ω and z ∈ R,

with |z| > q0.
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(R4) Define:

R(x, z) :=
1

p+2
f (x, z)z− F(x, z) ≥ 0

and let C1 > 0, a nonnegative constant and µ ∈ C+(Ω) with µ− > max
{

1, N
p−1

}
such

that
|F(x, z)|µ(x) ≤ C1|z|p

−
1 µ(x)R(x, z),

for all x ∈ Ω and z ∈ R, with |z| ≥ q0.

(R5) Let ω > p+2 and η > 0 two constants such that

ωF(x, z) ≤ f (x, z)z + η|z|p−1 ,

for all x ∈ Ω, z ∈ R.

(R6) f (x,−z) = − f (x, z), for all x ∈ Ω and z ∈ R.

Hypotheses on the potential functions that generates the double-phase differential opera-
tor are the following:

(HS1) φ, ψ : Ω× [0, ∞)→ [0, ∞) and

→ φ(·, z), ψ(·, z) are measurable on Ω for all z ≥ 0;

→ φ(x, ·), ψ(x, ·) are locally absolutely continuous on [0, ∞) for almost all x ∈ Ω.

(HS2) For some functions α1 ∈ Lp′1(x)(Ω) and α2 ∈ Lp′2(x)(Ω) and a nonnegative constant ξ

we have that

→ |φ(x, |z|)z| ≤ α1(x) + ξ|z|p1(x)−1;

→ |ψ(x, |z|)z| ≤ α2(x) + ξ|z|p2(x)−1.

for almost all x ∈ Ω, and all z ∈ RN .

(HS3) For some constant Cφ,ψ > 0, all x ∈ Ω and all z > 0 we have that:

→ φ(x, z) ≥ Cφ,ψzp1(x)−2 and z ∂φ
∂z + φ(x, z) ≥ Cφ,ψzp1(x)−2

→ ψ(x, z) ≥ Cφ,ψzp2(x)−2 and z ∂ψ
∂z + ψ(x, z) ≥ Cφ,ψzp2(x)−2.

Let S0(x, z) =
∫ z

0
φ(x, t)tdt +

∫ z

0
ψ(x, t)tdt, we define

S(u) =
∫

Ω
S0(x, |∇u|)dx. (3.2)

An important role in our variational approach is played by the fact that the following
assumption holds true for the potentials φ and ψ:

(HS4) For all x ∈ Ω, all z ∈ RN , the following estimate is true:

0 ≤ [φ(x, z) + ψ(x, z)] |z|2 ≤ p+2 S0(x, |z|).

In order to obtain our results we must state the growth behavior of the variable exponents:{
1 < p−1 ≤ p1(x) ≤ p+1 < p−2 ≤ p2(x) ≤ p+2 < q− ≤ q(x) ≤ q+ < p∗1(x);

p∗1(x) = Np1(x)
N−p1(x) .

(3.3)
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Remark 3.1. Taking account on the relation (3.3) and the embedding theorems for variable
exponent Lebesgue and Sobolev spaces we will choose W1,p2(x)

0 (Ω) as functional space for the
solutions of problem (P), and for the simplicity of the writing by ‖ · ‖ we will denote the norm
associated to W1,p2(x)

0 (Ω) (‖ · ‖p2(x)).

We can now define the weak solution for the problem (P).

Definition 3.2. We say that u ∈W1,p2(x)
0 (Ω) \ {0} is a nontrivial weak solution of the problem

(P) if ∫
Ω
[φ(x, |∇u|) + ψ(x, |∇u|)]∇u∇vdx = λ

∫
Ω

f (x, u)vdx

for all v ∈W1,p2(x)
0 (Ω).

In order to point out the existence and multiplicity results for our problem we define the
following energy functional associated to the problem (P) as it follows:

Eλ : W1,p2(x)
0 (Ω)→ R

Eλ(z) = S(z)− λT(z),

where S(z) is defined by relation (3.2) and T(z) =
∫

Ω F(x, z)dx, with F(x, z) defined as in
relation (3.1).

Taking account of [8, Lemmas 3.2, 3.4], some details from [2, Section 4] and of [23, Lemma
3.1] it is easily to observe that Eλ is of class C1(W1,p2(x)

0 (Ω), R
)
.

In order to reveal the existence and multiplicity of eigenvalues associated to our problem,
we will point out that the critical points of the energy functional Eλ. We can observe that the
critical points of Eλ are weak solutions for the problem (P):

〈Eλ(u), ϕ〉 =
∫

Ω
[φ(x, |∇u|) + ψ(x, |∇u|)]∇u∇ϕdx

− λ
∫

Ω
f (x, u)ϕdx, for all ϕ ∈W1,p2(x)

0 (Ω).

Definition 3.3. We say that Eλ ∈ C1(W1,p2(x)
0 (Ω), R

)
fulfills the (C)c-condition if for any se-

quence (un)n ⊂W1,p2(x)
0 (Ω) the following relation holds true:

Eλ(un)→ c and ‖E′λ(un)‖W−1,p′2(x)(Ω)
(1 + ‖un‖)→ 0

we can find a convergent subsequence.

A central role in the proof of the main results of this paper is played by the Fountain
Theorem. As we have seen in the Section 2, the variable exponent Sobolev spaces are reflexive
and separable Banach spaces. Therefore, taking account of the Remark 3.1, we consider that
for W1,p2(x)

0 (Ω) we have (ej)j ⊂W1,p2(x)
0 (Ω) and (e∗j ) ⊂W−1,p′2(x)(Ω) such that

W1,p2(x)
0 (Ω) = span{ej : j = 1, 2, . . . }

W−1,p′2(x)(Ω) = span{e∗j : j = 1, 2, . . . }

and

〈ei, e∗j 〉 =
{

1, if i = j

0, if i 6= j,
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where 〈·, ·〉 represents the duality product between W1,p2(x)
0 (Ω) and W−1,p′2(x)(Ω). We define

Xj = span{ej},

Yk =
k
⊕
j=1

Xj,

Zk =
∞
⊕
j=k

Xj.

(3.4)

Theorem 3.4 (Fountain Theorem [18]). Let E ∈ C1(X) be an even functional, where (X, ‖ · ‖)
is a separable and reflexive Banach space. Suppose that for every k ∈ N large enough, there exists
ρk > rk > 0 such that

(i) inf {E(u) : u ∈ Zk, ‖u‖ = rk} → +∞ as k→ +∞,

(ii) max {E(u) : u ∈ Yk, ‖u‖ = ρk} ≤ 0,

(iii) E satisfies the Palais–Smale condition for every c > 0.

Then E has a sequence of critical values tending to +∞.

For more details and applications on the Fountain Theorem we refer to X. Fan, Q. Zhang
[6], D. Repovš [18] and V. F. Ut,ă [22]. A comprehensive study for various forms of this theorem
and its extensions can be found in the following works of Y. Jabri [7], P. Pucci, V. Rădulescu
[11], P. Pucci, J. Serrin [14] and P. Pucci, J. Serrin [13]. Also for double phase problems we
recommend the following work of P. Pucci, V. Rădulescu [12], M. Ragusa, A. Tachikawa [15],
X. Shi, V. Rădulescu, D. Repovš, Q. Zhang [20].

We proceed now to prove some helpful propositions.

Proposition 3.5. Suppose that conditions (HS1)–(HS4), (R2)–(R4) hold true, then every (C)c se-
quence associated to the energy functional Eλ is bounded.

Proof. Let (un)n ⊂ W1,p2(x)
0 (Ω) be a (C)c sequence. In order to prove that it is bounded we

argue by contradiction and suppose that

‖un‖ → +∞ as n→ ∞. (3.5)

Using the above relation and taking n large enough we obtain that:

c + 1 ≥ Eλ(un)−
1

p+2
〈E′λ(un), un〉

=
∫

Ω
S0(x, |∇un|)dx− 1

p+2

∫
Ω
[φ(x, |∇un|) + ψ(x, |∇un|)] |∇un|2dx

− λ
∫

Ω
F(x, un)dx +

λ

p+2

∫
Ω

f (x, |∇un|)undx (3.6)

Now using hypothesis (HS4) we get that:

c + 1 ≥
∫

Ω

(
1− p+2

p+2

)
S0(x, |∇un|)dx− λ

∫
Ω

F(x, un)dx +
λ

p+2

∫
Ω

f (x, un)undx

≥ −λ
∫

Ω
F(x, un)dx +

λ

p+2

∫
Ω

f (x, un)undx.
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By assumption (R4) we obtain that

c + 1 ≥ λ
∫

Ω
R(x, un)dx.

As we supposed, the relation (3.5) holds true, then for n sufficiently large we have that
‖un‖ > 1. Hence by the fact that (un)n is a (C)c-sequence we obtain that:

0 = lim
n→∞

c + o(1)
‖un‖p−1

= lim
n→∞

Eλ(un)

‖un‖p−1

≥

∫
Ω

S0(x, |∇un|)dx− λ
∫

Ω
F(x, un)dx

‖un‖p−1
. (3.7)

Now using (HS4), and (HS3) we obtain that

0 ≥

1
p+2

∫
Ω
[φ(x, |∇un|) + ψ(x, |∇un|)] |∇un|2dx− λ

∫
Ω

F(x, un)dx

‖un‖p−1

≥

1
p+2

∫
Ω

Cφ,ψ

(
|∇un|p1(x) + |∇un|p2(x)

)
dx− λ

∫
Ω

F(x, un)dx

‖un‖p−1
.

Now using the modular properties (2.3), (2.4) we obtain that

S(u) ≥
Cφ,ψ

p+2

(
‖un‖

p−1
p1(x) + ‖un‖p−2

)
Now taking account of the fact that by relation (3.3) p−1 < p−2 , we have that

S(u) ≥
Cφ,ψ

p+2
‖un‖p−1 .

Hence from (3.7) we obtain that

0 ≤
Cφ,ψ

p+2

‖un‖p−1

‖un‖p−1
−

λ
∫

Ω
F(x, un)dx

‖un‖p−1
,

which yields to
Cφ,ψ

p+2 λ
≤ lim sup

n→∞

∫
Ω

|F(x, un)|
‖un‖

dx. (3.8)

Let 0 ≤ a ≤ b and Da,b
n = {z ∈ Ω : a ≤ |un(z)| < b}.

Consider in what follows wn = un
‖un‖ . It is obvious that ‖wn‖ = 1 and there exist a nonneg-

ative constant Cw such that |wn|q(x) ≤ C2‖wn‖ = Cw.
As a consequence of the above facts (passing eventually to a subsequence), we can find an

element w0 such that wn ⇀ w0 in W1,p2(x)
0 (Ω).

Moreover,

wn → w0 in Lr(x)(Ω), 1 ≤ r(x) < p∗1(x)

wn(x)→ w0(x) a.e. on Ω.
(3.9)

In what follows we have to split the proof in two cases:
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(I) w0 = 0;

(II) w0 6= 0.

Let firstly assume that w0 = 0.
We obtain that {

wn → 0 in Lr(x)(Ω)

wn(x)→ 0 a.e. on Ω

and by assumption (R2) we have that

∫
D0,ρ

n

|F(x, un)|
‖un‖p−1

dx ≤ C(ρ + ρq)|Ω|
‖un‖p−1

→ 0, (3.10)

where q = q+ if ρ ≥ 1 and q = q− if ρ < 1.
Let µ′(x) be the conjugate exponent for µ(x), i.e., µ′(x) = µ(x)

µ(x)−1 , by hypothesis (R4) we

have that µ− > max
{

1, N
p−1

}
, hence 1 < p−1 µ′(x) < p∗1(x). Therefore we get that wn → 0 in

Lp−1 µ′(x)(Ω) as n→ ∞.
Using Remark 2.6, assumption (R4), relation (3.6) and (3.9) one have that

∫
Dρ,+∞

n

|F(x, un)|
|un|p

−
1
|wn|p

−
1 dx ≤ 2

∣∣∣∣∣ |F(x, un)|
|un|p

−
1

∣∣∣∣∣
Lµ(x)(Dρ,+∞

n )

∣∣∣|wn|p
−
1

∣∣∣
Lµ′(x)(Dρ,+∞

n )

≤ 2 max


(∫

Dρ,+∞
n

|F(x, un)|µ(x)

|un|p
−
1 µ(x)

dx

) 1
µ+

,

(∫
Dρ,+∞

n

|F(x, un)|µ(x)

|un|p
−
1 µ(x)

dx

) 1
µ−


·max

{(∫
Dρ,+∞

n

|wn|p
−
1 µ′(x)dx

) 1
(µ′)+

,
(∫

Dρ,+∞
n

|wn|p
−
1 µ′(x)dx

) 1
(µ′)−

}

≤ 2 max

{(∫
Dρ,+∞

n

R(x, un)dx
) 1

µ+

,
(∫

Dρ,+∞
n

R(x, un)dx
) 1

µ−
}

·max

{(∫
Dρ,+∞

n

|wn|p
−
1 µ′(x)dx

) 1
(µ′)−

,
(∫

Dρ,+∞
n

|wn|p
−
1 µ′(x)dx

) 1
(µ′)+

}
(3.11)

≤ 2 max
{(

C1

λ
(c + 1)

1
µ+

)
,
(

C1

λ
(c + 1)

1
µ−

)}
·max

{(∫
Dρ,+∞

n

|wn|p
−
1 µ′(x)dx

) 1
(µ′)−

,
(∫

Dρ,+∞
n

|wn|p
−
1 µ′(x)dx

) 1
(µ′)−

}
→ 0 as n→ +∞.

By relations (3.10) and (3.11), one have that∫
Ω

|F(x, un)|
‖un‖p−1

dx =
∫

D0,ρ
n

|F(x, un)|
‖un‖p−1

dx +
∫

Dρ,+∞
n

|F(x, un)|
‖un‖p−1

dx

=
∫

D0,ρ
n

|F(x, un)|
‖un‖p−1

dx +
∫

Dρ,+∞
n

|F(x, un)|
|un|p

−
1
|wn|p

−
1 dx

→ 0 as n→ +∞. (3.12)
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which is a contradiction with the fact that lim supn→∞

∫
Ω
|F(x,un)|
‖un‖p−1

dx > 0.

We proceed now to prove the second case, and assume that w0 6= 0. Therefore there exists
D∗ such that D∗ := {z ∈ Ω : w0(z) 6= 0}, with |D∗| > 0, where |D∗| is the Lebesgue measure
of D∗.

So, for almost every z ∈ D∗, we have that

lim
n→∞
|un(z)| = +∞. (3.13)

Therefore, by (3.13) we get that D∗ ⊂ Dρ,+∞
n for n ∈N sufficiently large.

With similar arguments as above (see relation (3.10)) it yields that∫
D0,ρ

n

|F(x, un)|
‖un‖p+2

dx ≤ C(ρ + ρq)|Ω|
‖un‖p+2

→ 0 as n→ ∞ (3.14)

By hypotheses (R2), (R3), relation (3.14) and taking use of the Fatou’s Lemma one have
that

0 = lim
n→∞

c + o(1)
‖un‖p+2

= lim
n→∞

Eλ(un)

‖un‖p+2

≤ lim
n→∞


∫

Ω
S0(x, |∇un|)

‖un‖p+2
dx− λ

‖un‖p+2

∫
Ω

F(x, un)dx

 . (3.15)

In order to complete our proof and obtain the desired contradiction we will compute the
term of the energy functional driven by the double-phase operator and the term driven by the
reaction function separately.

We firstly compute the part driven by the differential operator. So, taking use of the
fact that ‖un‖ → ∞ as n → ∞, using hypothesis (HS2), Hölder’s inequality and the fact
that W1,p2(x)

0 (Ω) ↪→ W1,p1(x)
0 (Ω) continuously (and one have ‖u‖p1(x) ≤ Cp1‖u‖, for some

nonnegative constant Cp1) we obtain that

S(x, |∇un|) =
∫

Ω
S0(x, |∇un|)dx

≤ Cφ|α1|p′1(x)‖un‖
p+1
p1(x) +

ξ

p−1
‖un‖

p+1
p1(x) + Cψ|α2|p′2(x)‖un‖p+2 +

ξ

p+2
‖un‖p+2

≤ CM‖un‖p+2 (3.16)

where CM =
(
Cφ|α1|p′1(x) · Cp1 +

ξ
p−1

Cp1

)
+
(
Cψ|α2|p′2(x) +

ξ
p−2

)
, and Cφ, Cψ are two nonnegative

constants, Cφ, Cψ > 0, which depend on the potential functions φ, ψ and on the continuous

embeddings: W1,p1(x)
0 (Ω) ↪→ Lp1(x)(Ω), W1,p2(x)

0 (Ω) ↪→W1,p1(x)
0 (Ω).

We proceed now to compute the second part of the energy functional driven by our reac-
tion function term of the problem (P).

Combining relations (3.15) and (3.16)

0 ≤ lim
n→∞

[
CM‖un‖p+2

‖un‖p+2
− λ

(∫
D0,ρ

n

F(x, un)

‖un‖p+2
dx +

∫
Dρ,+∞

n

F(x, un)

‖un‖p+2
dx

)]
(3.17)

= lim
n→∞

[
CM −

λ

‖un‖p+2

(∫
D0,ρ

n

F(x, un)dx +
∫

Dρ,+∞
n

F(x, un)dx
)]
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≤ lim
n→∞

[
CM −

λ

‖un‖p+2

∫
Dρ,+∞

n

F(x, un)dx

]

≤ lim sup
n→∞

[
CM −

λ

‖un‖p+2

∫
Dρ,+∞

n

F(x, un)dx

]

= CM − lim inf
n→∞

λ
∫

Dρ,+∞
n

F(x, un)

|un|p
+
2
|wn|p

+
2 dx

= CM − lim inf
n→∞

λ
∫

Ω

F(x, un)

|un|p
+
2

χDρ,+∞
n

(x)|wn|p
+
2 dx

≤ CM − λ
∫

Ω
lim inf

n→∞

F(x, un)

|un|p
+
2

χDρ,+∞
n

(x)|wn|p
+
2 dx

→ −∞, as n→ ∞,

which contradicts relation (3.17).
Therefore we obtained the fact that any (C)c-sequence is bounded, so our proof is complete.

Proposition 3.6. If assumptions (R1)–(R4) hold true, then for every (C)c-sequence of Eλ we can find
a convergent subsequence in W1,p2(x)

0 (Ω).

Proof. Suppose that (vn)n ⊂ W1,p2(x)
0 (Ω) is a (C)c-sequence for Eλ. Using Proposition 3.5 we

have that (vn)n is bounded in W1,p2(x)
0 (Ω), so, passing eventually to a subsequence we obtain

the fact that vn ⇀ v0 in W1,p2(x)
0 (Ω). Using Remark 2.6 it yields that (vn)n is bounded in

Lq(x)(Ω) and by the continuous and compact embedding W1,p2(x)
0 (Ω) ↪→ Lq(x)(Ω), we get that

vn → v0 in Lq(x)(Ω) as n→ ∞.
By straightforward computations we obtain that∫
Ω
| f (x, vn)− f (x, v0)| |vn − v0|dx

≤
∫

Ω
(| f (x, vn)|+ | f (x, v0)|) |vn − v0|dx

≤
∫

Ω

[
C(1 + |vn|q(x)−1) + C(1 + |v0|q(x)−1)

]
|vn − v0|dx

≤ 2C
∫

Ω
|vn − v0|dx + C

∫
Ω
|vn|q(x)−1|vn − v0|dx +

∫
Ω
|v0|q(x)−1|vn − v0|dx (3.18)

≤ 2C|vn − v0|L1(Ω) + 2C
∣∣∣|vn|q(x)−1

∣∣∣
q′(x)
· |vn − v0|q(x) + 2C

∣∣∣|v0|q(x)−1
∣∣∣
q′(x)
|vn − v0|q(x)

≤ 2C|vn − v0|L1(Ω) + 2C max
{
|vn|q

+−1
q(x) , |vn|q

−−1
q(x)

}
· |vn − v0|q(x)

+ 2C max
{
|v0|q

+−1
q(x) , |v0|q

−−1
q(x)

}
|vn − v0|q(x) → 0 as n→ ∞,

where q′(x) is the conjugate exponent of q(x), i.e. 1
q(x) +

1
q′(x) = 1.

Now taking account of [8, Lemma 3.2] one have that:

〈S′(vn)− S′(v0), vn − v0〉

= 〈E′λ(vn)− E′λ(v0), vn − v0〉+
∫

Ω
[ f (x, vn)− f (x, v0)] (vn − v0)dx (3.19)
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and by Definition 3.3, keeping in mind that (vn)n is a (C)c-sequence of the energy functional
Eλ, we get that:

lim
n→∞
〈E′λ(vn)− E′λ(v0), vn − v0〉 = 0. (3.20)

Now by relations (3.18), (3.19), (3.20) and taking account of [8, Lemma 3.4] we obtain the
fact that

lim
n→∞
〈S′(vn)− S′(v0), vn − v0〉 = 0,

and by the fact that S is of type (S)+ (see also [8, Lemma 3.4]) it yields that vn → v0 in
W1,p2(x)

0 (Ω), and so, our proof is complete.

Proposition 3.7. If assumptions (R1)–(R3) and (R5) hold true, then for every (C)c-sequence of Eλ,
we can find a convergent subsequence in W1,p2(x)

0 (Ω).

Proof. Taking use of Proposition 3.5, and keeping in mind the proof of Proposition 3.6 we only
have to prove that our sequence is bounded in W1,p2(x)

0 (Ω).

Let (vn)n ⊂ W1,p2(x)
0 (Ω) be a (C)c-sequence for Eλ. Arguing by contradiction we suppose

that ‖vn‖ → ∞ as n → ∞. Now, taking wn = vn
‖vn‖ , we get that ‖wn‖ = 1, for all n ∈ N,

futhermore we obtain that |wn|q(x) ≤ Cw‖wn‖, where Cw > 0 is a constant.
By the above facts and passing eventually to a subsequence we may find w0 such that

wn ⇀ w0 in W1,p2(x)
0 (Ω), (3.21)

and by the compact embedding W1,p2(x)
0 (Ω) ↪→ Lq(x)(Ω) we obtain that

wn → w0 in Lq(x)(Ω)

wn(x)→ w0(x) a.e. on Ω.
(3.22)

Now by the definition of Eλ it yields that:

c + 1 ≥ Eλ(vn)−
1
ω
〈E′λ(vn), vn〉

=
∫

Ω
S0(x, |∇vn|)−

1
ω

[φ(x, |∇vn|)∇vn + ψ(x, |∇vn|)∇vn] dx

+ λ
∫

Ω

[
1
ω

f (x, vn)vn − F(x, vn)

]
dx.

Now by hypothesis (HS4) combined with (HS3) we get that

c + 1 ≥
∫

Ω

(
1− p+2

ω

)
S0(x, |∇vn|)dx + λ

∫
Ω

[
1
ω

f (x, vn)vn − F(x, vn)

]
dx

≥
∫

Ω

(
1− p+2

ω

)
·

Cφ,ψ

p+2

[
|∇vn|p1(x)−2 + |∇vn|p2(x)−2

]
|∇vn|2dx

+ λ
∫

Ω

[
1
ω

f (x, vn)vn − F(x, vn)

]
dx

≥
(

1− p+2
ω

)
·

Cφ,ψ

p+2

∫
Ω
|∇vn|p2(x)dx + λ

∫
Ω

[
1
ω

f (x, vn)vn − F(x, vn)

]
dx.
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Using assumption (R5) we obtain that:

c + 1 ≥
(

1− p+2
ω

)
·

Cφ,ψ

p+2
‖vn‖p−2 − λ

ω
η
∫

Ω
|vn|p

−
1 dx

for any n ≥ 0.
Hence passing to (wn)n we obtain that:

λ

ω
η
∫

Ω
|wn|p

−
1 dx ≥

(
1− p+2

ω

)
·

Cφ,ψ

p+2

⇒ λη

ω
· ωp+2
(ω− p+2 )Cφ,ψ

∫
Ω
|wn|p

−
1 dx ≥ 1

⇒ ληp+2
(ω− p+2 )Cφ,ψ

|wn|
p−1
p−1
≥ 1

⇒ ληp+2
(ω− p+2 )Cφ,ψ

lim sup
n→∞

|wn|
p−1
p−1
≥ 1 (3.23)

Now, keeping in mind relations (3.21) and (3.22) we have that wn → w0 in Lp−1 (Ω), more-
over by (3.23) we get that w0 6= 0.

In order to obtain the desired contradiction we apply the same technique as in the case
(I I) from the proof of Proposition 3.5 and the contradiction is obtained.

Therefore we have the fact that (vn)n is bounded in W1,p2(x)
0 (Ω). In order to complete the

proof we only have to repeat the steps taken in the proof of Proposition 3.6 and the work is
accomplished.

4 Main results

In this section using the Fountain Theorem we will reveal the fact that the problem (P) has an
unbounded sequence of weak solutions with higher and higher energies.

We are now ready to enunciate and prove our main results.

Theorem 4.1. If assumptions (HS1)–(HS4), (R1)–(R4), (R6) and (3.3) hold true, then for every
λ > 0 the problem (P) possesses an infinite sequence of nontrivial weak solutions.

Theorem 4.2. If assumptions (HS1)–(HS4), (R1)–(R3), (R5), (R6) and (3.3) hold true, then for
every λ > 0 the problem (P) possesses an infinite sequence of nontrivial weak solutions.

Proof of Theorem 4.1. As we have seen in the previous section, as W1,p2(x)
0 (Ω) is separable, re-

flexive Banach space, let us consider Yk and Zk denoted by relation (3.4).
Firstly we check if condition (i) from the Theorem 3.4 holds true.
Let ak := sup

{
|u|q(x) : ‖u‖ = 1, u ∈ Zk

}
. It is easily to observe the fact that ak → 0 as

k → ∞. The reasoning behind the above statement is the following. By the definition of (ak)k

we get that ak > ak+1 ≥ 0, therefore ak → a ≥ 0, as k → ∞. By the reflexivity of W1,p2(x)
0 (Ω),

and taking uk ∈ Zk, ‖uk‖ = 1 for each k ∈N such that

0 ≤ ak − |uk|q(x) ≤
1
k

,
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we get that (uk)k has a convergent subsequence and suppose uk ⇀ u1 in W1,p2(x)
0 (Ω). Keeping

in mind the definition of Zk we obtain that u1 = 0. Taking account of [8, Lemma 3.4] we have
that uk → 0 in Lq(x)(Ω), so it yields that a = 0.

Now let u ∈ Zk with ‖u‖ = ρk > 1, where ρk will be specified later.
Using hypotheses (HS3) and (HS4) and (2.3) we have that

Eλ(u) =
∫

Ω
S0(x, |∇u|)dx− λ

∫
Ω

F(x, u)dx

≥
Cφ,ψ

p+2

(∫
Ω
|∇u|p1(x)dx + ‖u‖p−2

)
− λ

∫
Ω

F(x, u)dx

≥
Cφ,ψ

p+2
‖u‖p−2 − λ

∫
Ω

F(x, u)dx. (4.1)

Now using assumption (R2) we get that

F(x, z) ≤ C(|z|+ |z|q(x)) ≤ 2C(1 + |z|q(x)) (4.2)

for all (x, z) ∈ Ω×R.
Using (4.1) and (4.2) we obtain that

Eλ(u) ≥
Cφ,ψ

p+2
‖u‖p+2 − 2λC

∫
Ω

(
1 + |u|q(x)

)
dx

≥
Cφ,ψ

p+2
‖u‖p+2 − 2λC

[
|Ω|+ max

{
|u|q

−

q(x), |u|
q+

q(x)

}]
(where |Ω| represents the Lebesgue measure of Ω).

Taking account of the continuous embedding W1,p2(x)
0 (Ω) ↪→ Lq(x)(Ω) we have |u|q(x) ≤

C3‖u‖ and then the above inequality becomes:

Eλ(u) ≥
Cφ,ψ

p−2
‖u‖p−2 − 2λC

[
|Ω|+ max

{
Cq−

3 ‖u‖
q− , Cq+

3 ‖u‖
q+
}]

≥
Cφ,ψ

p−2
‖u‖p−2 − 2λCC̃q‖u‖q+ − 2λC|Ω|

(where C̃q = max
{

Cq+
3 , Cq−

3

}
)

≥
Cφ,ψ

p−2
‖u‖p−2 − 2λCC̃qaq+

k ‖u‖
q+ − 2λC|Ω|.

It can be easily checked that if we choose

ρk =

(
2λCC̃q

Cφ,ψ
· p−2 ap+2

k

) 1
p−2 −q+

(4.3)

combined with the fact that p−2 < q+ and ak → 0 as k → +∞, we obtain that ρk → +∞ as
k→ +∞.

Taking ‖u‖ = ρk with ρk as stated in relation (4.3) we obtain that

Eλ(u)→ +∞ as k→ +∞,

and so, the validity of condition (i) is proved.
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We check now if the condition (ii) from the Fountain Theorem holds true.
Assume that u ∈ Yk and ‖u‖ = τk > 1, where τk will be specified later.
By hypothesis (HS2) we have that

Eλ(u) ≤ 2C4|α1|p′1(x) max
{
‖u‖p−1

p1(x), ‖u‖
p+1
p1(x)

}
+

ξ

p−1
max

{
‖u‖p−1

p1(x), ‖u‖
p+1
p1(x)

}
+ 2C5|α2|p′2(x)‖u‖p+2 +

ξ

p−2
‖u‖p+2 − λ

∫
Ω

F(x, u)dx,

where C4, C5 are some strictly nonnegative constants.
Taking account of the continuous embedding described in Remark 2.5 we obtain that

Eλ(u) ≤ C6‖u‖p+2 − λ
∫

Ω
F(x, u)dx (4.4)

where C6 =
(
2C4|α1|p′1(x)Cp1 +

ξ
p−1

Cp1

)
+
(
2C5|α2|p′2(x) +

ξ
p−2

)
, and Cp1 = max

{
Cp−1

2 , Cp+2
2

}
.

In order to complete the proof of condition (ii), we argue by contradiction and assume
that (ii) is not true for some given n. Hence we can find a sequence (vn)n ⊂ Yn such that

‖vn‖ → +∞ as n→ +∞ and Eλ(vn) ≥ 0. (4.5)

Suppose now that wn = vn
‖vn‖ , therefore ‖wn‖ = 1. As dim Yk < +∞, then we can find

some w0 ∈ Yk \ {0} such that, passing eventually to a subsequence we get that{
wn → w0,

wn(x)→ w0(x) a.e. x ∈ Ω
as n→ +∞.

As w(x) 6= 0, we get that |vn(x)| → +∞ as n → +∞. Taking account of hypothesis (R3)

we obtain that

lim
n→+∞

F(x, |vn(x)|)
‖vn‖p+2

= lim
n→+∞

F(x, vn(x))
|vn(x)|p+2

|wn(x)|p+2 = +∞

for all x ∈ D0 := {x ∈ Ω : w(x) 6= 0}. With the same arguments as in the proof of Proposition
3.6 we get that ∫

D0

F(x, vn)

‖vn‖p+2
dx → +∞ as n→ +∞.

Taking n ∈N, large enough we have that D0 ⊂ Dρ,+∞
n (the domain considered in the proof

of Proposition 3.5), and so the following estimates hold true:

Eλ(vn) ≤ C6‖vn‖p+2 − λ

[∫
D0,ρ

n

F(x, vn)dx +
∫

Dρ,+∞
n

F(x, vn)dx
]

≤ C6‖vn‖p+2 + C7

∫
D0,ρ

n

(ρ + ρq) dx−
∫

Dρ,+∞
n

F(x, vn)dx

(where C7 > 0 is some nonnegative constant)

≤ C6‖vn‖p+2 + C7 (ρ + ρq) |Ω| −
∫

Dρ,+∞
n ∩D0

F(x, vn)dx

≤ ‖vn‖p+2

(
C6 +

C (ρ + ρq) |Ω|
‖vn‖p+2

−
∫

Dρ,+∞
n ∩D0

F(x, vn)

‖vn‖p+2
dx

)
→ −∞ as n→ +∞,
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which is a contradiction with relation (4.5) and so we have completed the proof that condition
(ii) holds true.

As in Proposition 3.6 we have proved that the energy functional Eλ verifies the (C)c-
condition and by hypothesis (R6) the function that gives the reaction term of our equation is
odd we can conclude the proof of Theorem 4.1 by simply applying the Fountain Theorem.

Remark 4.3. Taking account of the above theorem we have proved that for every λ > 0 we
have an unbounded sequence of solutions obtained for higher and higher energies.

Proof of Theorem 4.2. With the same arguments as in the proof of Theorem 4.1, we can point
out that condition (i) of the Fountain Theorem is checked (as the assumptions (R4) and (R5)

plays no role in this part of the proof).
To check the validity of condition (ii) from the Fountain Theorem we combine the argu-

ments from the verification of condition (ii) of the proof to Theorem 4.1 with similar argu-
ments as in the proof of Proposition 3.7 and the condition is checked. Therefore, as in the
Proposition 3.7 we have verified the fact that our energy functional satisfies the (C)c-condition
and by (R6) the reaction term of our problem is an odd function, and as Eλ(z) = Eλ(−z) we
only have to apply the Fountain Theorem.

Hence for the energy functional Eλ we have obtained an unbounded sequence of critical
values (un)n ⊂W1,p2(x)

0 (Ω) such that E′λ(un)→ 0 and Eλ(un)→ c as n→ +∞.

5 Some examples and final remarks

As the definitions of our double phase-operator and of our reaction term are very general,
in what follows we will give some specific examples in order to illustrate the validity of our
results.

Example 5.1. Consider the following weight coefficient functions a, b : Ω → R, with a, b ∈
L∞(Ω)+ for all x ∈ Ω. Suppose there exist a constant Ca,b > 0 such that a(x), b(x) ≥ Ca,b for
all x ∈ Ω. Let f : Ω ×R → R be a Carathéodory function which satisfy the assumptions
(R1) − (R6), (3.3) then the results of Theorems 4.1, 4.2 hold true for the following class of
Dirichlet problems:−div

[
a(x)|∇u|p1(x)−2∇u + b(x)|∇u|p2(x)−2∇u

]
= λ f (x, u) in Ω,

u = 0 on ∂Ω.

It is easy to check the fact that our differential operator satisfy hypotheses (HS1)–(HS4).

Example 5.2. As we stated in the first section of this paper our potential functions φ and ψ

generalize the following type of differential operator

A(x, z) =

(
1 +

zp(x)√
1 + z2p(x)

)
zp(x)−2 (5.1)

corresponding to the differential operator which describes the capillary phenomenon, so we
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obtain the following class of double-phase problems:

−div

[(
|∇u|p1(x)−2 + |∇u|2p1(x)−2

(1+|∇u|2p1(x))
1/2

)
∇u

+

(
|∇u|p2(x)−2 + |∇u|2p2(x)−2

(1+|∇u|2p2(x))
1/2

)
∇u

]
= λ f (x, u) in Ω,

u = 0 on ∂Ω,

If hypotheses (3.3), (R1)–(R6) hold true, then the results of Theorems 4.1 and 4.2 hold true
for this class of problems, i.e., this class of problems admits infinitely many nontrivial weak
solutions with high and higher energies.

By simple computations we could verify that the potential function of type A from relation
(5.1) satisfy the assumptions (HS1)–(HS4). For a thorough proof of the validity of our example
we can associate the following energy functional to our problem Eλ : W1,p2(x)

0 (Ω)→ R defined
by

Eλ(u) =
∫

Ω

1
p1(x)

[
|∇u|p1(x) +

(
1 + |∇u|2p1(x)

)1/2
]

dx+

+
∫

Ω

1
p2(x)

[
|∇u|p2(x) +

(
1 + |∇u|2p2(x)

)1/2
]

dx− λ
∫

Ω
F(x, u)dx

and recalculate the computations for this functional energy.

In what follows we will give some examples and remarks on the reaction function and the
results of this paper.

In order to prove the boundedness of the Palais–Smale sequence it is very popular in the
literature to use the (AR)-condition, i.e.,

(AR) There exist some constants A > 0, ω > p+2 such that for |z| > A and for almost every
x ∈ Ω

0 < ωF(x, z) ≤ z f (x, z)

where F(x, z) =
∫ z

0
f (x, t)dt.

Remark 5.3. The (AR)-condition described above implies the fact that our reaction function
f (x, ·) must have at least (ω− 1)-polynomial growth near +∞.

Remark 5.4. There exists an entire class of functions that are superlinear at infinity, but does
not satisfy the (AR)-condition for any ω > p+2 .

An example of this type of function is

f (x, z) = p+2 |z|
p+2 −2z ln(1 + z2), (5.2)

and we obtain that

F(x, z) = |z|p+2 ln
(
1 + z2)− 2|z|p+2 z

1 + z2 . (5.3)

Remark 5.5. It is easily to observe that the function defined in relation (5.2) does not satisfy the
(AR)-condition, but it satisfies conditions (R3) and (R4), therefore the results of Theorems 4.1
and 4.2 hold true.
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Remark 5.6. (i) Similar results but under the stronger hypothesis (i.e. (AR)-condition is to be
satisfied by the reaction term of the problem) where obtained for this problem in [22] and in
[8](where furthermore the differential operator is driven only by the potential function φ).
(ii) Some spectral results for this type of problem which does not use the (AR)-condition
where obtained in [22], but with the price of taking the real parameter λ in a small interval
near the origin, and the growth of the reaction function to be more general, i.e., q− < p−1 , but
in this case it is not know the behavior of the quantity supx∈Ω q(x).

Remark 5.7. Also for the coercive case of the problem we refer to [2,21], for the double-phase
differential operator and to [8] for the simpler case were the differential operator is driven by
only one potential term.

Remark 5.8. According to the terminology used in this paper the study of integral functionals
described by relations (1.1), (1.2) correspond to differential operators described by (C1) and
relation (1.3). An interesting extension of the results obtained in this paper can be realized by
studying this problems in a more general framework of Musielak–Orlicz spaces. To this end
we refer to some results described in [17, Chapter 4].

Remark 5.9. An important role in obtaining our results is played by assumptions (3.3) which
indicates the fact that we are in the subcritical framework in the sense of Sobolev variable
exponents. No results are known in the critical or supercritical framework. Moreover, no
results are known even in the “almost critical” case with lack of compactness where (3.3) is
replaced by

p1(x) < p2(x) < q− ≤ q(x) ≤ q+ � p∗1(x) for all x ∈ Ω,

where q(x) � p∗1(x) means that there exists z ∈ Ω such that q(z) = p∗1(z) and q(x) < p∗1(x)
for all x ∈ Ω \ {z}.
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