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Abstract. In this paper, we study the existence of limit cycles in continuous and dis-
continuous planar piecewise linear Hamiltonian differential system with two or three
zones separated by straight lines and such that the linear systems that define the piece-
wise one have isolated singular points, i.e. centers or saddles. In this case, we show
that if the planar piecewise linear Hamiltonian differential system is either continuous
or discontinuous with two zones, then it has no limit cycles. Now, if the planar piece-
wise linear Hamiltonian differential system is discontinuous with three zones, then it
has at most one limit cycle, and there are examples with one limit cycle. More pre-
cisely, without taking into account the position of the singular points in the zones, we
present examples with the unique limit cycle for all possible combinations of saddles
and centers.
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1 Introduction

The first works on piecewise differential systems appeared in the 1930s, see [1]. This class
of systems is very important due to numerous applications, for example in control theory,
mechanics, electrical circuits, neurobiology, etc (see for instance the book [7]). Recently, this
subject has piqued the attention of researchers in qualitative theory of differential equations
and numerous studies about this topic have arisen in the literature (see [6, 15, 19, 20, 30]).

Piecewise linear differential systems are an interesting class of piecewise differential sys-
tems and, unlike the smooth case, have a rich dynamic that is far from being fully understood.
In addition to numerous applications in various areas of knowledge. In 1990, Lum and Chua
[28] conjectured that a continuous piecewise differential systems in the plane with two zones
has at most one limit cycle. In 1998 this conjecture was proved by Freire, Ponce, Rodrigo
and Torres in [9]. The problem becomes more complicated when we have three zones. Con-
ditions for non existence and existence of one, two or three limit cycles have been obtained,
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see [10, 23, 32]. However, the maximum number of limit cycles, as far as we know, is not yet
known.

In the discontinuous case, the maximum number of limit cycles is not known even in
the simplest case, i.e. for piecewise linear differential systems with two zones separated by
a straight line. However, important partial results about this problem have been obtained.
In summary, the results about the number of limit cycles of discontinuous piecewise linear
differential systems with two zones separated by a straight line are given in Table 1.1. The
symbol “—” indicates that those cases appear repeated in the table and the empty entries on
it correspond to cases not studied in the literature, at least as far as we know.

Fr Fv Fb Sr S0
r Nv iNv C Cb

Fr 3 2∗ 3 2∗ 3 3 2∗ 2∗

Fv — 2 2∗ 2 1∗ 2 1∗ 1∗

Fb — — 1∗ 2∗ 1∗ 2∗ 2∗ 1∗ 1∗

Sr — — — 2∗ 1∗ 2 2 1∗ 1∗

S0
r — — — — 0∗ 1∗ 1∗ 0∗ 0∗

Nv — — — — — 1∗ 1∗

iNv — — — — — — 2 1∗ 1∗

C — — — — — — — 0∗ 0∗

Cb — — — — — — — — 0∗

Table 1.1: Lower bounds (Upper bounds*) of the maximum number of limit
cycles of discontinuous piecewise linear differential systems with two zones
separated by a straight line. Here Fr, Fv, Fb, Sr, S0

r , Nv, iNv, C and Cb denote real
focus, virtual focus, boundary focus, real saddle, real saddle with zero trace,
virtual node, improper node, center and boundary center, respectively.

We denote the lower bounds of the entrances from Table 1.1 by the symbols that indicate
its position on the table. For example, the lower bound for the case with a real focus Fr and a
virtual focus Fv is detonated by FrFv, i.e. FrFv = 3. A proof for the lower bound FrFv can be
found in [22]. A proof for the lower bound FrSr can be found in [18]. A proof for the lower
bounds FrNv and FriNv can be found in [12]. A proof for the lower bound FvFv can be found
in [11]. A proof for the lower bound FvSr can be found in [36]. A proof for the lower bound
FviNv can be found in [35]. A proof for the upper bound SrSr can be found in [2]. A proof for
the lower bounds SrNv and SriNv can be found in [26]. A proof for the lower bound iNviNv

can be found in [17]. The other cases listed in Table 1.1 can be found in [21]. In the papers
[3, 5, 13, 27, 34] we can also find proofs for some lower bounds of Table 1.1.

If the curve between two linear zones is not a straight line it is possible to obtain as many
cycles as you want. This fact has been conjectured by Braga and Mello in [4] and firstly proved
by Novaes and Ponce in [31]. Exact number of limit cycles, for discontinuous piecewise linear
systems with two zones separated by a straight line, were obtained in particular cases. Llibre
and Teixeira [24] proved that if the linear systems, that define the piecewise one, has no
singular point, then it has at most one limit cycle. Medrado and Torregrossa [29] proved that
if the straight line has only crossing sewing points and the piecewise linear system has only a
monodronic singular point on it, then the system has at most one limit cycle.

There are a few papers on discontinuous piecewise linear systems with three zones sepa-
rated by two straight lines (see [8,25,38,39]). In [25], Llibre and Teixeira study the existence of
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limit cycles for continuous and discontinuous planar piecewise linear differential system with
three zones separated by two parallel straight lines and such that the linear systems involved
have a unique singular point which are centers. More precisely, in the continuous case, they
prove that the piecewise system has no limit cycles. Now, in the discontinuous case, the piece-
wise system has at most one limit cycle and there are examples with one. Mello, Llibre and
Fonseca, in [8], propose a mix of [24] and [25]. They proved that a piecewise linear Hamilto-
nian systems with three zones separated by two parallel straight lines without singular points
have at most one crossing limit cycle.

In this paper, we contribute along these lines, that is, we are interested in studying the
existence and the number of limit cycles of piecewise linear differential systems with two or
three zones in the plane with the following hypotheses:

(H1) The separations curves are straight lines, and parallel if there are more than one.

(H2) The vector fields which define the piecewise one are linear.

(H3) The vector fields which define the piecewise one are Hamiltonian.

(H4) The vector fields which define the piecewise one have isolated singularities.

Note that, hypotheses (H2), (H3) and (H4) imply that the singular points of the linear systems
that define the piecewise differential systems are saddles or centers.

We can classify the systems that satisfy the above hypotheses according to the configura-
tion of their singular points. Thus, denoting the centers by the capital letter C and by S the
saddles, in the case of two zones we have systems of the type CC, SC and SS. This is, CC
indicates that the singular points of the linear systems that define the piecewise differential
system are centers and so on. Following this idea, for three zones, we have the following six
class of piecewise linear Hamiltonian systems: CCC, SCC, SCS, CSC, SSS and SSC.

The case with two zones has been study in the literature, i.e. the next theorem is already
proved.

Theorem 1.1. A continuous or discontinuous planar piecewise linear Hamiltonian differential system
with two zones separated by a straight line and such that the linear systems that define it have isolated
singular points, i.e. centers or saddles, has no limit cycles.

A proof for Theorem 1.1 is contained in the proofs of Theorem 2 and 4 from [21]. Alter-
native proofs can also be found in other papers. See the proof of Theorem 1 from [27] for the
case where one of the linear systems has a center and the other has a center or saddle, and
see the proof of Theorem 3.4 from [16] for the case where the linear systems has saddles.

We include a proof of Theorem 1.1 in Section 3 just for the sake of completeness.
Assuming hypotheses (H1)–(H4), the main results in this paper are the follows:

Theorem 1.2. A continuous planar piecewise linear Hamiltonian differential system with three zones
separated by two parallel straight lines and such that the linear systems that define it have isolated
singular points, i.e. centers or saddles, has no limit cycles.

Theorem 1.3. A discontinuous planar piecewise linear Hamiltonian differential system with three
zones separated by two parallel straight lines and such that the linear systems that define it have
isolated singular points, i.e. centers or saddles, has at most one limit cycle.
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Theorems 1.2 and 1.3 have been proved for the particular case in which the linear sys-
tems that define the piecewise one has only isolated centers, see [25]. Theorem 1.2 has also
been proved for the particular case SCS, see the proof of Lemma 11 from [33]. For the other
possibilities, as far as we know, the results of Theorems 1.2 and 1.3 are new.

The paper is organized as follows. In Section 2 we introduce the basic definitions and
results. In Section 3 we prove Theorems 1.2–1.3. Examples of discontinuous planar piecewise
linear Hamiltonian differential system with three zones separated by two parallel straight
lines such that the linear systems that define it have isolated singular points are analyzed in
Section 4. That is, we give examples of piecewise linear Hamiltonian systems of type CCC,
SCC, SCS, CSC, SSS and SSC with exactly one limit cycle.

2 Preliminary results

In this section, we will present the basic concepts that we need to prove the main results of
this paper.

Let hi : R2 → R, i = C, L, R, be the function hC(x, y) = x, hL(x, y) = x + 1 and hR(x, y) =
x − 1. By means of rotations, translations and homotheties we can assume without loss of
generality that the switching curve ΣC of a piecewise linear system with two zones in the plane
is defined as

ΣC = h−1
C (0) = {(x, y) ∈ R2 : x = 0}.

This straight line decomposes the plane in two regions

RL = {(x, y) ∈ R2 : x < 0} and RR = {(x, y) ∈ R2 : x > 0}.

Assuming the hypotheses (H2) and (H3), the piecewise linear Hamiltonian vector field
with two zones is given by

XL(x, y) = (aLx + bLy + αL, cLx− aLy + βL), x ≤ 0,

XR(x, y) = (aRx + bRy + αR, cRx− aRy + βR), x > 0.
(2.1)

Note that the Hamiltonian functions that determine the vector field (2.1) are

HL(x, y) =
bL

2
y2 − cL

2
x2 + aLxy + αLy− βLx, x ≤ 0,

HR(x, y) =
bR

2
y2 − cR

2
x2 + aRxy + αRy− βRx, x > 0.

(2.2)

Assuming the hypothesis (H1), by means of rotations, translations and homotheties we
can assume without loss of generality, for the case with three zones, that the switching curves
ΣL and ΣR are given by

ΣL = h−1
L (0) = {(x, y) ∈ R2 : x = −1},

and
ΣR = h−1

R (0) = {(x, y) ∈ R2 : x = 1}.

This straight lines decomposes the plane in three regions

RL = {(x, y) ∈ R2 : x < −1}, RC = {(x, y) ∈ R2 : −1 < x < 1},

and
RR = {(x, y) ∈ R2 : x > 1}.
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Assuming the hypotheses (H2) and (H3), the piecewise linear Hamiltonian vector field with
three zones is give by

XL(x, y) = (aLx + bLy + αL, cLx− aLy + βL), x ≤ −1,

XC(x, y) = (aCx + bCy + αC, cCx− aCy + βC), − 1 ≤ x ≤ 1,

XR(x, y) = (aRx + bRy + αR, cRx− aRy + βR), x ≥ 1.

(2.3)

The Hamiltonian functions that determine the vector field (2.3) are

HL(x, y) =
bL

2
y2 − cL

2
x2 + aLxy + αLy− βLx, x ≤ −1,

HC(x, y) =
bC

2
y2 − cC

2
x2 + aCxy + αCy− βCx, − 1 ≤ x ≤ 1,

HR(x, y) =
bR

2
y2 − cR

2
x2 + aRxy + αRy− βRx, x ≥ 1.

(2.4)

We will use the vector field XL and the switching curve ΣL in the next definitions. However,
we can easily adapt the definitions to the vector fields XC and XR and the switching curves ΣC

and ΣR.
The derivative of function hL in the direction of the vector field XL, i.e., the expression

XLhL(p) = 〈XL(p),∇hL(p)〉,

where 〈·, ·〉 is the usual inner product in R2, characterize the contact between the vector field
XL and the switching curve ΣL.

We distinguish the following subsets of ΣL (the same for ΣC and ΣR)

• Crossing set:
Σc

L = {p ∈ ΣL : XLhL(p) · XChL(p) > 0};

• Sliding set:
Σs

L = {p ∈ ΣL : XLhL(p) > 0, XChL(p) < 0};

• Escaping set:
Σe

L = {p ∈ ΣL : XLhL(p) < 0, XChL(p) > 0}.

In a piecewise vector field with two or three zones in the plane, the limit cycles can be of
two types: sliding limit cycles or crossing limit cycles; the first one contain some segment
of sliding or escaping sets, and the second one does not contain any segments of sliding or
escaping sets. In this paper, we only study the crossing limit cycles. In what follows, when
we talk about limit cycles, we are talking about crossing limit cycles.

Piecewise vector field (2.1) is called continuous if

XL(p) = XR(p), ∀p ∈ ΣC.

Otherwise, it is called discontinuous. Similarly, piecewise vector field (2.3) is called continuous
if

XL(p) = XC(p), ∀p ∈ ΣL and

XC(q) = XR(q), ∀q ∈ ΣR.

Otherwise, it is called discontinuous.
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3 Proof of Theorems 1.1–1.3

This section is devoted to present the proof of main results.

Proof of Theorem 1.1. Consider a discontinuous piecewise linear Hamiltonian vector field with
two zones separated by a straight line, such that the linear vector fields, that define it, have
isolated singular points. That is, we have piecewise vector field (2.1), with a2

i + bici 6= 0, for
i = L, R. If the piecewise linear vector field has a periodic orbit, then it intersects the straight
line x = 0 at two points, (0, y0) and (0, y1), with y1 < y0, satisfying

HR(0, y1) = HR(0, y0),

HL(0, y0) = HL(0, y1),

where HL and HR are given by (2.2). More precisely, we have the equations

−1
2
(y0 − y1)(bR(y0 + y1) + 2αR) = 0,

1
2
(y0 − y1)(bL(y0 + y1) + 2αL) = 0.

As y1 < y0, if bR = 0 and αR 6= 0 or bL = 0 and αL 6= 0 the above system has no solutions.
If bR = αR = 0 and bL 6= 0 the solution (y0, y1) of the above system with y1 < y0 satisfies
y0 = −(bLy1 + 2αL)/bL, with arbitrary y1. If bL = αL = 0 and bR 6= 0 the solution (y0, y1) of the
above system with y1 < y0 satisfies y0 = −(bRy1 + 2αR)/bR, with arbitrary y1. If bLbR 6= 0, then
the above system has a solution (y0, y1) with y1 < y0 only when bL = bR = b and αL = αR = α.
Moreover, y0 = (−by1 + 2α)/b with arbitrary y1. If bR = bL = αR = αL = 0, then the system
has infinitely many solutions. Therefore, the piecewise linear vector field (2.1) has no periodic
orbits or has a continuum of periodic orbits, and consequently, it has no limit cycle.

Note that the continuous case is a constraint of the discontinuous one. In fact, the contin-
uous condition is given by

XR(0, y) = XL(0, y), ∀y ∈ R.

which implies

aR = aL = a, bR = bL = b, αR = αL = α and βR = βL = β.

Proof of Theorem 1.2. Consider a continuous piecewise linear Hamiltonian vector field with
three zones separated by two parallel straight lines, such that the linear vector fields, that
define it, have isolated singular points. That is, we have piecewise vector fields (2.3), with
a2

i + bici 6= 0, for i = L, C, R, and due to continuity

XR(1, y) = XC(1, y) and XC(−1, y) = XL(−1, y), ∀y ∈ R.

These equalities imply that

aR = aC = aL = a, bR = bC = bL = b, αR = αC = αL = α

and
βR − βC − cC + cR = βL − βC − cL + cC = 0.

By Theorem 1.1, the piecewise linear vector field has no limit cycles contained in two zones.
Thus, if the piecewise linear vector field has a periodic orbit, then it intersects the straight
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lines x = ±1 at four points, (1, y0), (1, y1), with y1 < y0, and (−1, y2), (−1, y3), with y2 < y3,
respectively, satisfying

HR(1, y1) = HR(1, y0),

HC(1, y0) = HC(−1, y3),

HL(−1, y3) = HL(−1, y2),

HC(−1, y2) = HC(1, y1),

(3.1)

where HL, HC and HR are given by (2.4). More precisely, we have the equations

−1
2
(y0 − y1)(b(y0 + y1) + 2(a + α)) = 0, (3.2)

a(y0 + y3) +
1
2
(y0 − y3)(b(y0 + y3) + 2α)− 2βC = 0, (3.3)

−1
2
(y2 − y3)(b(y2 + y3)− 2(a− α)) = 0, (3.4)

−a(y1 + y2)−
1
2
(y1 − y2)(b(y1 + y2) + 2α) + 2βC = 0. (3.5)

As y1 < y0, y2 < y3 and a2 + bci 6= 0, for i = L, C, R, if either b = 0 and a + α 6= 0 or b = 0 and
a + α = 0 the above system has no solutions. If b 6= 0, as y1 < y0 and y2 < y3, from equation
(3.2) we can obtain y0 as a function of y1, i.e.

y0 =
−by1 − 2(a + α)

b
. (3.6)

Now, from equation (3.4) we can obtain y2 as a function of y3, i.e.

y2 =
−by3 − 2(α− a)

b
. (3.7)

Substituting (3.6) and (3.7) in equations (3.3) and (3.5), respectively, we obtain a solution
(y0, y1, y2, y3) of the system (3.1) satisfying y1 < y0 and y2 < y3, given by (ϕ1(y1), y1, ϕ2(y1),
ϕ3(y1)), where

ϕ1(y1) =
−by1 − 2(a + α)

b
,

ϕ2(y1) =
a− α +

√
b2y2

1 + 2b(a + α)y1 + (a− α)2 − 4bβC

b
,

ϕ3(y1) =
a− α +

√
b2y2

1 + 2b(a + α)y1 + (a− α)2 − 4bβC

b
,

with arbitrary y1. Note that the inequality b2y2
1 + 2b(a + α)y1 + (a − α)2 − 4bβC ≤ 0 for all

y1 ∈ R is not possible. Therefore, the piecewise linear vector field (2.3) has no periodic orbits
or has a continuum of periodic orbits, and consequently, it has no limit cycle.

Proof of Theorem 1.3. Consider a discontinuous piecewise linear Hamiltonian vector field with
three zones separated by two parallel straight lines, such that the linear vector fields, that
define it, have isolated singular points. That is, we have piecewise vector fields (2.3), with
−a2

i − bici 6= 0, for i = L, C, R. By Theorem 1.1, the piecewise linear vector field has no limit
cycles contained in two zones. Thus, if the piecewise linear vector field has a periodic orbit,
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then it intersects the straight lines x = ±1 at four points, (1, y0), (1, y1), with y1 < y0, and
(−1, y2), (−1, y3), with y2 < y3, respectively, satisfying

HR(1, y1) = HR(1, y0),

HC(1, y0) = HC(−1, y3),

HL(−1, y3) = HL(−1, y2),

HC(−1, y2) = HC(1, y1),

(3.8)

where HL, HC and HR are given by (2.4). More precisely, we have the equations

1
2
(y1 − y0)(bR(y0 + y1) + 2(aR + αR)) = 0, (3.9)

1
2
(y0 − y3)(bC(y0 + y3) + 2αC)− 2βC + aC(y0 + y3) = 0, (3.10)

1
2
(y3 − y2)(bL(y2 + y3)− 2(aL − αL)) = 0, (3.11)

1
2
(y2 − y1)(bC(y1 + y2) + 2αC) + 2βC − aC(y1 + y2) = 0. (3.12)

To determine all the solutions of the above systems, restricted to the conditions y1 < y0,
y2 < y3 and a2

i + bici 6= 0, for i = L, C, R, we distinguish two cases. In the first case we assume
that bRbLbC = 0. For this cases, system (3.9)–(3.12) has no solutions when

• bR = 0 and aR + αR 6= 0;

• bL = 0 and aL − αL 6= 0;

• bR = aR + αR = bL = aL − αL = bC = αC − aC = 0;

• bR = aR + αR = bC = αC − aC = 0 and bL 6= 0;

• bL = aL − αL = bC = αC − aC = 0 and bR 6= 0;

• bC = 0, bRbL 6= 0 and bRαC(aL − αL) + aCbR(αL − aL) + bL(aR + αR)(aC + αC) + 2bLbRβC 6= 0;

and it has infinitely many solutions when

• bR = aR + αR = bL = aL − αL = bC = 0 and αC − aC 6= 0;

• bR = aR + αR = bL = aL − αL = 0 and bC 6= 0;

• bR = aR + αR = bC = 0, αC − aC 6= 0 and bL 6= 0;

• bR = aR + αR = 0 and bLbC 6= 0;

• bL = aL − αL = bC = 0, bR 6= 0 and αC − aC 6= 0;

• bL = aL − αL = 0 and bRbC 6= 0;

• bC = 0, bRbL 6= 0 and bRαC(aL − αL) + aCbR(αL − aL) + bL(aR + αR)(aC + αC) + 2bLbRβC = 0.

In the second case, we assume that bLbCbR 6= 0. From equation (3.9), we can obtain y0 as a
function of y1, i.e.

y0 =
−bRy1 − 2(aR + αR)

bR
. (3.13)
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Now, from equation (3.11), we can obtain y2 as a function of y3, i.e.

y2 =
−bLy3 − 2(αL − aL)

bL
. (3.14)

Substituting (3.13) and (3.14) in equations (3.10) and (3.12), respectively, we obtain the equa-
tions of two hyperbolas in the y1y3 plane, given by

(y1 − A)2

K
− (y3 − B)2

K
− C = 0,

(y1 − D)2

K
− (y3 − E)2

K
− C = 0,

(3.15)

with

K =
2
bC

, A =
bR(aC + αC)− 2bC(aR + αR)

bCbR
,

B =
aC − αC

bC
, C =

2(aCαC + bCβC)

bC
,

D = − (aC + αC)

bC
and E =

bL(αC − aC)− 2bC(αL − aL)

bCbL
.

Note that the system (3.15) is equivalent to the system

y2
1 − 2Ay1 + A2 − y2

3 + 2By3 − B2 − KC = 0,

2(A− D)y1 + 2(E− B)y3 + D2 − E2 + B2 − A2 = 0.
(3.16)

The system above eventually could have infinitely many solutions (y1, y3), for instance when
A = D and B = E. In this case, the piecewise linear vector field (2.3) has a continuum of
periodic orbits, and consequently, it has no limit cycle. Suppose that system (3.16) has finitely
many solutions. According to Bezout’s Theorem, if a system of polynomial equations has
finitely many solutions, then the number of its solutions is at most the product of the degrees
of the polynomials, that for system (3.16) is two. Therefore, the two hyperbolas above intersect
at most two points. Note that, by (3.9)–(3.12), if (y0, y1, y2, y3) is solution of the system (3.8)
then (y1, y0, y3, y2) is also a solution. However, for y1 < y0 and y2 < y3 we have at most a
single solution. Therefore, the piecewise linear vector field (2.3) can have at most one limit
cycle.

4 Examples

In this section, we will give some examples of discontinuous planar piecewise linear Hamil-
tonian differential system with three zones separated by two parallel straight lines with one
limit cycle, such that the linear systems that define it have isolated singular points. That is,
we given examples of piecewise linear Hamiltonian systems of type CCC, SCC, SCS, CSC, SSS
and SSC with exactly one limit cycle. In [25], the authors presented an example of a discon-
tinuous piecewise linear differential system of type CCC with exactly one limit cycle. Here
we will show another example for this case.
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Example 4.1 (Case CCC). Consider the discontinuous planar piecewise linear Hamiltonian
vector field (2.3) with aL = 4, bL = 8, αL = 3/2, cL = −5/2, βL = 11/4, aC = 0, bC = 2,
αC = βC = 2/3, cC = −2, aR = 4, bR = 2, cR = −10 and αR = βR = −4. The eigenvalues of
the linear part of Xi, i = L, C, R, from (2.3) for this case, are ±2i, ±2i and ±2i, respectively, i.e.
we have three centers. Therefore, a candidate to limit cycle of vector field (2.3), in this case,
correspond to the solution of system (3.8), i.e.

(y1 − y0)(y1 + y0) = 0,
1
3
(y0(2 + 3y0)− y3(2 + 3y3)− 4) = 0,

1
2
(y3 − y2)(8(y2 + y3)− 5) = 0,

1
3
(4− y1(2 + 3y1) + y2(2 + 3y2)) = 0.

After some computations, the unique solution (y0, y1, y2, y3) of the above system, satisfying
the condition y1 < y0 and y2 < y3, is given by(

31
48

√
1259
235

, −31
48

√
1259
235

,
5

16
− 1

3

√
1259
235

,
5
16

+
1
3

√
1259
235

)
.

The points (−1, y2), (−1, y3) ∈ ΣL and (1, y0), (1, y1) ∈ ΣR are crossing points because

〈XL(−1, y2), (1, 0)〉 · 〈XC(−1, y2), (1, 0)〉 ≈ 1.5518 > 0,

〈XL(−1, y3), (1, 0)〉 · 〈XC(−1, y3), (1, 0)〉 ≈ 17.4969 > 0,

〈XC(1, y0), (1, 0)〉 · 〈XR(1, y0), (1, 0)〉 ≈ 10.9315 > 0,

〈XC(1, y1), (1, 0)〉 · 〈XR(1, y1), (1, 0)〉 ≈ 6.9452 > 0.

The orbit (xR(t), yR(t)) of XR, such that (xR(0), yR(0)) = (1, y0), is given by

xR(t) = 7 cos(2t) +
31
48

√
1259
235

sin(2t)− 6,

yR(t) =

(
31
48

√
1259
235
− 14

)
cos(2t)−

(
7 +

31
24

√
1259
235

)
sin(2t) + 14.

The orbit (xC1
(t), yC1

(t)) of XC, such that (xC1
(0), yC1

(0)) = (1, y1), is given by

xC1
(t) =

2
3

cos(2t) +

(
1
3
− 31

48

√
1259
235

)
sin(2t) +

1
3

,

yC1
(t) =

(
1
3
− 31

48

√
1259
235

)
cos(2t)− 1

3
(1 + 4 cos(t) sin(t)).

The orbit (xL(t), yL(t)) of XL, such that (xL(0), yL(0)) = (−1, y2), is given by

xL(t) = −8 cos(2t)− 4
3

√
1259
235

sin(2t) + 7,

yL(t) =

(
4− 1

3

√
1259
235

)
cos(2t) +

(
4 +

4
3

√
1259
235

)
cos(t) sin(t)− 59

16
.
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The orbit (xC2(t), yC2(t)) of XC, such that (xC2(0), yC2(0)) = (−1, y3), is given by

xC2(t) = −
4
3

cos(2t) +

(
31
48

+
1
3

√
1259
235

)
sin(2t) +

1
3

,

yC2(t) =

(
31
48

+
1
3

√
1259
235

)
cos(2t) +

1
3
(8 cos(t) sin(t)− 1).

The fly time of the orbit (xR(t), yR(t)), from (1, y0) ∈ ΣR to (1, y1) ∈ ΣR, is

tR =
1
2

arctan

(
20832

√
295865

25320661

)
.

The fly time of the orbit (xC1
(t), yC1

(t)), from (1, y1) ∈ ΣR to (−1, y2) ∈ ΣL, is

tC1
=

π

2
− 1

2
arctan

(
96(10810 +

√
295865)

496001

)
.

The fly time of the orbit (xL(t), yL(t)), from (−1, y2) ∈ ΣL to (−1, y3) ∈ ΣL, is

tL =
1
2

arctan

(
12
√

295865
7201

)
.

Finally, the fly time of the orbit (xC2(t), yC2(t)), from (−1, y3) ∈ ΣL to (1, y0) ∈ ΣR, is

tC2 = −
1
2

arctan

(
96(
√

295865− 10810)
496001

)
.

Using the Mathematica software (see [37]), we can draw the orbits (xi(t), yi(t)) for the time
t ∈ [0, ti], i = R, L, C1, C2, i.e. we obtain the limit cycle given in Figure 4.1 (a). Figure 4.1 (b)
was made with the help of P5 software (see [14]), and provides the phase portrait of vector
field (2.3) in this case (the symbol ◦ indicates an invisible singular point).

Example 4.2 (Case SCC). Consider the discontinuous planar piecewise linear Hamiltonian
vector field (2.3) with aL = bL = 1, αL = 2/3, cL = 35, βL = 214/3, aC = 0, bC = 2, αC = βC =

2/3, cC = −2, aR = 4, bR = 2, αR = βR = −4 and cR = −10. The eigenvalues of the linear part
of Xi, i = L, C, R, from (2.3) for this case, are ±6, ±2i and ±2i, respectively, i.e. we have one
saddle and two centers. In this case, as in Example 4.1, the unique solution (y0, y1, y2, y3) of
system (3.8) satisfying the condition y1 < y0 and y2 < y3, which is given by(

2
√

5
3

, −2
√

5
3

,
1−
√

5
3

,
1 +
√

5
3

)
,

correspond to the unique limit cycle of vector field (2.3).
Note that the points (−1, y2), (−1, y3) ∈ ΣL and (1, y0), (1, y1) ∈ ΣR are crossing points.
Now, we can compute: the orbit (xR(t), yR(t)) of XR with (xR(0), yR(0)) = (1, y0); the

orbit (xC1
(t), yC1

(t)) of XC with (xC1
(0), yC1

(0)) = (1, y1); the orbit (xL(t), yL(t)) of XL with
(xL(0), yL(0)) = (−1, y2); and the orbit (xC2(t), yC2(t)) of XC, with (xC2(0), yC2(0)) = (−1, y3).
We can also compute the fly times of the orbits: (xR(t), yR(t)) from (1, y0) ∈ ΣR to (1, y1) ∈ ΣR;
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- 1.5 - 0.5 0.5

- 1.5

- 0.5

0.5

1.5

1

1-

ΣRΣL

(1, y0)

(1, y1)

(1, y2)

(1, y3)

ΣRΣL

(a) (b)

Figure 4.1: The limit cycle of vector field (2.3) with aL = 4, bL = 8, αL = 3/2,
cL = −5/2, βL = 11/4, aC = 0, bC = 2, αC = βC = 2/3, cC = −2, aR = 4, bR = 2,
cR = −10 and αR = βR = −4.

(xC1
(t), yC1

(t)) from (1, y1) ∈ ΣR to (−1, y2) ∈ ΣL; (xL(t), yL(t)) from (−1, y2) ∈ ΣL to (−1, y3) ∈
ΣL; and (xC2(t), yC2(t)) from (−1, y3) ∈ ΣL to (1, y0) ∈ ΣR. Hence, using the Mathematica
software, we can draw the orbits (xi(t), yi(t)) for the time t ∈ [0, ti], i = R, L, C1, C2, i.e. we
obtain the limit cycle given in Figure 4.2 (a). The Figure 4.2 (b) has been made with the help
of P5 software, and provides the phase portrait of vector field (2.3) in this case.

Example 4.3 (Case SCS). Consider the discontinuous planar piecewise linear Hamiltonian
vector field (2.3) with aL = bL = 1, αL = 3/5, cL = 35, βL = 357/5, aC = 0, bC = 2, αC = βC = 1,
cC = −2, aR = bR = 1, αR = −1, cR = 15 and βR = −31. The eigenvalues of the linear part
of Xi, i = L, C, R, from (2.3) for this case, are ±6, ±2i and ±4, respectively, i.e. we have two
saddles and one center. In this case, as in Example 4.1, the unique solution (y0, y1, y2, y3) of
system (3.8) satisfying the condition y1 < y0 and y2 < y3, which is given by(

18
5

√
2
7

, −18
5

√
2
7

,
2
5
− 2

√
2
7

,
2
5
+ 2

√
2
7

)
,

correspond to the unique limit cycle of vector field (2.3).
Note that the points (−1, y2), (−1, y3) ∈ ΣL and (1, y0), (1, y1) ∈ ΣR are crossing points.
Now, we can compute: the orbit (xR(t), yR(t)) of XR with (xR(0), yR(0)) = (1, y0); the

orbit (xC1
(t), yC1

(t)) of XC with (xC1
(0), yC1

(0)) = (1, y1); the orbit (xL(t), yL(t)) of XL with
(xL(0), yL(0)) = (−1, y2); and the orbit (xC2(t), yC2(t)) of XC, with (xC2(0), yC2(0)) = (−1, y3).
We can also compute the fly times of the orbits: (xR(t), yR(t)) from (1, y0) ∈ ΣR to (1, y1) ∈ ΣR;
(xC1

(t), yC1
(t)) from (1, y1) ∈ ΣR to (−1, y2) ∈ ΣL; (xL(t), yL(t)) from (−1, y2) ∈ ΣL to (−1, y3) ∈

ΣL; and (xC2(t), yC2(t)) from (−1, y3) ∈ ΣL to (1, y0) ∈ ΣR. Hence, using the mathematica
software, we can draw the orbits (xi(t), yi(t)) for the time t ∈ [0, ti], i = R, L, C1, C2, i.e. we
obtain the limit cycle given in Figure 4.3 (a). The Figure 4.3 (b) has been made with the help
of P5 software, and provides the phase portrait of vector field (2.3) in this case.
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-

-1.5

-

-0.5

0.5

1

1.5

1

0.5 0.5

ΣRΣL

(1, y0)

(1, y1)

(1, y2)

(1, y3)

ΣRΣL

(a) (b)

Figure 4.2: The limit cycle of vector field (2.3) with aL = bL = 1, αL = 2/3,
cL = 35, βL = 214/3, aC = 0, bC = 2, αC = βC = 2/3, cC = −2, aR = 4, bR = 2,
αR = βR = −4 and cR = −10.

Example 4.4 (Case CSC). Consider the discontinuous planar piecewise linear Hamiltonian
vector field (2.3) with aL = 4, bL = 8, αL = 2, cL = −5/2, βL = 5/2, aC = 2/5, bC = 24/5,
αC = −9/5, cC = 4/5, βC = −4/15, aR = 8, bR = 10 and αR = cR = βR = −8. The eigenvalues
of the linear part of Xi, i = L, C, R, from (2.3) for this case, are ±2i, ±2 and ±4i, respectively,
i.e. we have one saddle and two centers. In this case, as in Example 4.1, the unique solution
(y0, y1, y2, y3) of system (3.8) satisfying the condition y1 < y0 and y2 < y3, which is given by

(
5
12

√
7
3

, − 5
12

√
7
3

,
1
4
− 7
√

21
36

,
1
4
+

7
√

21
36

)
,

correspond to the unique limit cycle of vector field (2.3).
Note that the points (−1, y2), (−1, y3) ∈ ΣL and (1, y0), (1, y1) ∈ ΣR are crossing points.
Now, we can compute: the orbit (xR(t), yR(t)) of XR with (xR(0), yR(0)) = (1, y0); the

orbit (xC1
(t), yC1

(t)) of XC with (xC1
(0), yC1

(0)) = (1, y1); the orbit (xL(t), yL(t)) of XL with
(xL(0), yL(0)) = (−1, y2); and the orbit (xC2(t), yC2(t)) of XC, with (xC2(0), yC2(0)) = (−1, y3).
We can also compute the fly times of the orbits: (xR(t), yR(t)) from (1, y0) ∈ ΣR to (1, y1) ∈ ΣR;
(xC1

(t), yC1
(t)) from (1, y1) ∈ ΣR to (−1, y2) ∈ ΣL; (xL(t), yL(t)) from (−1, y2) ∈ ΣL to (−1, y3) ∈

ΣL; and (xC2(t), yC2(t)) from (−1, y3) ∈ ΣL to (1, y0) ∈ ΣR. Hence, using the Mathematica
software, we can draw the orbits (xi(t), yi(t)) for the time t ∈ [0, ti], i = R, L, C1, C2, i.e. we
obtain the limit cycle given in Figure 4.4 (a). The Figure 4.4 (b) has been made with the help
of P5 software, and provides the phase portrait of vector field (2.3) in this case.

Example 4.5 (Case SSS). Consider the discontinuous planar piecewise linear Hamiltonian
vector field (2.3) with aL = αL = −2/3, bL = 4/3, cL = 8/3, βL = 35/3, aC = 2/11, bC = 120/11,
αC = −41/11, cC = 4/11, βC = −4/33, aR = −2/11, bR = 4/11, αR = 1/5, cR = 120/11 and
βR = −749/55. The eigenvalues of the linear part of Xi, i = L, C, R, from (2.3) for this case,
are ±2, ±2 and ±2, respectively, i.e. we have three saddles. In this case, as in Example 4.1,
the unique solution (y0, y1, y2, y3) of system (3.8) satisfying the condition y1 < y0 and y2 < y3,
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- 0.5 0.5

- 2

- 1

1

2

ΣRΣL

(1, y0)

(1, y1)

(1, y2)

(1, y3)

ΣRΣL

(a) (b)

Figure 4.3: The limit cycle of vector field (2.3) with aL = bL = 1, αL = 3/5,
cL = 35, βL = 357/5, aC = 0, bC = 2, αC = βC = 1, cC = −2, aR = bR = 1,
αR = −1, cR = 15 and βR = −31.

- 0.5 0.5

1

0.5

0.5-

-1.5

ΣRΣL

(1, y0)

(1, y1)(1, y2)

(1, y3)
ΣRΣL

(a) (b)

Figure 4.4: The limit cycle of vector field (2.3) with aL = 4, bL = 8, αL = 2,
cL = −5/2, βL = 5/2, aC = 2/5, bC = 24/5, αC = −9/5, cC = 4/5, βC = −4/15,
aR = 8, bR = 10 and αR = cR = βR = −8.

which is given by (
43
√

26− 12
240

, −43
√

26 + 12
240

, −3
8

√
13
2

,
3
8

√
13
2

)
,

correspond to the unique limit cycle of vector field (2.3).
Note that the points (−1, y2), (−1, y3) ∈ ΣL and (1, y0), (1, y1) ∈ ΣR are crossing points.
Now, we can compute: the orbit (xR(t), yR(t)) of XR with (xR(0), yR(0)) = (1, y0); the

orbit (xC1
(t), yC1

(t)) of XC with (xC1
(0), yC1

(0)) = (1, y1); the orbit (xL(t), yL(t)) of XL with
(xL(0), yL(0)) = (−1, y2); and the orbit (xC2(t), yC2(t)) of XC, with (xC2(0), yC2(0)) = (−1, y3).
We can also compute the fly times of the orbits: (xR(t), yR(t)) from (1, y0) ∈ ΣR to (1, y1) ∈ ΣR;
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(xC1
(t), yC1

(t)) from (1, y1) ∈ ΣR to (−1, y2) ∈ ΣL; (xL(t), yL(t)) from (−1, y2) ∈ ΣL to (−1, y3) ∈
ΣL; and (xC2(t), yC2(t)) from (−1, y3) ∈ ΣL to (1, y0) ∈ ΣR. Hence, using the Mathematica
software, we can draw the orbits (xi(t), yi(t)) for the time t ∈ [0, ti], i = R, L, C1, C2, i.e. we
obtain the limit cycle given in Figure 4.5 (a). The Figure 4.5 (b) has been made with the help
of P5 software, and provides the phase portrait of vector field (2.3) in this case..

- 0.5

-

-

1

0.5

0.5

0.5

1

ΣRΣL

(1, y0)

(1, y1)(1, y2)

(1, y3)
ΣRΣL

(a) (b)

Figure 4.5: The limit cycle of vector field (2.3) with aL = αL = −2/3, bL = 4/3,
cL = 8/3, βL = 35/3, aC = 2/11, bC = 120/11, αC = −41/11, cC = 4/11,
βC = −4/33, aR = −2/11, bR = 4/11, αR = 1/5, cR = 120/11 and βR = −749/55.

Example 4.6 (Case SSC). Consider the discontinuous planar piecewise linear Hamiltonian
vector field (2.3) with aL = αL = −2/3, bL = 4/3, cL = 8/3, βL = 35/3, aC = 2/11, bC = 120/11,
αC = −41/11, cC = 4/11, βC = −4/33, aR = 8, bR = 10, αR = −7 and cR = βR = −8. The
eigenvalues of the linear part of Xi, i = L, C, R, from (2.3) for this case, are ±2, ±2 and ±4i,
respectively, i.e. we have two saddles and one center. In this case, as in Example 4.1, the
unique solution (y0, y1, y2, y3) of system (3.8) satisfying the condition y1 < y0 and y2 < y3,
which is given by(

43
24

√
43
470
− 1

10
, −43

24

√
43

470
− 1

10
, −17

8

√
43
470

,
17
8

√
43
470

)
,

correspond to the unique limit cycle of vector field (2.3).
Note that the points (−1, y2), (−1, y3) ∈ ΣL and (1, y0), (1, y1) ∈ ΣR are crossing points.
Now, we can compute: the orbit (xR(t), yR(t)) of XR with (xR(0), yR(0)) = (1, y0); the

orbit (xC1
(t), yC1

(t)) of XC with (xC1
(0), yC1

(0)) = (1, y1); the orbit (xL(t), yL(t)) of XL with
(xL(0), yL(0)) = (−1, y2); and the orbit (xC2(t), yC2(t)) of XC, with (xC2(0), yC2(0)) = (−1, y3).
We can also compute the fly times of the orbits: (xR(t), yR(t)) from (1, y0) ∈ ΣR to (1, y1) ∈ ΣR;
(xC1

(t), yC1
(t)) from (1, y1) ∈ ΣR to (−1, y2) ∈ ΣL; (xL(t), yL(t)) from (−1, y2) ∈ ΣL to (−1, y3) ∈

ΣL; and (xC2(t), yC2(t)) from (−1, y3) ∈ ΣL to (1, y0) ∈ ΣR. Hence, using the Mathematica
software, we can draw the orbits (xi(t), yi(t)) for the time t ∈ [0, ti], i = R, L, C1, C2, i.e. we
obtain the limit cycle given in Figure 4.6 (a). The Figure 4.6 (b) has been made with the help
of P5 software, and provides the phase portrait of vector field (2.3) in this case.
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Figure 4.6: The limit cycle of vector field (2.3) with aL = αL = −2/3, bL = 4/3,
cL = 8/3, βL = 35/3, aC = 2/11, bC = 120/11, αC = −41/11, cC = 4/11,
βC = −4/33, aR = 8, bR = 10, αR = −7 and cR = βR = −8.
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