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Abstract. In this paper, we use the self-similar transformation and the modified poten-
tial well method to study the long time behaviors of solutions to the classical semilinear
parabolic equation associated with critical Sobolev exponent in RN . Global existence
and finite time blowup of solutions are proved when the initial energy is in three cases.
When the initial energy is low or critical, we not only give a threshold result for the
global existence and blowup of solutions, but also obtain the decay rate of the L2 norm
for global solutions. When the initial energy is high, sufficient conditions for the global
existence and blowup of solutions are also provided. We extend the recent results which
were obtained in [R. Ikehata, M. Ishiwata, T. Suzuki, Ann. Inst. H. Poincaré Anal. Non
Linéaire 27(2010), No. 3, 877– 900].
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1 Introduction

This paper deals with the following classical semilinear parabolic equation associated with
critical Sobolev exponent in RN :{

ut − ∆u = |u|p−1u in RN × (0, T),

u|t=0 = u0(x) in RN ,
(1.1)

where N > 3 and p = (N + 2)/(N − 2), the critical exponent associated with the Sobolev
imbedding.
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There is a great literature on the existence of global solutions and blow-up for the problem
(1.1) on the bounded domain (see e.g. [2, 6, 9, 13, 21, 22, 25, 27, 28]):


ut − ∆u = |u|p−2u in Ω× (0, T),

u(x, t) = 0 on ∂Ω× [0, T),

u(x, 0) = u0(x) in Ω,

(1.2)

where p > 1. It is well known that there exist choices of u0 for which the corresponding
solutions tend to zero as t → ∞ and other choices for which the solutions blow-up in finite
time (see e.g. [9]). Tan [25], R. Ikehata and T. Suzuki [6] considered critical problem (1.2).
By means of the potential well method, they established the existence of global solutions and
studied the asymptotic behavior of solutions which heavily depend on the initial data. Using
the the comparison principle and variational methods, Gazzola and Weth [2] obtained global
solutions and finite time blow-up solutions with the initial data at high energy level.

The problem (1.1) in RN was considered by Ishiwata and Suzuki [4], Ikehata, Ishiwata, and
Suzuki [5], Mizoguchi and Yanagida [14–16]. In [14], a sufficient condition on the decay order
of initial data, which may change sign, such that the solution of (1.1) blows up infinite time,
was gived. Using self-similar transformation, Mizoguchi and Yanagida [15, 16] established
the global existence and blow-up results for problem (1.1) in the R1. In [4, 5], the decay and
blow-up of the solution with low energy initial data were studied by means of the potential-
well and forward self-similar transformation. For a general scope of this topic, we refer the
interested readers to the monographs [23] and references therein.

In this article, we consider the problem (1.1) with low initial energy, critical initial energy
and high initial energy. The results in our paper will be obtained by the self-similar trans-
formation and the modified potential well method. Potential well method, which was first
put forward to consider semi-linear hyperbolic initial boundary value problem by Payne and
Sattinger [20, 24] around 1970s, is a powerful tool in studying the long time behaviors of so-
lutions of some evolution equations. The potential well is defined by the level set of energy
functional and the derivative functional. It is generally true that solutions starting inside the
well are global in time, solutions starting outside the well and at an unstable point blow up
in finite time. After the pioneer work of Sattinger and Payne, some authors [7, 9–12, 17–19, 26]
used the method to study the global existence and nonexistence of solutions for various non-
linear evolution equations with initial boundary value problem. In [11,12], Liu et al. modified
and improved the method by introducing a family of potential wells which include the known
potential well as a special case. The modified potential well method has been used to study
semilinear pseudo-parabolic equations [9] and fourth-order parabolic equation [3]. In this
paper, we use the modified potential well method to obtain global existence and blow up in
finite time of solutions when the initial energy is low, critical and high, respectively. When
the initial energy is low, similar results are obtained in [5], but our result is more general,
moreover, we prove a more precise decay rate of the L2 norm of global solution.

This paper is organized as follows. In Section 2, we give some notations, definitions and
lemmas concerning the basic properties of the related functionals and sets. Sections 3 and 4
will be devoted to the cases EK (v0) < d and EK (v0) = d, respectively, where EK(v) will be
introduced in Section 2. In Section 5, we consider the case when the initial energy is high, i.e.
EK (v0) > d.
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2 Preliminaries and main lemmas

In this section, we shall introduce the self-similar transformation and the modified potential
well method and give a series of their properties for problem (1.1). The self-similar transfor-
mation is defined as follow:

v(y, s) = (1 + t)1/(p−1)u(x, t), t = es − 1, x = (1 + t)1/2y.

We can easily know thatvs + Lv = |v|p−1v +
1

p− 1
v in RN × (0, S),

v|s=0 = v0 in RN ,
(2.1)

where S = log(1 + T) and

L f = −∆ f − 1
2

y · ∇ f .

Letting
K(y) = e|y|

2/4,

we have
L f = − 1

K
∇ · (K∇ f ).

Let

‖ f ‖2,K =

{∫
RN
| f (y)|2K(y)dy

}1/2

< +∞.

We also take

Hm(K) =
{

f ∈ L2(K) | Dα f ∈ L2(K) for any multi-index α in |α| 6 m
}

,

where m = 1, 2, . . . It is a Hilbert space provided with the norm

‖ f ‖Hm(K) =

{
∑
|α|6m

‖Dα f ‖2
2,K

}1/2

.

The linear operator L is realized as a self-adjoint operator in L2(K) through the relation

AK(u, v) :=
∫

RN
∇u(y) · ∇v(y)K(y)dy = (Lu, v)K, u ∈ D(L) ⊂ H1(K), v ∈ H1(K),

where
(u, v)K =

∫
RN

u(y)v(y)K(y)dy.

From Lemma 2.1 of [8], the domain D(L) of this operator L is the set of v ∈ L2(K) satisfying
Lv ∈ L2(K), and we have D(L) = H2(K), It holds also that L is positive selfadjoint and has the
compact inverse, and in particular, the set of normalized eigenfunctions of L forms a complete
ortho-normal equation in L2(K). The first eigenvalue λ1 of L is given by λ1 = N/2, and hence
from Proposition 2.3 of [1]. the following Poincaré inequality holds,

λ1‖v‖2
2,K 6 ‖∇v‖2

2,K, v ∈ H1(K). (2.2)
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We have

λ1 =
N
2

> λ ≡ 1
p− 1

=
N − 2

4
.

Then, the operator

A = L− 1
p− 1

in L2(K) is also positive self-adjoint with the domain D(A)= H2(K). The semigroup
{

e−tA}
t >

0 are thus defined in L2(K). These characteristics guarantee the well-posedness of (1.1) locally
in time.

Now let us define the level set

Eα =
{

v ∈ H1(K) : EK(v) < α
}

. (2.3)

Furthermore, by the definition of EK(v),N , Eα and d, we easily know that

Nα = N ∩ Eα ≡
{

v ∈ N : ‖∇v‖2
2,K − λ‖v‖2

2,K <

√
2α(p + 1)

p− 1

}
6= ∅ for all α > d. (2.4)

Let
λα = inf {‖v‖2,K : v ∈ Nα} , Λα = sup {‖v‖2,K : u ∈ Nα} for all α > d. (2.5)

It is clear that λα is nonincreasing and Λα is nondecreasing with respect to α . For 0 < δ < p+1
2 ,

let us define the modified functional and Nehari manifold as follows:

EK(v) =
1
2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖p+1

p+1,K,

DK,δ(v) = δ‖∇v‖2
2,K − λδ‖v‖2

2,K − ‖v‖
p+1
p+1,K,

Nδ =
{

u ∈ H1(K) : DK,δ(v) = 0, ‖v‖ 6= 0
}

,

dδ = inf
v∈Nδ

EK(v),

r(δ) = δ
N−2

2 S
N
2

λ .

Then we can define the modified potential wells and their corresponding sets as follows:

Wδ =
{

u ∈ H1(K) : Dδ(u) > 0, E(u) < d(δ)
}
∪ {0},

Vδ =
{

u ∈ H1(K) : Dδ(u) < 0, E(u) < d(δ)
}

,

Bδ =
{

u ∈ H1(K) : ‖∇u‖2,K < r(δ)
}

,

Bc
δ =

{
u ∈ H1(K) : ‖∇u‖2,K > r(δ)

}
.

(2.6)

We also introduce the following sets

B =
{

u0 ∈ H1(K) : the solution u = u(t) of (1.2) blows up in finite time
}

,

G =
{

u0 ∈ H1(K) : the solution u = u(t) of (1.2) exists for all t > 0
}

,

Go =
{

u0 ∈ G : u(t) 7→ 0 in H1(K) as t→ ∞
}

.

(2.7)
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For future convenience, we give some useful lemmas which will play an important role in
the proof of our main results.

Let Lq(K) denote the Banach space composed of measurable functions v = v(y) defined in
RN such that

‖v‖q,K =

{∫
RN
|v(y)|qK(y)dy

}1/q

< +∞

for q ∈ [1, ∞) and
‖v‖∞,K = ess sup

y∈RN
| f (y)| < +∞

for q = ∞. The space L∞(K) = L∞ (RN) is thus compatible to the other spaces, i.e.,

lim
q↑∞
‖v‖q,K = ‖ f ‖∞,K, v ∈ L1(K) ∩ L∞

(
RN
)

Although the inclusion
Lp(K) ⊂ Lq(K) (1 6 q < p 6 ∞)

fails, we have
H1(K) ⊂ L2∗(K)

for 2∗ = 2N/(N − 2) = p + 1. More precisely, Corollary 4.20 of [1] guarantees the following
fact, regarded as a Sobolev–Poincaré inequality.

Lemma 2.1 ([1, Corollary 4.20]). It holds that

S0‖v‖2
p+1,K + λ∗‖v‖2

2,K 6 ‖∇v‖2
2,K, v ∈ H1(K),

where λ∗ = max(1, N/4) and S0 stands for the Sobolev constant:

S0 = inf
{
‖∇v‖2

2 | v ∈ C∞
0

(
RN
)

, ‖v‖p+1 = 1
}

.

Lemma 2.2 ([5, p. 882]). Set

Sλ = inf

{
‖∇v‖2

2,K − λ‖v‖2
2,K

‖v‖2
p+1,K

| v ∈ H1(K)

}
,

We have Sλ = S0.

So, it holds that

‖v‖p+1
p+1,K 6

(
1

Sλ
(‖∇v‖2

2,K − λ‖v‖2
2,K)

) p+1
2

, v ∈ H1(K), (2.8)

and
r(δ) = δ

N−2
2 S

N
2

λ ≥ ‖∇v‖2
2,K − λ‖v‖2

2,K.

Lemma 2.3. Let u0 ∈ H1(K).

(1) If 0 < ‖∇v‖2
2,K − λ‖v‖2

2,K < r(δ), then DK,δ(u) > 0. In particular, if 0 < ‖∇v‖2
2,K −

λ‖v‖2
2,K < r(1), then DK(u) > 0;

(2) If DK,δ(u) < 0, then ‖∇v‖2
2,K − λ‖v‖2

2,K > r(δ). In particular, if DK(u) < 0, then ‖∇v‖2
2,K −

λ‖v‖2
2,K > r(1);
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(3) If DK,δ(v) = 0, then ‖∇v‖2
2,K − λ‖v‖2

2,K > r(δ) or ‖∇v‖2
2,K − λ‖v‖2

2,K = 0. In particular, if
DK(v) = 0, then ‖∇v‖2

2,K − λ‖v‖2
2,K > r(1) or ‖∇v‖2

2,K − λ‖v‖2
2,K = 0;

(4) If DK,δ(v) = 0 and ‖∇v‖2
2,K − λ‖v‖2

2,K 6= 0, then EK(v) > 0 for 0 < δ < p+1
2 , EK(v) = 0 for

δ = p+1
2 , E(v) < 0 for δ > p+1

2 .

Proof. (1) Since 0 < ‖∇v‖2
2,K − λ‖v‖2

2,K < r(δ), by the Lemma 2.2 and (2.8), we have from the

assumption 0 < ‖v‖ < r(δ) := δ
N−2

2 S
N
2

λ , and we obtain

DK,δ(v) = δ‖∇v‖2
2,K − λδ‖v‖2

2,K − ‖v‖
p+1
p+1,K

≥ δ‖∇v‖2
2,K − λδ‖v‖2

2,K −
(

1
Sλ

(‖∇v‖2
2,K − λ‖v‖2

2,K)

) p+1
2

≥ (‖∇v‖2
2,K − λ‖v‖2

2,K)

δ−
(

1
Sλ

) p+1
2

(‖∇v‖2
2,K − λ‖v‖2

2,K)
2

N−2

 > 0. (2.9)

(2) By the assumption DK,δ(v) < 0 and (2.8), we have

0 ≥ DK,δ(v) = δ‖∇v‖2
2,K − λδ‖v‖2

2,K − ‖v‖
p+1
p+1,K

≥ δ‖∇v‖2
2,K − λδ‖v‖2

2,K −
(

1
Sλ

(‖∇v‖2
2,K − λ‖v‖2

2,K)

) p+1
2

≥ (‖∇v‖2
2,K − λ‖v‖2

2,K)

δ−
(

1
Sλ

) p+1
2

(‖∇v‖2
2,K − λ‖v‖2

2,K)
2

N−2

 . (2.10)

Hence, ‖∇v‖2
2,K − λ‖v‖2

2,K > r(δ).

(3) By the assumption DK,δ(v) = 0 and (2.8), we have

0 = DK,δ(v) = δ‖∇v‖2
2,K − λδ‖v‖2

2,K − ‖v‖
p+1
p+1,K

≥ δ‖∇v‖2
2,K − λδ‖v‖2

2,K −
(

1
Sλ

(‖∇v‖2
2,K − λ‖v‖2

2,K)

) p+1
2

≥ (‖∇v‖2
2,K − λ‖v‖2

2,K)

δ−
(

1
Sλ

) p+1
2

(‖∇v‖2
2,K − λ‖v‖2

2,K)
2

N−2

 . (2.11)

Hence, ‖∇v‖2
2,K − λ‖v‖2

2,K = r(δ). or v = 0.

(4) We easily know that

EK(v) =
1
2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖p+1

p+1,K

=

(
1
2
− δ

p + 1

)
(‖∇v‖2

2,K − λ‖v‖2
2,K) +

1
p + 1

DK,δ(v)

=

(
1
2
− δ

p + 1

)
(‖∇v‖2

2,K − λ‖v‖2
2,K). (2.12)

Then we can prove the conclusion.
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Lemma 2.4.

(1) d(δ) > a(δ)r2(δ) for a(δ) = 1
2 −

δ
p+1 , 0 < δ < p+1

2 ,

(2) limδ→0 d(δ) = 0, d
(

p+1
2

)
= 0 and d(δ) < 0 for δ > p+1

2 ,

(3) d(δ) is increasing on 0 < δ 6 1, decreasing on 1 6 δ 6 p+1
2 and takes the maximum d = d(1)

at δ = 1.

Proof. (1) If u ∈ Nδ, by Lemma 2.3 (3), then ‖u‖ > r(δ). Moreover, we can deduce

EK(v) =
1
2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖p+1

p+1,K

=

(
1
2
− δ

p + 1

)
(‖∇v‖2

2,K − λ‖v‖2
2,K) +

1
p + 1

DK,δ(v)

=

(
1
2
− δ

p + 1

)
(‖∇v‖2

2,K − λ‖v‖2
2,K) ≥ a(δ)r2(δ). (2.13)

Hence, d(δ) > a(δ)r2(δ).

(2) We easily know that

EK(sv) =
s2

2
‖∇v‖2

2,K −
λs2

2
‖v‖2

2,K −
sp+1

p + 1
‖v‖p+1

p+1,K.

Hence,
lim
s→0

EK(sv) = 0. (2.14)

And if we let sv ∈ Nδ, then sv satisfies

0 = DK,δ(sv) = δs2‖∇v‖2
2,K − λs2δ‖v‖2

2,K − sp+1‖v‖p+1
p+1,K.

Then, we obtain

s(δ) =

δ(‖∇v‖2
2,K − λ‖v‖2

2,K)

‖v‖p+1
p+1,K

 1
p−1

, (2.15)

which yields
lim
δ→0

s(δ) = 0. (2.16)

Now (2.14) implies that
lim
δ→0

EK(sv) = lim
λ→0

EK(sv) = 0, (2.17)

and
lim
δ→0

d(δ) = 0. (2.18)

It is easy to see that from (2.13)

d
(

p + 1
2

)
= 0 and d(δ) < 0 for δ >

p + 1
2

.

The proof is complete.
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(3) We need to prove that for any 0 < δ′ < δ′′ < 1 or 1 < δ′′ < δ′ < p+1
2 and for any w ∈ Nδ′′ ,

there is a v ∈ Nδ′ and a constant ε (δ′, δ′′) such that EK(v) < EK(w)− ε (δ′, δ′′). Indeed, by the
definition of (2.15), we easily know that DK,δ(s(δ)u) = 0 and λ (δ′′) = 1. Let h(s) = EK(sw),
we have

d
ds

h(s) =
1
s
(
(1− δ)(‖∇sw‖2

2,K − λ‖sw‖2
2,K) + DK,δ(sw)

)
= (1− δ)s(‖∇w‖2

2,K − λ‖w‖2
2,K).

(2.19)

Take v = s (δ′)w, then v ∈ Nδ′ .
For 0 < δ′ < δ′′ < 1, we obtain

EK(w)− EK(v) = h(1)− h
(
s
(
δ′
))

>
(
1− δ′′

)
r2 (δ′′) s

(
δ′
) (

1− s
(
δ′
))
≡ ε

(
δ′, δ′′

)
.

(2.20)

For 1 < δ′′ < δ′ < p+1
2 , we obtain

EK(w)− EK(v) = h(1)− h
(
s
(
δ′
))

>
(
δ′′ − 1

)
r2 (δ′′) s

(
δ′′
) (

s
(
δ′
)
− 1
)
≡ ε

(
δ′, δ′′

)
.

(2.21)

Hence, the proof is complete.

Lemma 2.5. Let u0 ∈ H1(K) and 0 < δ < p+1
2 . If EK(v) 6 d(δ), then we have

(1) If DK,δ(v) > 0, then ‖∇v‖2
2,K − λ‖v‖2

2,K < d(δ)
a(δ) , where a(δ) = 1

2 −
δ

p+1 . In particular, if
EK(v) 6 d and DK(v) > 0, then

‖∇v‖2
2,K − λ‖v‖2

2,K <
2(p + 1)

p− 1
d. (2.22)

(2) If ‖∇v‖2
2,K − λ‖v‖2

2,K > d(δ)
a(δ) , then DK,δ(u) < 0. In particular, if EK(v) 6 d and

‖∇v‖2
2,K − λ‖v‖2

2,K >
2(p + 1)

p− 1
d, (2.23)

then DK(v) < 0.
(3) If DK,δ(v) = 0, then ‖∇v‖2

2,K − λ‖v‖2
2,K 6 d(δ)

a(δ) . In particular, if EK(v) 6 d and DK(v) = 0,
then

‖∇v‖2
2,K − λ‖v‖2

2,K 6
2(p + 1)

p− 1
d. (2.24)

Proof. (1) For 0 < δ < p+1
2 , we see that

EK(v) =
1
2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖p+1

p+1,K

=

(
1
2
− δ

p + 1

)
(‖∇v‖2

2,K − λ‖v‖2
2,K) +

1
p + 1

Dδ(u)

= a(δ)‖u‖2 ≤ d(δ). (2.25)

Therefore,

‖∇v‖2
2,K − λ‖v‖2

2,K <
d(δ)
a(δ)

.

Finally, (2) and (3) follow from (2.25).
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Lemma 2.6. Let v ∈ H1(K). We have

(1) 0 is away from both N and N−, i.e. dist(0,N ) > 0, dist(0, N−) > 0.

(2) For any α > 0, the set Eα ∩N+ is bounded in H1(K).

Proof. (1) If v ∈ N , then we have

d ≤ EK(v) =
1
2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖p+1

p+1,K

=

(
1
2
− 1

p + 1

)
(‖∇v‖2

2,K − λ‖v‖2
2,K) +

1
p + 1

D(u)

=

(
1
2
− 1

p + 1

)
(‖∇v‖2

2,K − λ‖v‖2
2,K).

If v ∈ N−, then we have

d ≤ EK(v) =
1
2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖p+1

p+1,K

=

(
1
2
− 1

p + 1

)
(‖∇v‖2

2,K − λ‖v‖2
2,K) +

1
p + 1

D(u)

≤
(

1
2
− 1

p + 1

)
(‖∇v‖2

2,K − λ‖v‖2
2,K).

Hence, 0 is away from both N and N−, i.e. dist(0,N ) > 0, dist (0, N−) > 0.

(2) Since EK(v) < α and DK(v) > 0, we obtain

α > EK(v) =
1
2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖p+1

p+1,K

=

(
1
2
− 1

p + 1

)
(‖∇v‖2

2,K − λ‖v‖2
2,K) +

1
p + 1

D(u)

>

(
1
2
− 1

p + 1

)
(‖∇v‖2

2,K − λ‖v‖2
2,K).

Hence, for any α > 0, the set Eα ∩N+ is bounded in H1(K).

3 Low initial energy EK(v0) < d

The goal of this section is to prove Theorems 3.2–3.6. A threshold result for the global solutions
and finite time blowup will be given.

Theorem 3.1. Assume that v0 ∈ H1(K), T is the maximal existence time of u, and 0 < e < d, δ1 < δ2

are two roots of equation d(δ) = e. We have

(1) If DK(v0) > 0, all weak solutions u of equation (2.1) with EK (v0) = e belong to Wδ for
δ1 < δ < δ2, 0 6 t < T.

(2) If DK(v0) < 0, all weak solutions u of equation (2.1) with EK (v0) = e belong to Vδ for δ1 <

δ < δ2, 0 6 t < T.

Theorem 3.2 (Global existence). Assume that v0 ∈ H1(K), EK (u0) < d, DK (u0) > 0. Then
equation (2.1) has a global solution v(t) ∈ L∞(0, ∞; H1(K)) and v(t) ∈W for 0 6 t < ∞.
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Remark 3.3. Result similar to Theorem 3.2 is obtained in [5]. But our proof is different to [5].
In fact, using the modified potential well method we can obtain the more general conclusion:

If the assumption DK (u0) > 0 is replaced by DK,δ2 (u0) > 0, where δ1 < δ2 are the two
roots of equation d(δ) = EK (u0) , then equation (2.1) admits a global weak solution.

The following result is obtained in [5]. But our proof is different from the proof in [5]. For
the reader’s convenience, we will give the detailed proof.

Theorem 3.4. Assume that v0 ∈ H1(K), EK (v0) < d and D (v0) < 0. Then the weak solution v(t)
of equation (2.1) blows up in finite time, that is, there exists a T > 0 such that

lim
t→T

∫ t

0
‖v(τ)‖2,Kdτ = +∞.

Remark 3.5. Assume that v0 ∈ H1(K),EK (v0) < d. When DK (u0) > 0, equation (2.1) has a
global solution. When DK (v0) < 0, equation (2.1) does not admit any global weak solution.

Theorem 3.6. Assume that v0 ∈ H1(K), EK (v0) < d and DK (v0) > 0, δ1 < δ2 are the two roots of
equation d(δ) = EK(v0). Then, for the global weak solution v of equation (2.1), it holds

‖v‖2
2,K 6 ‖v0‖2

2,Ke−2Sλ(1−δ1)t, 0 6 t < ∞. (3.1)

Remark 3.7. In comparison with the decay rate in [5], our result concerning the decay rate of
|u|2 in Theorem 3.6 is much more precise.

In order to prove Theorems 4.1–4.4, we need the following lemmas:

Lemma 3.8. For 0 < T ≤ ∞, assume that v : Ω× [0, T) → R3 is a weak solution to equation (2.1).
Then it holds ∫ t2

t1

‖vt‖2
2,K dt + EK (v (t2)) = EK (v (t1)) , ∀t1, t2 ∈ (0, T). (3.2)

Proof. Multiplying (2.1) by vt and integrating over RN via the integration by parts, we get
(3.2).

Lemma 3.9. If 0 < EK(v) < d for some v ∈ H1(K), and δ1 < 1 < δ2 are the two roots of equation
d(δ) = EK(v), then the sign of DK,δ(v) does not change for δ1 < δ < δ2 .

Proof. Since EK(v) > 0, we have ‖v‖2,K 6= 0. If the sign of DK,δ(v) is changeable for δ1 < δ < δ2,
then we choose δ̄ ∈ (δ1, δ2) such that DK,δ̄(v) = 0. Hence, by the definition of d(δ̄), we can
obtain EK(v) > d(δ̄), which contradicts EK(v) = d (δ1) = d (δ2) < d(δ̄) (by Lemma 2.4 (3)).

Definition 3.10 (Maximal existence time). Assume that v(t) is a weak solution of equation
(2.1). The maximal existence time T of v(t) is defined as follows:

(1) If v(t) exists for 0 6 t < ∞, then T = +∞.

(2) If there is a t0 ∈ (0, ∞) such that v(t) exists for 0 6 t < t0, but doesn’t exist at t = t0,
then T = t0.
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Proof of Theorem 3.1. (1) Let v(t) be any weak solution of equation (2.1) with EK (v0) = e,
DK (v0) > 0, and T be the maximal existence time of v(t). Using EK (v0) = e, DK (v0) > 0 and
Lemma 3.9, we have DK,δ (v0) > 0 and EK (v0) < d(δ). So v0(x) ∈Wδ for δ1 < δ < δ2. We need
to prove that v(t) ∈ Wδ for δ1 < δ < δ2 and 0 < t < T. Indeed, if this is not the conclusion,
from time continuity of DK(v) we assume that there must exist a δ0 ∈ (δ1, δ2) and t0 ∈ (0, T)
such that v (t0) ∈ ∂Wδ0 , and Dδ0 (v (t0)) = 0, ‖v (t0)‖ 6= 0 or EK (v (t0)) = d (δ0) . From the
energy equality∫ t

0

∫
Ω
|vτ|2 + EK (v (t)) = EK(v0) < d(δ), δ1 < δ < δ2, 0 6 t < T, (3.3)

we easily know that EK (v (t0)) 6= d (δ0) . If DK,δ0 (v (t0)) = 0, ‖v (t0)‖ 6= 0, then by the defini-
tion of d(δ) we obtain EK (v (t0)) > d (δ0) , which contradicts (3.3).

(2) Let v(t) be any weak solution of equation (2.1) with EK (v0) = e, DK (v0) < 0, and T be
the maximal existence time of v(t). Using EK (v0) = e, DK (v0) < 0 and Lemma 3.9, we have
Dδ (u0) < 0 and EK (v0) < d(δ). So u0 ∈ Vδ for δ1 < δ < δ2. We need to prove that v(t) ∈ Vδ for
δ1 < δ < δ2 and 0 < t < T. Indeed, if this is not the conclusion, from time continuity of DK(v)
we assume that there must exist a δ0 ∈ (δ1, δ2) and t0 ∈ (0, T) such that v (t0) ∈ ∂Vδ0 , and
DK,δ0 (v (t0)) = 0, or EK (v (t0)) = d (δ0) . From the energy equality (3.3), we easily know that
E (v (t0)) 6= d (δ0) . If DK,δ0 (v (t0)) = 0, and t0 is the first time such that DK,δ0(v(t)) = 0, then
DK,δ0(v(t)) < 0 for 0 6 t < T. By Lemma (2.3) (2), we have ‖v (t0)‖ > r (δ0) for 0 6 t < T. So,
‖v (t0)‖ > r (δ0) and EK (v (t0)) 6= d (δ0) , which contradicts (3.3). As required.

Proof of Theorem 3.2. From the standard argument in [5], we can prove the local existence
result of (2.1) in a more general case of initial value v0 ∈ H1(K) and v ∈ C0 ([0, T0] , H1(K)

)
.

Using EK (v0) < d, DK (v0) > 0 and Lemma 3.9, we have Dδ (v0) > 0 and EK (v0) < d(δ).
So v0(x) ∈Wδ for δ1 < δ < δ2. We need to prove that v(t) ∈Wδ for δ1 < δ < δ2 and 0 < t < T.
Indeed, if this is not the conclusion, from time continuity of DK(v) we assume that there must
exist a δ0 ∈ (δ1, δ2) and t0 ∈ (0, T) such that v (t0) ∈ ∂Wδ0 , and DK,δ0 (v (t0)) = 0, ‖v (t0)‖ 6= 0
or EK (v (t0)) = d (δ0) . From the energy equality∫ t

0

∫
Ω
|vτ|2 + EK (v (t)) = EK(v0) < d(δ), δ1 < δ < δ2, 0 6 t < T, (3.4)

we easily know that EK (v (t0)) 6= d (δ0) . If DK,δ0 (v (t0)) = 0, ‖v (t0)‖ 6= 0, then by the defini-
tion of d(δ) we obtain EK (v (t0)) > d (δ0) , which contradicts (3.3).

Remark 3.11. If in Theorem 3.2 the condition Dδ2 (u0) > 0 is replaced by ‖u0‖ < r (δ2) , then
equation (2.1) has a global weak solution u(t) ∈ L∞(0, ∞; H1(K)) with ut(t) ∈ L2(0, ∞; H1(K))
and the following result holds

‖u‖ < d(δ)
a(δ)

, δ1 < δ < δ2, 0 6 t < ∞, (3.5)

∫ t

0
|uτ|2 dτ < d(δ), δ1 < δ < δ2, 0 6 t < ∞. (3.6)

In particular

‖u‖2 <
d (δ1)

a (δ1)
, (3.7)

∫ t

0
|uτ|2 dτ < d (δ1) , 0 6 t < ∞. (3.8)
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Proof of Theorem 3.4. We argue by contradiction. Suppose that there would exist a global
weak solution v(t). Set

f (t) =
∫ t

0
‖v‖2

2,Kdτ, t > 0. (3.9)

Multiplying (2.1) by u and integrating over RN × (0, t), we get

‖v(t)‖2
2,K − ‖v0‖2

2,K = −2
∫ t

0
(‖∇v‖2

2,K − λ‖v‖2
2,K − ‖v‖

p+1
p+1,K). (3.10)

According to the definition of f (t), we have f ′(t) = ‖v(t)‖2
2,K and hence

f ′(t) = ‖v(t)‖2
2,K = ‖v0‖2

2,K − 2
∫ t

0
(‖∇v‖2

2,K − λ‖v‖2
2,K − ‖v‖

p+1
p+1,K), (3.11)

and
f ′′(t) = −2(‖∇v‖2

2,K − λ‖v‖2
2,K − ‖v‖

p+1
p+1,K) = −2DK(v). (3.12)

Now using (3.2), (3.12) and

EK(v) =
1
2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖p+1

p+1,K

=
p− 1

2(p + 1)
(‖∇v‖2

2,K − λ‖v‖2
2,K) +

1
p + 1

DK(v),

we can obtain

f ′′(t) ≥ 2(p + 1)
∫ t

0
‖vτ(τ)‖2

2,Kdτ + Sλ(p− 1)‖v‖2
2,K − 2(p + 1)EK (v0)

= 2(p + 1)
∫ t

0
‖vτ(τ)‖2

2,Kdτ + Sλ(p− 1) f ′(t)− 2(p + 1)EK (v0) . (3.13)

Note that

f (t) f ′′(t) = f (t)
[

2(p + 1)
∫ t

0
‖vτ(τ)‖2

2,Kdτ + Sλ(p− 1) f ′(t)− 2(p + 1)EK (v0)

]
= 2(p + 1)

∫ t

0
‖v‖2

2,Kdτ
∫ t

0
‖vτ(τ)‖2

2,Kdτ + Sλ(p− 1) f (t) f ′(t)

−2(p + 1)EK(v0)
∫ t

0
‖v(τ)‖2

2,Kdτ. (3.14)

Hence, we have

f (t) f ′′(t)− p + 1
2

( f ′(t))2 = 2(p + 1)
∫ t

0
‖v‖2

2,Kdτ
∫ t

0
‖vτ(τ)‖2

2,Kdτ

−2(p + 1)
∫ t

0
(vτ, v)Kdτ + Sλ(p− 1) f (t) f ′(t)

−2(p + 1)EK(v0)
∫ t

0
‖v(τ)‖2

2,Kdτ − (p + 1) f ′(t)‖v0‖2
2,K. (3.15)

Making use of the Schwartz inequality, we have

f (t) f ′′(t)− p + 1
2

( f ′(t))2 ≥ C∗(p− 1) f (t) f ′(t)− (p + 1) f ′(t)‖v0‖2
2,K

−2(p + 1)EK(v0)
∫ t

0
‖v(τ)‖2

2,Kdτ. (3.16)
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Next, we distinguish two cases:

(1) If EK (u0) 6 0, then

f (t) f ′′(t)− p + 1
2

( f ′(t))2 ≥ C∗(p− 1) f (t) f ′(t)− (p + 1) f ′(t)‖v0‖2
2,K. (3.17)

Now we prove DK(v) < 0 for t > 0. If not, we must be allowed to choose a t0 > 0 such that
DK (v (t0)) = 0 and DK(v) < 0 for 0 6 t < t0. From Lemma 2.3 (2), we have ‖u‖ > r(1) for
0 6 t < t0, ‖v (t0)‖ > r(1) and EK (v (t0)) > d, which contradicts (3.3). From (3.12) we have
f ′(t) > 0 for t > 0. From f ′(0) = ‖v(0)‖2

2,K > 0, we can know that there exists a t0 > 0 such
that f ′ (t0) > 0. For t > t0 we have

f (t) > f ′ (t0) (t− t0) > f ′(0) (t− t0) . (3.18)

Hence, for sufficiently large t , we obtain

f (t) > (p + 1)‖v0‖2
2,K, (3.19)

then

f (t) f ′′(t)− p + 1
2

( f ′(t))2 > 0.

(2) If 0 < EK (v0) < d, then by Theorem 3.1 we have v(t) ∈ Vδ for 1 < δ < δ2, t > 0, and
Dδ(v) < 0, ‖∇v‖2

2,K − λ‖v‖2
2,K > r(δ) for 1 < δ < δ2, t > 0, where δ2 is the larger root of

equation d(δ) = EK (v0) . Hence, Dδ2(v) 6 0 and ‖∇v‖2
2,K − λ‖v‖2

2,K > r (δ2) for t > 0. By
(3.12), we have

f ′′(t) = −2DK(v) = 2 (δ2 − 1) (‖∇v‖2
2,K − λ‖v‖2

2,K)− 2Dδ2(v),

> 2 (δ2 − 1) (‖∇v‖2
2,K − λ‖v‖2

2,K) > 2 (δ2 − 1) r2 (δ2) , t > 0,

f ′(t) > 2 (δ2 − 1) r2 (δ2) t + f ′(0) > 2 (δ2 − 1) r2 (δ2) t, t > 0,

f (t) > (δ2 − 1) r2 (δ2) t2, t > 0.

(3.20)

Therefore, for sufficiently large t, we infer

Sλ(p− 1)
2

f (t) > (p + 1)‖v0‖2
2,K,

Sλ(p− 1)
2

f ′(t) > 2(p + 1)EK (v0) . (3.21)

Then, (3.16) implies that

f (t) f ′′(t)− p + 1
2

( f ′(t))2 ≥ Sλ(p− 1) f (t) f ′(t)− (p + 1) f ′(t)‖v0‖2
2,K

− 2(p + 1) f (t)EK(v0)
∫ t

0
‖v(τ)‖2

2,K.

=

(
Sλ(p− 1)

2
f (t)− (p + 1)‖v0‖2

2,K

)
f ′(t)

+

(
Sλ(p− 1)

2
f ′(t)− 2(p + 1)EK (v0)

)
f (t) > 0.

The remainder of the proof is the same as that in [12].
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Proof of Theorem 3.6. Multiplying (2.1) by w, w ∈ L∞ (0, ∞; H1(K)
)
, we have

(vt, w)K + (∇v,∇w)K =

(
|v|p−1v +

v
p− 1

, w
)

K
. (3.22)

Letting w = v, (3.22) implies that

1
2

d
dt
‖v‖2

2,K + DK(v) = 0, 0 6 t < ∞. (3.23)

From 0 < EK (v0) < d, DK (v0) > 0 and Lemma 3.1, we have v(t) ∈ Wδ for δ1 < δ < δ2

and 0 6 t < ∞, where δ1 < δ2 are the two roots of equation d(δ) = EK (v0) . Hence, we obtain
DK,δ(v) > 0 for δ1 < δ < δ2 and DK,δ1(v) > 0 for 0 6 t < ∞. So, (3.23) gives

1
2

d
dt
‖v‖2

2,K + (1− δ1)(‖∇v‖2
2,K − λ‖v‖2

2,K) + DK,δ1(v) = 0, 0 6 t < ∞. (3.24)

Now (3.23) implies that

1
2

d
dt
‖v‖2

2,K + Sλ(1− δ1) ‖v‖2
2,K ≤ 0, 0 6 t < ∞. (3.25)

and

‖v‖2
2,K 6 ‖v0‖2

2,K − 2Sλ (1− δ1)
∫ t

0
|v(τ)|2dτ, 0 6 t < ∞. (3.26)

By Gronwall’s inequality, we have

|v|22,K 6 |v0|22,K e−2Sλ(1−δ1)t, 0 6 t < ∞. (3.27)

This completes the proof.

4 Critical initial energy EK(v0) = d

The goal of this section is to prove Theorem 4.1–4.4.

Theorem 4.1 (Global existence). Assume that v0 ∈ H1(K),E (v0) = d and DK (v0) > 0. Then
equation (2.1) has a global weak solution u(t) ∈ L∞(0, ∞; H1(K)) and v(t) ∈ W = W ∪ ∂W for
0 6 t < ∞.

Lemma 4.2. Assume that v ∈ H1(K), ‖∇v‖2
2 6= 0, and DK(v) ≥ 0. Then:

(1) limµ→0 EK(λv) = 0, limµ→+∞ EK(µv) = −∞,

(2) On the interval 0 < µ < ∞, there exists a unique µ∗ = µ∗(u), such that

d
dµ

EK (µv)|µ=µ∗ = 0, (4.1)

(3) EK(µv) is increasing on 0 6 µ 6 µ∗, decreasing on µ∗ 6 µ < ∞ and takes the maximum at
µ = µ∗,

(4) DK(µv) > 0 for 0 < µ < µ∗, DK(µv) < 0 for µ∗ < µ < ∞, and DK (µ∗v) = 0.
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Proof. (1) Firstly, from the definition of EK(v), i.e.

EK(v) =
1
2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖p+1

p+1,K

and we see that

EK(µv) =
1
2
‖∇µv‖2

2,K −
λ

2
‖µv‖2

2,K −
1

p + 1
‖µv‖p+1

p+1,K.

Hence, we have
lim
µ→0

EK(µv) = 0 and lim
µ→+∞

EK(µu) = −∞. (4.2)

(2) It is easy to show that

d
dµ

EK(µv) = µ‖∇v‖2
2,K − µλ‖v‖2

2,K − µp‖v‖p+1
p+1,K,

which leads to the conclusion.

(3) By Lemma 4.2 (2), one has

d
dµ

EK(µv) > 0 for 0 < µ < µ∗,

d
dµ

EK(µv) < 0 for µ∗ < µ < ∞,
(4.3)

which leads to the conclusion.

(4) The conclusion follows from

DK(µv) =
d

dµ
EK(µv) = µ‖∇v‖2

2,K − µλ‖v‖2
2,K − µp‖v‖p+1

p+1,K.

As desired.

Proof of Theorem 4.1. Firstly, EK (v0) = d implies that ‖v0‖H1(K) 6= 0. Choose a sequence {µm}
such that 0 < µm < 1, m = 1, 2, . . . and µm → 1 as m → ∞. Let v0m = µmv0. We consider the
following initial problemvs + Lv = |v|p−1v +

1
p− 1

v in RN × (0, S),

v|s=0 = v0m in RN .
(4.4)

From DK (v0) > 0 and Lemma 4.2, we have µ∗ = µ∗ (u0) > 1. Thus, we get DK (v0m) =

DK (µmv0) > 0 and EK (v0m) = EK (µmv0) < EK (v0) = d. From Theorem 3.2, it follows
that for each m problem (4.4) admits a global weak solution vm(t) ∈ L∞(0, ∞; H1(K)) with
vmt(t) ∈ L2(0, ∞; H1(K)) and vm(t) ∈W for 0 6 t < ∞ satisfying

(vm,t, w)K + (∇vm,t,∇w)K =

(
|v|p−1v +

v
p− 1

, w
)

K
, for all w ∈ H1(K), t > 0. (4.5)

∫ t

0
‖vm,τ‖2

2,K + EK (vm (t)) = EK(v0m) < d, 0 6 t < ∞, (4.6)
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which implies that

EK(vm) =
1
2
‖∇vm‖2

2,K −
λ

2
‖vm‖2

2,K −
1

p + 1
‖vm‖p+1

p+1,K

=
p− 1

2(p + 1)
(‖∇vm‖2

2,K − λ‖vm‖2
2,K) +

1
p + 1

DK(vm). (4.7)

Therefore, one has∫ T

0
‖vm,τ‖2

2,Kdτ +
p− 1

2(p + 1)
(‖∇vm‖2

2,K − λ‖vm‖2
2,K) < d, 0 6 t < ∞. (4.8)

The remainder of the proof is similar to the proof of Theorem 3.2.

Theorem 4.3 (Blow-up). Assume that v0 ∈ H1(K), EK (v0) = d and D (v0) > 0, Then the existence
time of weak solution for equation (2.1) is finite.

Proof of Theorem 4.3. Let v(t) be any weak solution of equation (2.1) with EK (v0) = d and
DK (v0) < 0, T be the existence time of v(t) . We next prove T < ∞. We argue by contradiction.
Suppose that there would exist a global weak solution v(t). Set

f (t) =
∫ t

0
‖v‖2

2,Kdτ, t > 0. (4.9)

Multiplying (2.1) by u and integrating over RN × (0, t), we get

‖v(t)‖2
2,K − ‖v0‖2

2,K = −2
∫ t

0
(‖∇v‖2

2,K − λ‖v‖2
2,K − ‖v‖

p+1
p+1,K). (4.10)

According to the definition of f (t), we have f ′(t) = ‖v‖2
2,K and hence

f ′(t) = ‖v(t)‖2
2,K = ‖v0‖2

2,K − 2
∫ t

0
(‖∇v‖2

2,K − λ‖v‖2
2,K − ‖v‖

p+1
p+1,K), (4.11)

and
f ′′(t) = −2(‖∇v‖2

2,K − λ‖v‖2
2,K − ‖v‖

p+1
p+1,K) = −2DK(v). (4.12)

Now using (3.2), (4.12) and

EK(v) =
1
2
‖∇v‖2

2,K −
λ

2
‖v‖2

2,K −
1

p + 1
‖v‖p+1

p+1,K

=
p− 1

2(p + 1)
(‖∇v‖2

2,K − λ‖v‖2
2,K) +

1
p + 1

DK(v),

we can obtain

f ′′(t) ≥ 2(p + 1)
∫ t

0
‖vτ(τ)‖2

2,Kdτ + Sλ(p− 1)‖v‖2
2,K − 2(p + 1)EK (v0)

= 2(p + 1)
∫ t

0
‖vτ(τ)‖2

2,Kdτ + Sλ(p− 1) f ′(t)− 2(p + 1)EK (v0) . (4.13)

Note that

f (t) f ′′(t) = f (t)
[

2(p + 1)
∫ t

0
‖vτ(τ)‖2

2,Kdτ + C∗(p− 1) f ′(t)− 2(p + 1)EK (v0)

]
= 2(p + 1)

∫ t

0
‖v‖2

2,Kdτ
∫ t

0
‖vτ(τ)‖2

2,Kdτ + Sλ(p− 1) f (t) f ′(t)

−2(p + 1)EK(v0)
∫ t

0
‖v(τ)‖2

2,Kdτ. (4.14)
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Hence, we have

f (t) f ′′(t)− p + 1
2

( f ′(t))2 = 2(p + 1)
∫ t

0
‖v‖2

2,Kdτ
∫ t

0
‖vτ(τ)‖2

2,Kdτ

− 2(p + 1)
∫ t

0
(vτ, v)Kdτ + Sλ(p− 1) f (t) f ′(t)

− 2(p + 1)EK(v0)
∫ t

0
‖v(τ)‖2

2,Kdτ − (p + 1) f ′(t)‖v0‖2
2,K. (4.15)

Hence, according to (4.15) and the Schwartz inequality, we obtain

f (t) f ′′(t)− p + 1
2

( f ′(t))2 ≥ Sλ(p− 1) f (t) f ′(t)− (p + 1) f ′(t)‖v0‖2
2,K

− 2(p + 1) f (t)EK(v0)
∫ t

0
‖v(τ)‖2

2,Kdτ.

=

(
Sλ(p− 1)

2
f (t)− (p + 1)‖v0‖2

2,K

)
f ′(t)

+

(
Sλ(p− 1)

2
f ′(t)− 2(p + 1)EK (v0)

)
f (t). (4.16)

On the other hand, from EK (v0) = d > 0, DK (v0) < 0 and the continuity of EK(v) and DK(v)
with respect to t, it follows that there exists a sufficiently small t1 > 0 such that EK (v (t1)) > 0
and DK(v) < 0 for 0 6 t 6 t1. Hence (vt, v)K = −DK(v) > 0, ‖vt‖2 > 0 for 0 6 t 6 t1. So,
using the continuity of

∫ t
0 ‖vτ‖2

2,K dτ, we can choose a t1 such that

0 < d1 = d−
∫ t1

0
‖vτ‖2

2,K dτ < d. (4.17)

And by (3.4), we get

0 < EK (v (t1)) = d−
∫ t1

0
‖vτ‖2

2,k dτ = d1 < d. (4.18)

So we can choose t = t1 as the initial time, then we obtain v(t) ∈ Vδ for δ ∈ (δ1, δ2) , t1 6 t < ∞,
where (δ1, δ2) is the maximal interval including δ = 1 such that d(δ) > d1 for δ ∈ (δ1, δ2) . Thus
we get DK,δ(v) < 0 and ‖v‖ > r(δ) for δ ∈ (1, δ2) , t1 6 t < ∞, and DK,δ2(v) 6 0, ‖∇v‖2

2,K −
λ‖v‖2

2,K > r (δ2) for t1 6 t < ∞. Thus (4.12) implies that

f ′′(t) = −2DK(v) = 2 (δ2 − 1) (‖∇v‖2
2,K − λ‖v‖2

2,K)− 2DδK,2(v),

> 2 (δ2 − 1) r (δ2) , t > t1,

f ′(t) > 2 (δ2 − 1) r (δ2) (t− t1) + f ′(t1) > 2 (δ2 − 1) r (δ2) (t− t1), t > 0,

f (t) > (δ2 − 1) r (δ2) (t− t1)
2 + M(t1) > (δ2 − 1) r (δ2) (t− t1)

2, t > t1.

(4.19)

Therefore, for sufficiently large t, we infer

Sλ(p− 1)
2

f (t) > (p + 1)‖v0‖2
2,K,

Sλ(p− 1)
2

f ′(t) > 2(p + 1)EK (v0) . (4.20)
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Then, (4.16) implies that

f (t) f ′′(t)− p + 1
2

( f ′(t))2 ≥ Sλ(p− 1) f (t) f ′(t)− (p + 1) f ′(t)‖v0‖2
2,K

− 2(p + 1) f (t)EK(v0)
∫ t

0
‖v(τ)‖2

2,Kdτ.

=

(
Sλ(p− 1)

2
f (t)− (p + 1)‖v0‖2

2,K

)
f ′(t)

+

(
Sλ(p− 1)

2
f ′(t)− 2(p + 1)EK (v0)

)
f (t) > 0.

The remainder of the proof is the same as that in [12].

Theorem 4.4. Assume that u0 ∈ H1(K), EK (v0) = d and DK (v0) > 0, δ1 < δ2 are the two roots of
equation d(δ) = EK(v0). Then, for the global weak solution v of equation (2.1), it holds

|v|22 6 |v0|22 e−2Sλ(1−δ1)t, 0 6 t < ∞. (4.21)

Proof of Theorem 4.4. We first know that equation (2.1) has a global weak solution from The-
orem 4.3. Furthermore, Using Theorem 3.4, Theorem 4.3 and (3.3), if v(t) is a global weak
solution of equation (2.1) with EK(v0) = d, DK(v0) > 0, then must have DK(v) ≥ 0 for
0 ≤ t < +∞. Next, we distinguish two cases:

(1) Suppose that DK(v) > 0 for 0 6 t < ∞. Multiplying (2.1) by v, v ∈ L∞ (0, ∞; H1(K)
)
, we

have

(vt, w)K + (∇vt,∇w)K =

(
|v|p−1v +

v
p− 1

, w
)

K
, for all w ∈ H1(K), t > 0. (4.22)

Letting w = v, (4.22) implies that

1
2

d
dt
‖v‖2

2,K = −DK(v) < 0, 0 6 t < ∞. (4.23)

Since ‖vt‖2,K > 0, we have that
∫ t

0 ‖vτ‖2 dτ is increasing for 0 6 t < ∞. By choosing any t1 > 0
such that

0 < d1 = d−
∫ t1

0
‖vτ‖2

2,Kdτ < d. (4.24)

From (3.3), if follows that 0 < EK (v) ≤ d1 < d, and v(t) ∈ Wδ for δ1 < δ < δ2 and
0 6 t < ∞, where δ1 < δ2 are the two roots of equation d(δ) = EK (v0) . Hence, we obtain
DK,δ1(v) > 0 for δ1 < δ < δ2 and DK,δ1(v) > 0 for t1 6 t < ∞. So, (4.23) gives

1
2

d
dt
‖v‖2

2,K + (1− δ1) |v|22 + DK,δ(v) = 0, t1 6 t < ∞. (4.25)

1
2

d
dt
‖v‖2

2,K + (1− δ1)(‖∇v‖2
2,K − λ‖v‖2

2,K) + DK,δ1(v) = 0, 0 6 t < ∞. (4.26)

Now (4.23) implies that

1
2

d
dt
‖v‖2

2,K + Sλ(1− δ1) ‖v‖2
2,K ≤ 0, 0 6 t < ∞. (4.27)

and

‖v‖2
2,K 6 ‖v0‖2

2,K − 2Sλ (1− δ1)
∫ t

0
|v(τ)|2dτ, 0 6 t < ∞. (4.28)
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and By Gronwall’s inequality, we have

|v|22,K 6 |v0|22 e−2Sλ(1−δ1)t, 0 6 t < ∞. (4.29)

(2) Suppose that there exists a t1 > 0 such that DK (v (t1)) = 0 and DK(v) > 0 for 0 6 t < t1.
Then, |ut|2 > 0 and

∫ t
0 |vτ|22 dτ is increasing for 0 6 t < t1. By (4.24) we have

EK(v(t1)) = d−
∫ t1

0
|vτ|22dτ < d, (4.30)

and ‖v (t1)‖ = 0. Then, we have that v(t) ≡ 0 for t1 6 t < ∞.
Hence, the proof is complete.

5 High initial energy EK(v0) > d

In this section, we investigate the conditions to ensure the existence of global solutions or
blow-up solutions to system (2.1) with EK(v0) > d.

Lemma 5.1. For any α > d, λα and Λα defined in (2.1) satisfy

0 < λα ≤ Λα < +∞. (5.1)

Proof. (1) By Hölder’s inequality, fundamental inequality and u ∈ N , we have

‖∇v‖2
2,K − λ‖v‖2

2,K = ‖v‖p+1
p+1,K. (5.2)

Then from Lemma 2.6 (1), we have λα > 0.
Using Lemma 2.1 and u ∈ N , we have

‖∇v‖2
2,K − λ‖v‖2

2,K = ‖v‖p+1
p+1,K 6

(
1

Sλ
(‖∇v‖2

2,K − λ‖v‖2
2,K)

) p+1
2

. (5.3)

So we have ‖∇v‖2
2,K − λ‖v‖2

2,K ≤ 1
Sλ

which leads to the conclusion.

Theorem 5.2. Suppose that EK (v0) > d, then we have

(1) If v0 ∈ N+ and ‖v0‖2,k ≤ λEK(v0), then v0 ∈ G0,

(2) If v0 ∈ N− and ‖v0‖2,k ≥ ΛEK(v0), then v0 ∈ B.

Proof. The maximal existence time of the solutions to system (2.1) with initial value v0 is
denoted by T0. If the solution is global, i.e. T(v0) = +∞, the limit set of v0 is denoted by ω0.

(1) Suppose that v0 ∈ N+ with |v0|2 ≤ λEK(v0). We firstly prove that v(t) ∈ N+ for all t ∈
[0, T (v0)) . Assume, on the contrary, that there exists a t0 ∈ (0, T (v0)) such that v(t) ∈ N+ for
0 ≤ t < t0 and v (t0) ∈ N . It follows from DK(v(t)) = −

∫
Ω vt(x, t)v(x, t)dx that vt(x, t) 6= 0

for (x, t) ∈ Ω× (0, t0) . Recording to(3.2) we then have EK (v (t0)) < EK (v0) , which implies
that u (t0) ∈ EEK(v0)

K . Therefore, v (t0) ∈ N EK(v0). Recalling the definition of λEK(v0), we get

|u (t0)|2 ≥ λE (v0) . (5.4)
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Since DK(v(t)) > 0 for t ∈ [0, t0) , we obtain from (3.23) that

|v (t0)|2 < |v0|2 ≤ λEK(v0), (5.5)

which contradicts (5.4). Hence, v(t) ∈ N+ which shows that v(t) ∈ EEK(v0)
K for all t ∈

[0, T (v0)) . Now Lemma 3.9 (2) implies that the orbit {v(t)} remains bounded in H1(K) for
t ∈ [0, T (v0)) so that T (v0) = ∞. Assume that ω is an arbitrary element in ω (v0) . Then by
(3.2) and (3.23) we obtain

|ω|2 > ΛEK(v0), EK(ω) < EK (v0) , (5.6)

which, according to the definition of λEK(v0) again, implies that ω (v0) ∩ N = ∅. So, ω (v0) =

{0}, i.e. v0 ∈ G0.

(2) Suppose that v0 ∈ N− with |v0|2 ≥ ΛEK(v0). We now prove that v(t) ∈ N− for all t ∈
[0, T (v0)) . Assume, on the contrary, that there exists a t0 ∈ (0, T (v0)) such that v(t) ∈ N− for
0 ≤ t < t0 and v(t0) ∈ N . Similarly to case (1), one has EK(v(t0)) < EK (v0) , which implies
that v(t0) ∈ EEK(v0)

K . Therefore, v(t0) ∈ N EK(v0). Recalling the definition of ΛEK(v0), we infer

|v(t0)|2 ≤ ΛEK(v0). (5.7)

On the other hand, from (3.23) and the fact that DK(v(t)) < 0 for t ∈ [0, t0), we obtain

|v(t0)|2 > |v0|2 ≥ ΛEK(v0), (5.8)

which contradicts (5.7).
Assume that T (v0) = ∞. Then for each ω ∈ ω (v0) , it follows from by (3.2) and (3.23) that

‖ω‖2 > ΛEK(v0), EK(ω) < EK (v0) . (5.9)

Noting the definition of ΛEK(v0) again, we have ω (v0) ∩ N = ∅. Hence, it is holded that
ω (v0) = {0}, which contradicts Lemma 3.9 (1). Therefore, T (v0) < ∞. This ends the proof.

Theorem 5.3. Assume that v0 ∈ H1(K) satisfies

EK(v0) ≤ ‖v0‖2,K <
p

p + 1
‖v0‖p+1

p+1,K, (5.10)

Then, v0 ∈ N− ∩ B.

Proof. Firstly, we observe

EK(v0) =
1
2
‖∇v0‖2

2,K −
λ

2
‖v0‖2

2,K −
1

p + 1
‖v0‖p+1

p+1,K

=
1
2

DK(v0) +
p

p + 1
‖v0‖p+1

p+1,K. (5.11)

Thus, we have

EK(v0)−
p

p + 1
‖v0‖p+1

p+1,K =
1
2

DK(v0) < 0, (5.12)
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which shows that v0 ∈ N−. Then for any v ∈ NEK(v0), one has

‖v‖p+1
p+1,K = ‖∇v‖2

2,K − λ‖v‖2
2,K ≤ EK(v0) ≤

√
2(p + 1)

p− 1
EK(v0).

Taking supremum over NEK(v0) and (5.10), by Theorem 5.2 we can deduce

‖v0‖2 ≥ ΛEK(v0).

Thus, v0 ∈ N− ∩ B. This finishes the proof.
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