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Abstract. We give two new characterizations of the notion of Lyapunov regularity in
terms of the lower and upper exponential growth rates of the singular values. These
characterizations motivate the introduction of new regularity coefficients. In particular,
we establish relations between these regularity coefficients and the Lyapunov regularity
coefficient. Moreover, we construct explicitly bounded sequences of matrices attaining
specific values of the new regularity coefficients.
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1 Introduction

The purpose of this work is twofold: to introduce new regularity coefficients and to give
new characterizations of Lyapunov regularity. The notion of regularity was introduced by
Lyapunov and plays an important role in the stability theory of differential equations and
dynamical systems. It is particularly ubiquitous in the context of ergodic theory. The new
characterizations of Lyapunov regularity are expressed in terms of the lower and upper expo-
nential growth rates of the singular values.

1.1 The notion of regularity

We start by describing the meaning and some of the implications of Lyapunov regularity. Let
(Am)m∈N be a sequence of invertible q × q matrices with real entries. We assume that both
sequences Am and A−1

m are bounded. For each m ∈N let

Am =

{
Am−1Am−2 · · · A1 if m > 1,

Id if m = 1.

Given a basis v1, . . . , vq for Rq, any regularity coefficient measures how much

λ(vi) := lim sup
m→∞

1
m

log ‖Amvi‖, (1.1)
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for i = 1, . . . , q, differs from being a limit, and how much

αij := lim sup
m→∞

1
m

log∠(Amvi,Amvj), (1.2)

for i 6= j, differs from zero. In particular, the Lyapunov regularity coefficient determined by the
sequence A = (Am)m∈N is defined by

σ(A) = min
q

∑
i=1

λ(vi)− lim inf
m→∞

1
m

log|detAm|, (1.3)

where the minimum is taken over all bases v1, . . . , vq for Rq. One can show that σ(A) ≥ 0 and
that σ(A) = 0 if and only if each lim sup in (1.1) is a limit and each lim sup in (1.2) vanishes
for any basis v1, . . . , vq (see [2,3]). The sequence A is said to be (Lyapunov) regular if σ(A) = 0.

More generally, a regularity coefficient is a nonnegative function on the sequences of matri-
ces A = (Am)m∈N vanishing only on the Lyapunov regular systems. Besides the Lyapunov
regularity coefficient (see [11]), other regularity coefficients were introduced already at an
early stage of the theory by Perron (see [13, 14]) and Grobman (see [6]), although for a dy-
namics with continuous time obtained from a linear ordinary differential equation. We refer
the reader to the books [2,3,6,10] for detailed accounts of various parts of the theory, both for
discrete and continuous time.

1.2 Origins and relevance of regularity

The notion of regularity first appeared in the works of Lyapunov (see [11]) and Perron [13,14],
in connection with the study of the stability of solutions of perturbations of linear ordinary
differential equations. As already described above, one can introduce a similar notion of
regularity and corresponding regularity coefficients for a dynamics with discrete time

xm+1 = Amxm for m ∈N

on Rq, obtained from a sequence (Am)m∈N of q × q matrices. Some works that consider
the case of discrete time include [15] (see also [4]) with a study of the relation of regularity
with the exponential growth rates of the singular values, [5, 9] with descriptions of relations
between regularity coefficients, and [8] with the introduction of a new regularity coefficient.
For further references we refer the reader to [2] (see also [7]).

It turns out that Lyapunov regularity has various nontrivial applications to the stability
theory of differential equations and dynamical systems. The reason for this is that any reg-
ularity coefficient measures how much the exponential stability or conditional stability of a
given trajectory of a linear dynamics differs from being uniform on the initial time. For ex-
ample, provided that a regularity coefficient is sufficiently small, one can construct stable and
unstable invariant manifolds for any sufficiently small nonlinear perturbation when all Lya-
punov exponents are nonzero (see [3] for details). This is particularly effective in the context
of smooth ergodic theory, since a certain integrability assumption guarantees that the lin-
earizations along almost all trajectories have zero regularity coefficient, as a consequence of
Oseledets’ Multiplicative ergodic theorem [12].

1.3 Characterizations of regularity

Now we describe briefly our results. In particular, we give new characterizations of Lyapunov
regularity that are expressed in terms of the lower and upper exponential growth rates of the
singular values. This also serves as a preparation for introducing new regularity coefficients.
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Again let A = (Am)m∈N be a sequence of invertible q× q matrices with real entries. We
assume that Am and A−1

m are bounded in m. Now let

ρ1(m) ≤ · · · ≤ ρq(m)

be the eigenvalues of the positive-semidefinite matrix (A∗mAm)1/2. The lower and upper expo-
nential growth rates of the singular values are defined by

ai = lim inf
m→∞

1
m

log ρi(m) and bi = lim sup
m→∞

1
m

log ρi(m).

In particular, we obtain new characterizations of Lyapunov regularity in terms of these num-
bers (see Theorem 2.1).

Theorem 1.1. The following properties are equivalent:

1. (Am)m∈N is regular;

2. 1
m log|detAm| → ∑

q
i=1 bi when m→ ∞;

3. 1
m log|detAm| → ∑

q
i=1 ai when m→ ∞.

Some arguments in the proof are inspired by work of Barabanov in [1] who considered a
corresponding problem for the case of continuous time.

Now we consider the values λ′1 ≤ · · · ≤ λ′q of the Lyapunov exponent determined by
the sequence A, counted with their multiplicities. If v1, . . . , vq is a basis for Rq at which the
minimum in (1.3) is attained, then λ′i = λ(vi) for i = 1, . . . , q up to a reordering of the values.
One can show that the sequence A is regular if and only if

1
m

log|detAm| →
q

∑
i=1

λ′i when m→ ∞

(see [3]). Incidentally, we have ai ≤ bi ≤ λ′i for i = 1, . . . , q and each of these inequalities can
be strict (see [2, 4]).

As an outcome of our approach, we also obtain a new proof of a characterization of reg-
ularity involving only the lower and upper exponential growth rates of the singular values:
namely, A is regular if and only if

ai = bi for i = 1, . . . , q. (1.4)

It follows from work of Ruelle in [15] that condition (1.4) yields the regularity of A. Bara-
banov [1] gave a new proof of this property and also obtained the other direction of the
equivalence for a dynamics with continuous time. We consider the case of discrete time and
we give a new proof of this equivalence (see [4] for a proof based on the existence of a structure
of Oseledets type that is present even for a nonregular dynamics). Again, some arguments
are inspired in [1].

1.4 New regularity coefficients

Finally, we introduce three new regularity coefficients motivated by Theorem 1.1 (see also
Theorem 2.1). Then we establish some relations between these coefficients and the Lyapunov
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regularity coefficient. Given a sequence A = (Am)m∈N of invertible q× q matrices with real
entries, we define

α(A) = max
{

bi − ai : i = 1, . . . , q
}

,

σ(A) =
q

∑
i=1

bi − lim inf
m→∞

1
m

log|detAm|,

σ(A) = lim sup
m→∞

1
m

log|detAm| −
q

∑
i=1

ai.

The advantage of having various regularity coefficients is that in each specific situation it is
often easier to compute or at least to estimate one of them. We show in Theorem 3.1 that

0 ≤ α(A) ≤ σ(A) ≤ qα(A) and 0 ≤ α(A) ≤ σ(A) ≤ qα(A).

Finally, we construct bounded sequences of matrices attaining specific values of the regularity
coefficients (see Theorem 3.3). The construction builds on former work in [5] although it
required several nontrivial modifications.

Theorem 1.2. Given numbers p, g ≥ 0 such that p ≤ g ≤ qp, there exists a bounded sequence A of
diagonal q× q matrices with α(A) = p and σ(A) = g.

In Section 4 we introduce two additional regularity coefficients. We also establish inequal-
ities between these coefficients and the former ones.

1.5 Relevance of the results

Finally, we discuss the relevance of the results obtained in the paper. As noted above, the
notion of regularity plays an important role in the stability theory of a dynamics with contin-
uous or discrete time. In fact, a vanishing or sufficiently small regularity coefficient implies
that the asymptotic stability of a trajectory a linear dynamics persists under sufficiently small
nonlinear perturbations. This leads in particular to the construction of stable and unstable
invariant manifolds, as well as to many other nontrivial properties. On the other hand, in
each specific situation it may be easier to obtain bounds for a certain regularity coefficient.
Thus, it is convenient to have additional coefficients. In particular, it may be easier in some
specific situations to use instead the new regularity coefficients introduced in our paper.

In another direction, when a dynamics is regular (when some regularity coefficient van-
ishes, in which case all regularity coefficients vanish), there is a richer structure, such as for
example the one illustrated by (1.1) and (1.2). Our work provides further additional properties
caused by regularity that in fact also provide additional structure.

2 Characterizations of regularity

In this section we give new characterizations of Lyapunov regularity that are expressed in
terms of the lower and upper exponential growth rates of the singular values. This serves as
a preparation for introducing new regularity coefficients in Section 3, although the character-
izations are also of interest by themselves.

Let (Am)m∈N be a sequence of invertible q× q matrices with real entries. We shall always
assume that there exists c ∈ R such that

‖Am‖ ≤ c and ‖A−1
m ‖ ≤ c (2.1)
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for all m ∈N. For each m ∈N, let

Am =

{
Am−1Am−2 · · · A1 if m > 1,

Id if m = 1.

The Lyapunov exponent λ : Rq → R ∪ {−∞} associated with the sequence (Am)m∈N is de-
fined by

λ(v) = lim sup
m→∞

1
m

log‖Amv‖,

with the convention that log 0 = −∞. By the abstract theory of Lyapunov exponents, λ takes
at most a number s ≤ q of distinct values on Rq \ {0}, say

λ1 < λ2 < · · · < λs.

Moreover, for each i = 1, . . . , s the set

Ei =
{

v ∈ Rq : λ(v) ≤ λi
}

is a linear subspace of Rq and

{0} ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Es = Rq.

We denote by λ′1 ≤ λ′2 ≤ · · · ≤ λ′q the values of the Lyapunov exponent λ counted with
their multiplicities. These are obtained repeating each value λi a number of times equal to
dim Ei − dim Ei−1, with the convention that E0 = {0}. The sequence (Am)m∈N is said to be
(Lyapunov) regular if

lim
m→∞

1
m

log|detAm| =
q

∑
i=1

λ′i (2.2)

(this includes the requirement that the limit on the left-hand side exists).
We also consider the singular values. The matrix

Tm = (A∗mAm)
1/2 (2.3)

is symmetric and positive-semidefinite. Hence, its eigenvalues

ρ1(m) ≤ · · · ≤ ρq(m)

(counted with their multiplicities) are real and nonnegative. They are called the singular values
of the matrix Am. For i = 1, . . . , q, we define the lower and upper exponential growth rates of the
singular values, respectively, by

ai = lim inf
m→∞

1
m

log ρi(m) and bi = lim sup
m→∞

1
m

log ρi(m).

We note that
ai ≤ bi ≤ λ′i for i = 1, . . . , q (2.4)

(see for example Proposition 6.1.2 in [2]).
The following result gives two new characterizations of Lyapunov regularity (properties

(ii) and (iii)). As an outcome of our approach, we also obtain a new proof of a character-
ization involving only the lower and upper exponential growth rates of the singular values
(property (iv)).
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Theorem 2.1. Let (Am)m∈N be a sequence of invertible q× q matrices with real entries satisfying (2.1).
Then the following properties are equivalent:

(i) (Am)m∈N is regular;

(ii) 1
m log|detAm| → ∑

q
i=1 bi when m→ ∞;

(iii) 1
m log|detAm| → ∑

q
i=1 ai when m→ ∞;

(iv) ai = bi for i = 1, . . . , q.

Proof. (i)⇒ (ii). Since |detAm| = det Tm (see (2.3)), we obtain

1
m

log|detAm| =
1
m

log
q

∏
i=1

ρi(m) =
q

∑
i=1

1
m

log ρi(m) (2.5)

and so

lim
m→∞

1
m

log|detAm| = lim
m→∞

q

∑
i=1

1
m

log ρi(m) ≤
q

∑
i=1

bi.

Therefore, it follows from (2.2) that
q

∑
i=1

λ′i ≤
q

∑
i=1

bi.

By (2.4) we have ∑
q
i=1 λ′i = ∑

q
i=1 bi and property (ii) follows readily from (2.2).

(ii) ⇒ (iv). We proceed by contradiction. Assume that ak < bk for some k ∈ {1, . . . , q} and
take a sequence (ml)l∈N such that

ak = lim inf
m→∞

1
m

log ρk(m) = lim
l→∞

1
ml

log ρk(ml).

By (ii) and (2.5), since ak < bk we obtain

q

∑
i=1

bi = lim
m→∞

1
m

log|detAm| = lim
m→∞

q

∑
i=1

1
m

log ρi(m)

= lim
l→∞

q

∑
i=1

1
ml

log ρi(ml) = ak + lim
l→∞

∑
i 6=k

1
ml

log ρi(ml)

≤ ak + ∑
i 6=k

bi <
q

∑
i=1

bi.

This contradiction implies that (iv) holds.
Now we obtain the former implications with (ii) replaced by (iii).

(i)⇒ (iii). Let Bm = (A∗m)−1 and define

Bm =

{
Bm−1Bm−2 · · · B1 if m > 1,

Id if m = 1.
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Note that Bm = (A∗m)
−1. The Lyapunov exponent µ : Rq → R ∪ {−∞} associated with the

sequence (Bm)m∈N is defined by

µ(w) = lim sup
m→∞

1
m

log‖Bmw‖.

By the abstract theory of Lyapunov exponents, µ takes at most a number q of distinct values on
Rq \ {0} and we denote by µ′1 ≥ µ′2 ≥ · · · ≥ µ′q these values counted with their multiplicities.
One can show that (Am)m∈N is regular if and only if (Bm)m∈N is regular, in which case we
have λ′i = −µ′i for i = 1, . . . , q (see for example Theorem 2.4.5 in [2]). Therefore,

lim
m→∞

1
m

log|detBm| =
q

∑
i=1

µ′i.

Proceeding as in the proof of the implication (i)⇒ (ii), one can show that

lim
m→∞

1
m

log|detBm| =
q

∑
i=1

βi, (2.6)

where

βi = lim sup
m→∞

1
m

log σi(m),

denoting by

σ1(m) ≤ · · · ≤ σq(m)

the eigenvalues of the matrix Sm = (B∗mBm)1/2 (which is symmetric and positive-semidefinite).
Note that

σi(m) =
1

ρq−i+1(m)
for i = 1, . . . , q

and so

βi = −aq−i+1 and αi = −bq−i+1 for i = 1, . . . , q, (2.7)

where

αi = lim inf
m→∞

1
m

log σi(m).

In view of (2.6) and (2.7) we get

lim
m→∞

1
m

log|detAm| = − lim
m→∞

1
m

log|detBm| = −
q

∑
i=1

βi =
q

∑
i=1

ai,

which establishes property (iii).

(iii) ⇒ (iv). The proof is identical to the proof of the implication (ii) ⇒ (iv) using the
identities in (2.7).
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(iv)⇒ (i). We assume that the upper exponential growth rates of the singular values take r
distinct values

c1 < · · · < cr. (2.8)

Let n1, . . . , nr be their multiplicities. Moreover, let v1(m), . . . , vq(m) be an orthonormal basis
for Rq formed by eigenvectors of the matrix Tm associated, respectively, with the eigenvalues
ρ1(m), . . . , ρq(m). For i = 1, . . . , q and m ∈N, let

Ei(m) = span
{

vn1+···+ni−1+1(m), . . . , vn1+···+ni(m)
}

and
Fi(m) = span

{
v1(m), . . . , vn1+···+ni(m)

}
.

Since the basis v1(m), . . . , vq(m) is orthonormal, we have

Fi(m)⊥ = span
{

vn1+···+ni+1(m), . . . , vq(m)
}

. (2.9)

Considering the 2-norm for Rq, we obtain

‖Amv‖2 = v∗A∗mAmv = v∗T2
mv = v∗T∗mTmv = ‖Tmv‖2

and so

‖Am|Fi(m)‖ = sup
v∈Fi(m)\{0}

‖Amv‖
‖v‖ = sup

v∈Fi(m)\{0}

‖Tmv‖
‖v‖ = ρli(m), (2.10)

where li = n1 + · · ·+ ni. Moreover, for any subspace L ⊂ Fi(m)⊥, it follows from (2.9) that

ρli+1(m) ≤ ‖Am|L‖ ≤ ρq(m). (2.11)

Properties (2.10) and (2.11) are crucial in the remainder of the proof.
Before proceeding, we recall some notions and results concerning the distance between two

linear spaces. Let ∠(v, w) be the angle between two vectors v and w. Given linear subspaces
E, F ⊂ Rq, we define

d(E, F) = sin∠(E, F),

where
∠(E, F) = max

{
θ(E, F), θ(F, E)

}
and

θ(E, F) = max
v∈E\{0}

min
w∈F\{0}

∠(v, w).

Note that
θ(E, F) = max

v∈E\{0}
∠(v, projF v),

where projF v is the orthogonal projection of v onto F.
The following result is proved in [1].

Lemma 2.2. The following properties hold:

1. If dim E = dim F, then θ(E, F) = θ(F, E) and d(E, F) = d(E⊥, F⊥).

2. If a sequence (Ek)k∈N of linear spaces of equal dimensions is a Cauchy sequence, then it converges
to a linear space E of the same dimension.
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3. Let (Ek)k∈N be a sequence of linear spaces converging to a linear space E such that Ek = Fk⊕Gk,
where Gk is the orthogonal complement of Fk in Ek. If the sequence (Fk)k∈N converges to a
linear space F, then F ⊂ E and the sequence (Gk)k∈N converges to a linear space G that is the
orthogonal complement of F in E.

Now let
αi(m) = ∠(Fi(m), Fi(m + 1)) for i = 1, . . . , r− 1.

Lemma 2.3. We have

lim sup
m→∞

1
m

log αi(m) ≤ ci − ci+1 for i = 1, . . . , r− 1.

Proof of the lemma. We proceed by contradiction. Assume the contrary. Then for some i ∈
{1, . . . , r− 1} there exist ε > 0 and a sequence (ml)l∈N such that

1
ml

log αi(ml) > ci − ci+1 + ε (2.12)

for l ∈N. Take v ∈ Fi(m + 1) with ‖v‖ = 1 such that

∠(v, Fi(m)) = αi(m)

and write it in the form v = v1 + v2 with v1 ∈ Fi(m) and v2 ∈ Fi(m)⊥. By (2.12) we have
v2 6= 0. It follows from (2.10) that

‖Amv1‖ ≤ ρli(m)‖v1‖

and taking L = span{v2} in (2.11) we obtain

‖Amv2‖ ≥ ρli+1(m)‖v2‖.

On the other hand, we have
‖v1‖ = ‖v‖ cos αi(m) ≤ ‖v‖

and
‖v2‖ = ‖v‖ sin αi(m) ≥ 2

π
αi(m)‖v‖

because sin x ≥ 2
π x for x ∈ [0, π/2]. Therefore,

‖Amv‖ ≥ ‖Amv2‖ − ‖Amv1‖
≥ ρli+1(m)‖v2‖ − ρli(m)‖v1‖

≥
(

ρli+1(m)
2
π

αli(m)− ρli(m)

)
‖v‖.

Note that given δ > 0, by (2.8) there exists m = m(δ) such that

e(aj−δ)m ≤ ρj(m) ≤ e(aj+δ)m

for all j = 1, . . . , q and m ≥ m(δ). Hence, for m = ml we obtain

‖Aml v‖ ≥
(

e(ci+1−δ)ml
2
π

e(ci−ci+1+ε)ml − e(ci+δ)ml

)
‖v‖

=

(
2
π

e(ci−δ+ε)ml − e(ci+δ)ml

)
‖v‖.

(2.13)
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Taking δ < ε/2, we have ci − δ + ε > ci + δ. Since v ∈ Fi(ml + 1) and ‖A−1
m ‖ ≤ c, it follows

from (2.13) that

ci + δ < lim sup
l→∞

1
ml

log‖Aml v‖ ≤ lim
l→∞

1
ml + 1

log ρli(ml + 1) = ci,

which is impossible. This contradiction yields the desired result.

We proceed with the proof of the theorem. We first show that (Fi(m))m∈N is a Cauchy
sequence. By Lemma 2.3, taking ε > 0 such that ci − ci+1 + ε < 0 we have

d(Fi(m), Fi(k)) ≤
k−1

∑
j=m

d(Fi(j), Fi(j + 1))

≤
∞

∑
j=m

d(Fi(j), Fi(j + 1)) =
∞

∑
j=m

sin αi(j)

≤
∞

∑
j=m

e(ci−ci+1+ε)j =
e(ci−ci+1+ε)m

1− eci−ci+1+ε

for all sufficiently large m and all k > m. This shows that (Fi(m))m∈N is a Cauchy sequence.
In view of Lemma 2.2 (second item), we conclude that (Fi(m))m∈N converges to some linear
space F satisfying

d(Fi(m), Fi) ≤
e(ci−ci+1+ε)m

1− eci−ci+1+ε
. (2.14)

Moreover, also in view of Lemma 2.2 (third item), the sequence (Ei(m))m∈N also converges to
some linear space E. Indeed, since Fi+1(m)→ Fi+1 when m→ ∞ and

Fi+1(m) = Fi(m)⊕ Ei+1(m)

with
Ei+1(m) = Fi(m)⊥ ∩ Fi+1(m),

we conclude that (Ei(m))m∈N converges to some linear space Ei.

Lemma 2.4. For k = 1, . . . , r we have

lim
m→∞

1
m

log‖Amw‖ = ck for w ∈ Ek \ {0}

and
lim sup

m→∞

1
m

log‖Amw‖ ≤ ck−1 for w ∈ Fk−1 \ {0}.

Proof of the lemma. We proceed by backwards induction on k. Take j ∈ {0, 1, . . . , r − 2} and
given w ∈ Rq, write it in the form w = w1 + w2 with w1 ∈ Fr−j−1(m)⊥ and w2 ∈ Fr−j−1(m).

First take j = 0 and w ∈ Er \ {0}. Then w = w1 + w2 with w1 ∈ Fr−1(m)⊥ and w2 ∈
Fr−1(m). Note that w1 6= 0 for any sufficiently large m, since ∠(Er, Er(m)) → 0 when m → ∞
and Er(m) = Fr−1(m)⊥. In view of (2.11) we have

ρq−nr+1(m)‖w1‖ ≤ ‖Amw1‖ ≤ ρq(m)‖w1‖,

which implies that

lim
m→∞

1
m

log‖Amw1‖ = cr.
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Moreover, in view of (2.10) we also have

‖Amw2‖ ≤ ρq−rn(m)‖w2‖,

which implies that

lim sup
m→∞

1
m

log‖Amw2‖ ≤ cr−1.

Since Amw = Amw1 +Amw2 and cr−1 < cr, we conclude that

lim
m→∞

1
m

log‖Amw‖ = cr.

Now take w ∈ Fr−1 \ {0} and recall that w = w1 + w2 with w1 ∈ Fr−1(m)⊥ and w2 ∈
Fr−1(m). Since ∠(Fr−1, Fr−1(m)) → 0 when m → ∞, we have w2 6= 0 for any sufficiently
large m. Note that

‖w1‖ = ‖w‖ sin∠(w, w2)

and
‖w2‖ = ‖w‖ cos∠(w, w2) ≤ ‖w‖.

Since sin∠(w, w2) ≤ d(Fr−1, Fr−1(m)), it follows from (2.14) that

‖Amw‖ ≤ ‖Amw1‖+ ‖Amw2‖
≤ ρq(m)‖w1‖+ ρq−nr(m)‖w2‖

≤ e(cr−1−cr+ε)m

1− ecr−1−cr+ε
ρq(m)‖w‖+ ρq−nr(m)‖w‖.

We have

lim
m→∞

1
m

log
(

e(cr−1−cr+ε)m

1− ecr−1−cr+ε
ρq(m)

)
= cr−1 − cr + ε + cr = cr−1 + ε

and
lim sup

m→∞

1
m

log ρq−nr(m) = cr−1.

Therefore,

lim sup
m→∞

1
m

log‖Amw‖ ≤ cr−1 + ε

and since ε is arbitrary, we obtain

lim sup
m→∞

1
m

log‖Amw‖ ≤ cr−1.

This establishes the induction hypothesis for j = 0.
Now assume that the statement in Lemma 2.4 holds for k = r, . . . , r− j+ 1 and some j ≥ 1.

We want to show that it also holds for k = r − j. Take w ∈ Er−j \ {0}. Since Er−j \ {0} ⊂
Fr−j \ {0}, it follows from the induction hypothesis that

lim sup
m→∞

1
m

log‖Amw‖ ≤ cr−j. (2.15)

We first show that
lim inf

m→∞

1
m

log‖Amw‖ ≥ cr−j (2.16)
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for w ∈ Er−j \ {0}. Then it follows from (2.15) and (2.16) that

lim
m→∞

1
m

log‖Amw‖ = cr−j,

which establishes the first statement in the lemma.
Since Er−j \ {0} ⊂ F⊥r−j−1 \ {0}, we take w ∈ F⊥r−j−1 \ {0} and write it in the form w =

w1 + w2 with w1 ∈ Fr−j−1(m)⊥ and w2 ∈ Fr−j−1(m). Since

d(F⊥r−j−1, Fr−j−1(m)⊥)→ 0 when m→ ∞,

we have w1 6= 0 for any sufficiently large m. Moreover,

‖w1‖ = ‖w‖ cos∠(w, w1), ‖w2‖ = ‖w‖ sin∠(w, w2). (2.17)

In view of (2.14) we have

sin∠(w, w1) ≤ d(F⊥r−j−1, Fr−j−1(m)⊥)

= d(Fr−j−1, Fr−j−1(m))

≤ e(cr−j−1−cr−j+ε)m

1− ecr−j−1−cr−j+ε =: αj(m).

(2.18)

Hence, by (2.10) and (2.11) together with (2.17) and (2.18), we obtain

‖Amw‖ ≥ ‖Amw1‖ − ‖Aww2‖
≥ ρlr−j(m)‖w1‖ − ρlr−j−1(m)‖w2‖

≥ ρlr−j(m)
√

1− αj(m)2‖w‖ − ρlr−j−1(m)‖w‖.

Therefore, since αj(m)→ 0 when m→ ∞, we have

lim
m→∞

1
m

log
(

ρlr−j(m)
√

1− αj(m)2
)
= cr−j

and
lim

m→∞

1
m

log ρlr−j−1(m) = cr−j−1.

Finally, since cr−j > cr−j−1, we conclude that

lim inf
m→∞

1
m

log‖Amw‖ ≥ cr−j,

which establishes (2.16).
Now we prove the second statement in the lemma. Take w ∈ Fr−j−1 \ {0} and write it in

the form w = w1 + w2 with w1 ∈ F⊥r−j−1(m) and w2 ∈ Fr−j−1(m). Since

∠(Fr−j−1, Fr−j−1(m))→ 0 when m→ ∞,

we have w2 6= 0 for any sufficiently large m. Note that

‖w1‖ = ‖w‖ sin∠(w, w2)

and
‖w2‖ = ‖w‖ cos∠(w, w2) ≤ ‖w‖.
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Since sin∠(w, w2) ≤ d(Fr−j−1, Fr−j−1(m)) and

d(Fr−j−1, Fr−j−1(m)) ≤ αj(m),

using (2.10) and (2.11), we conclude as above that

‖Amw‖ ≤ ‖Amw1‖+ ‖Amw2‖
≤ αj(m)ρlr−j(m)‖w‖+ ρlr−j−1(m)‖w‖.

We have

lim
m→∞

1
m

log
(
αj(m)ρlr−j(m)

)
= cr−j−1 − cr−j + ε + cr−j = cr−j−1 + ε

and

lim
m→∞

1
m

log ρlr−j−1(m) = cr−j−1.

Therefore,

lim sup
m→∞

1
m

log‖Amw‖ ≤ cr−j−1 + ε

and since ε is arbitrary, we obtain

lim sup
m→∞

1
m

log‖Amw‖ ≤ cr−j−1.

This establishes the induction hypothesis for k = r− j.

We proceed with the proof of the theorem. Note that

det Tm =
q

∏
i=1

ρi(m).

Therefore, using (2.5) we have

lim
m→∞

1
m

log|detAm| =
q

∑
i=1

lim
m→∞

1
m

log ρi(m).

Finally, in view of Lemma 2.4 we obtain

lim
m→∞

1
m

log|detAm| =
q

∑
i=1

λ′i,

which shows that (iv)⇒ (i). This completes the proof of the theorem.

3 New regularity coefficients

In this section we introduce three new regularity coefficients motivated by the properties (ii),
(iii) and (iv) in Theorem 2.1. We also establish some relations between these coefficients and
the Lyapunov regularity coefficient.
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3.1 Regularity coefficients

Given a sequence A = (Am)m∈N of invertible q× q matrices with real entries, we define

α(A) = max
{

bi − ai : i = 1, . . . , q
}

,

σ(A) =
q

∑
i=1

bi − lim inf
m→∞

1
m

log|detAm|,

σ(A) = lim sup
m→∞

1
m

log|detAm| −
q

∑
i=1

ai.

The following result gives some relations between these functions. In particular, together with
Theorem 2.1, it shows that the three are indeed regularity coefficients.

Theorem 3.1. For any bounded sequence A = (Am)m∈N of invertible q× q matrices, we have

0 ≤ α(A) ≤ σ(A) ≤ qα(A) (3.1)

and
0 ≤ α(A) ≤ σ(A) ≤ qα(A). (3.2)

Proof. Clearly, α(A) ≥ 0. Note that

σ(A) =
q

∑
i=1

bi − lim inf
m→∞

1
m

log
q

∏
i=1

ρi(m)

≥
q

∑
i=1

bi − lim sup
m→∞

1
m

log ∏
i 6=j

ρi(m)− lim inf
m→∞

1
m

log ρj(m)

≥
q

∑
i=1

bi −∑
i 6=j

bi − aj = bj − aj

and so σ(A) ≥ α(A). Moreover,

σ(A) =
q

∑
i=1

bi − lim inf
m→∞

1
m

log
q

∏
i=1

ρi(m)

≤
q

∑
i=1

bi −
q

∑
i=1

ai =
q

∑
i=1

(bi − ai) ≤ qα(A),

which establishes (3.1).
On the other hand, we have

σ(A) = lim sup
m→∞

1
m

log
q

∏
i=1

ρi(m)−
q

∑
i=1

ai

≥ lim sup
m→∞

1
m

log ρj(m) + lim inf
m→∞

1
m

log ∏
i 6=j

ρi(m)−
q

∑
i=1

ai

≥ bj + ∑
i 6=j

ai −
q

∑
i=1

ai = bj − aj
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and so σ(A) ≥ α(A). Finally,

σ(A) = lim sup
m→∞

1
m

log
q

∏
i=1

ρi(m)−
q

∑
i=1

ai

≤
q

∑
i=1

bi −
q

∑
i=1

ai =
q

∑
i=1

(bi − ai) ≤ qα(A),

which establishes (3.2).

It follows readily from Theorem 3.1 that

q−1σ(A) ≤ σ(A) ≤ qσ(A)

and
q−1σ(A) ≤ σ(A) ≤ qσ(A).

We also establish some relations between these three coefficients and the Lyapunov regu-
larity coefficient. We recall that the Lyapunov regularity coefficient of a sequence A = (Am)m∈N

is defined by

σ(A) =
q

∑
i=1

λ′i − lim inf
m→∞

1
m

log|detAm|.

Theorem 3.2. For any bounded sequence A = (Am)m∈N of invertible q× q matrices, we have

σ(A) ≤ σ(A) and σ(A) ≤ q2α(A).

Proof. The first inequality follows readily from the fact that bi ≤ λ′i for i = 1, . . . , q and the
definitions of σ(A) and σ(A).

For the second identity, we first observe that it suffices to consider upper-triangular ma-
trices. Indeed, given a sequence A = (Am)m∈N of invertible q × q matrices, there exists a
sequence (Um)m∈N of orthogonal q× q matrices with U1 = Id such that

Cm = U∗m+1AmUm

is upper-triangular for each m ∈ N (see Theorem 3.2.1 in [2]). Clearly, the sequence C =

(Cm)m∈N is also bounded and one can easily verify that

α(C) = α(A), σ(C) = σ(A), σ(C) = σ(A) and σ(C) = σ(A).

Without loss of generality, we assume from now on that all matrices are upper-triangular. We
also consider the Grobman regularity coefficient γ(A) that is defined by

γ(A) = min max
{

λ(vi) + µ(wi) : 1 ≤ i ≤ q
}

,

where the minimum is taken over all dual bases v1, . . . , vq and w1, . . . , wq. Denoting by aij(l)
the entries of Al , we have

γ(A) ≤
q

∑
i=1

(
lim sup

m→∞

1
m

log
m

∏
l=1
|aii(l)| − lim inf

m→∞

1
m

log
m

∏
l=1
|aii(l)|

)
(see Theorem 3.1.3 in [2]). Since the matrices Al are upper-triangular, we obtain

1
m

log
m

∏
l=1
|aii(l)| =

1
m

log ρki(m)
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for some integer ki and so

γ(A) ≤
q

∑
i=1

(
lim sup

m→∞

1
m

log ρki(m)− lim inf
m→∞

1
m

log ρki(m)

)
=

q

∑
i=1

(bki − aki) ≤ qα(A).

Moreover, we have
σ(A)

q
≤ γ(A)

(see Theorem 7.3.2 in [2]) and so σ(A) ≤ q2α(A). This completes the proof of the theorem.

3.2 Realization problem I

In this section we construct bounded sequences of matrices A = (Am)m∈N attaining specific
values of the regularity coefficients α(A) and σ(A).

Theorem 3.3. Given numbers p, g ≥ 0 such that

p ≤ g ≤ qp,

there exists a bounded sequence A = (Am)m∈N of diagonal q × q matrices with α(A) = p and
σ(A) = g.

Proof. Note that α(A) = σ(A) = 0 for any regular sequence A. So it suffices to take p > 0. We
divide the proof into steps.

Step 1. Construction of sequences of numbers. Given r, c, d ∈ R with r > 1 and c ≥ d, for
each m ∈N let

a(m) =

{
ed if m ∈ Sk for k ∈N,

ec if m ∈ Tk for k ∈N,

where
Sk =

{
m ∈N : r2k−2 ≤ m < r2k−1}

and
Tk =

{
m ∈N : r2k−1 ≤ m < r2k}.

The following result is taken from [5].

Lemma 3.4. For ρ(m) = ∏m−1
j=1 a(j) we have

ρ(m) =

{
e

d+cr
r+1 (r2k−2−1)+d(m−r2k−2) if m ∈ Sk for k ∈N,

e
d+cr
r+1 (r2k−2−1)+d(r2k−1−r2k−2)+c(m−r2k−1) if m ∈ Tk for k ∈N.

Moreover,

lim sup
m→∞

1
m

log ρ(m) =
d + cr
r + 1

and
lim inf

m→∞

1
m

log ρ(m) =
c + dr
r + 1

.
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Step 2. Construction of sequences of matrices. We say that the sequence of matrices
(Am)m∈N, where Am = diag(a1(m), . . . , aq(m)) for m ∈N with

ai(m) =

{
edi if m ∈ Sk for k ∈N,

eci if m ∈ Tk for k ∈N,
(3.3)

is r-regular if the following conditions hold:

1. ci ≥ di for i = 1, . . . , q;

2. ci ≤ ci+1 and di ≤ di+1 for i = 1, . . . , q− 1.

Lemma 3.5. For any r-regular sequence A = (Am)m∈N, we have

α(A) =
r− 1
r + 1

max
1≤i≤q

(ci − di)

and

σ(A) =
r− 1
r + 1

q

∑
i=1

(ci − di).

Proof of the lemma. It follows from Lemma 3.4 that

ρi(m) =

e
di+cir

r+1 (r2k−2−1)+di(m−r2k−2) if m ∈ Sk for k ∈N,

e
di+cir

r+1 (r2k−2−1)+di(r2k−1−r2k−2)+ci(m−r2k−1) if m ∈ Tk for k ∈N,

for i = 1, . . . , q. Indeed, if m ∈ Sk, then

ρi(m) = e
di+cir

r+1 (r2k−2−1)+di(m−r2k−2)

≤ e
di+1+ci+1r

r+1 (r2k−2−1)+di+1(m−r2k−2) = ρi+1(m)

and if m ∈ Tk, then

ρi(m) = e
dir
r+1 (r

2k−2−1)+di(r2k−1−r2k−2)+ci(m−r2k−1)

≤ e
di+1r
r+1 (r2k−2−1)+di+1(r2k−1−r2k−2)+ci+1(m−r2k−1) = ρi+1(m).

It also follows from Lemma 3.4 that

α(A) =
r− 1
r + 1

max
1≤i≤q

(ci − di)

and

σ(A) =
q

∑
i=1

bi − lim inf
m→∞

1
m

log detAm

=
q

∑
i=1

di + cir
r + 1

− lim inf
m→∞

1
m

log detAm.

(3.4)

We have

lim inf
m→∞

1
m

log detAm = lim inf
m→∞

1
m

log
m−1

∏
j=1

q

∏
i=1

ai(j),
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where
q

∏
i=1

ai(m) =

{
ed1+···+dq if m ∈ Sk for k ∈N,

ec1+···+cq if m ∈ Tk for k ∈N.

Applying Lemma 3.4 with c = c1 + · · ·+ cq and d = d1 + · · ·+ dq we obtain

lim inf
m→∞

1
m

log
m−1

∏
j=1

q

∏
i=1

ai(j) =
c1 + · · ·+ cq + (d1 + · · ·+ dq)r

r + 1

=
q

∑
i=1

ci + dir
r + 1

and it follows from (3.4) that

σ(A) =
q

∑
i=1

di + cir
r + 1

−
q

∑
i=1

ci + dir
r + 1

=
r− 1
r + 1

q

∑
i=1

(ci − di).

This completes the proof of the lemma.

Step 3. Conclusion of the argument. We first construct auxiliary sequences.

Lemma 3.6. Given cq > dq > 0, there exist an r-regular sequence C = (Cm)m∈N with

σ(C) = α(C) =
(r− 1)(cq − dq)

r + 1

and an r-regular sequence D = (Dm)m∈N with

σ(D) = qα(D) = q
(r− 1)(cq − dq)

r + 1
. (3.5)

Proof of the lemma. Let
c1 = · · · = cq−1 = d1 = · · · = dq−1 = 0

and denote the corresponding matrices Am (see (3.3)) by Cm. Then the sequence C is r-regular
and by Lemma 3.5 we have

σ(C) = α(C) =
(r− 1)(cq − dq)

r + 1
.

Now let
c1 = · · · = cq, d1 = · · · = dq

and denote the corresponding matrices Am (see (3.3)) by Dm. Then the sequence D is r-regular
and by Lemma 3.5 we have

σ(D) = q
(r− 1)(cq − dq)

r + 1
and α(D) =

(r− 1)(cq − dq)

r + 1

which gives identity (3.5).
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We use the sequences C and D to show that for each µ ∈ [1, q] there exists an r-regular
sequence E = (Em)m∈N with

σ(E) = µα(E).

First observe that replacing C by the sequence C′ = (C′m)m∈N with C′m = Cκ
m for some κ > 0

corresponds to replace the numbers ci and di, respectively, by κci and κdi for each i. Therefore,

α(C′) = κα(C) and σ(C′) = κσ(C).

Moreover, for each ν ∈ [0, 1], the sequence of matrices E = (Em)m∈N with Em = Cν
mD1−ν

m for
m ∈N is r-regular, with

α(E) = να(C) + (1− ν)α(D) and σ(E) = νσ(C) + (1− ν)σ(D). (3.6)

Indeed, let eci(m) and edi(m) be, respectively, the entries on the diagonals of Cm and Dm. Then
the entries on the diagonal of Em are eνci(m)+(1−ν)di(m) and one can easily verify that the two
properties in the notion of r-regularity hold as well as (3.6). By Lemma 3.5 and (3.6) we obtain

α(E) = ν
(cq − dq)(r− 1)

r + 1
+ (1− ν)

(cq − dq)(r− 1)
r + 1

=
(cq − dq)(r− 1)

r + 1

and

σ(E) = ν
(cq − dq)(r− 1)

r + 1
+ (1− ν)

q(cq − dq)(r− 1)
r + 1

=
(ν + (1− ν)q)(cq − dq)(r− 1)

r + 1
.

In particular,
σ(E)/α(E) = ν + (1− ν)q.

Note that when ν goes from 0 to 1, this expression goes from q to 1 and so it takes any value
µ ∈ [1, q]. Moreover, α(E) can take any prescribed positive value by choosing cq and dq. This
completes the proof of the theorem.

3.3 Realization problem II

In this section we construct specific sequences of matrices attaining each possible value of the
regularity coefficients σ(A) and σ(A).

Theorem 3.7. Given s ≥ 0, there exists:

1. a bounded sequence of matrices A with σ(A) = s;

2. a bounded sequence of matrices A with σ(A) = s.

Proof. Note that σ(A) = σ(A) = 0 for any regular sequence A. So it suffices to take s > 0.
We first show that given s > 0, there exists a bounded sequence of matrices A with

σ(A) = s. Consider the sequence of diagonal matrices

Am = diag(a1(m), . . . , aq(m)),
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where

ai(m) =

{
eβi if k! ≤ m < (k + 1)! with k odd,

1 otherwise

for some nonnegative numbers
β1 ≤ β2 ≤ · · · ≤ βq

such that ∑
q
i=1 βi = s. Then ρi(m) ≤ eβim and so

bi = lim sup
m→∞

1
m

log ρi(m) ≤ βi.

On the other hand, for k odd we have

ρi((k + 1)!) ≥ eβi((k+1)!−k!)

and so

bi ≥ lim sup
k→∞

1
(k + 1)!

log ρi((k + 1)!)

≥ lim sup
k→∞

1
(k + 1)!

βi((k + 1)!− k!) = βi.

This shows that bi = βi for i = 1, . . . , q. Moreover, since ai(j) ≥ 1 we have

lim inf
m→∞

1
m

log detAm ≥ 0. (3.7)

On the other hand, denoting by e1, . . . , eq the canonical basis for Rq and writing rn = (2n+ 1)!,
we obtain

lim inf
m→∞

1
m

log detAm = lim inf
m→∞

1
m

log
q

∏
i=1
‖Amei‖

≤ lim inf
n→∞

1
rn

log
q

∏
i=1
‖Arn ei‖.

We have
q

∏
i=1
‖Arn ei‖ ≤

q

∏
i=1

eβi(2n)! = es(2n)!

and so

lim inf
m→∞

1
m

log detAm ≤ lim inf
n→∞

s(2n)!
rn

= 0.

Together with (3.7), this implies that

lim inf
m→∞

1
m

log detAm = 0

and so

σ(A) =
q

∑
i=1

βi − lim inf
m→∞

1
m

log detAm =
q

∑
i=1

βi = s.

Now we show that given s > 0, there exists a bounded sequence of matrices A with
σ(A) = s. Consider the sequence of diagonal matrices

Am = diag(a1(m), . . . , aq(m)),
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where

ai(m) =

{
es if k! ≤ m < (k + 1)! and k ≡ q mod (q + 1),

1 otherwise.

Since ai(m) ≥ 1, we have ρi(m) ≥ 1 and so

ai = lim inf
m→∞

1
m

log ρi(m) ≥ 0.

Moreover, letting rn,j = (q + n(q + 1) + j)! we have

ai ≤ lim inf
n→∞

1
rn,2

max
1≤i≤q

log
q

∏
i=1
‖Arn,2 ei‖ ≤ lim inf

n→∞

rn,1

rn,2
= 0.

Therefore, ai = 0 for i = 1, . . . , q. Moreover, detAm ≤ ems and so

lim sup
m→∞

1
m

log detAm ≤ s. (3.8)

Finally, we have

detA(k+1)! ≥
q

∏
i=1

(k+1)!−1

∏
j=k!

ai(j) = es((k+1)!−k!),

for k ≡ q mod (q + 1), which gives

lim sup
m→∞

1
m

log detAm ≥ lim sup
n→∞

s(rn,1 − rn,0)

rn,1
= s.

Together with (3.8), this implies that

lim sup
m→∞

1
m

log detAm = s

and so

σ(A) = lim sup
m→∞

1
m

log detAm −
q

∑
i=1

ai = s.

This completes the proof of the theorem.

4 Further regularity coefficients

In this section we introduce two additional regularity coefficients based on the matrices Am.
We also establish inequalities between these coefficients and the former ones.

For each k = 1, . . . , q, let (Rq)∧k be the set of alternating k-linear forms on Rq. We define
an inner product on (Rq)∧k by requiring that

〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk〉 = det B,

where B is the k× k matrix with entries bij = 〈vi, wj〉 for i, j = 1, . . . , k and where 〈·, ·〉 is the
standard inner product on Rq. In particular, for k = 1 we recover the standard inner product
and so the 2-norm on Rq.
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Now let A = (Am)m∈N be a sequence of q × q matrices with real entries. For each k =

1, . . . , q, we define

ck(A) = lim inf
m→∞

1
m

log‖(Am)
∧k‖

and

dk(A) = lim sup
m→∞

1
m

log‖(Am)
∧k‖,

where
(Am)

∧k(v1 ∧ · · · ∧ vk) = Amv1 ∧ · · · ∧Amvk.

Finally, let
ε(A) = max

{
dk(A)− ck(A) : k = 1, . . . , q

}
.

Theorem 4.1. The function ε(A) is a regularity coefficient. Moreover, for each bounded sequence of
matrices A = (Am)m∈N we have

1
2

α(A) ≤ ε(A) ≤ qα(A). (4.1)

Proof. Note that it suffices to establish (4.1) since then ε(A) ≥ α(A)/2 ≥ 0 and ε(A) = 0 if
and only if α(A) = 0, that is, if and only if A is regular.

Recall that for any q× q matrix B we have

‖B∧k‖ =
k

∏
i=1

ρq−i+1,

where ρ1 ≤ · · · ≤ ρq are the (real nonnegative) eigenvalues of the matrix (B∗B)1/2. Taking
B = Am we obtain

‖(Am)
∧k‖ =

k

∏
i=1

ρq−i+1(m). (4.2)

Therefore,

ck(A) = lim inf
m→∞

1
m

log
k

∏
i=1

ρq−i+1(m)

≥
k

∑
i=1

lim inf
m→∞

1
m

log ρq−i+1(m) =
k

∑
i=1

aq−i+1(A)

and

dk(A) = lim sup
m→∞

1
m

log
k

∏
i=1

ρq−i+1(m)

≤
k

∑
i=1

lim sup
m→∞

1
m

log ρq−i+1(m) =
k

∑
i=1

bq−i+1(A).

This readily implies that

dk(A)− ck(A) ≤
k

∑
i=1

(bq−i+1(A)− aq−i+1(A)) ≤ kα(A)
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and so ε(A) ≤ qα(A). On the other hand, by (4.2) we have

ρi(m) =
‖(Am)∧(q−i+1)‖
‖(Am)∧(q−i)‖

for i = 1, . . . , q− 1 and
ρq(m) = ‖(Am)

∧1‖ = ‖Am‖.

Therefore,

ai(A) = lim inf
m→∞

1
m

log ρi(m)

≥ lim inf
m→∞

1
m

log‖(Am)
∧(q−i+1)‖+ lim inf

m→∞
− 1

m
log‖(Am)

∧(q−i)‖

= cq−i+1(A)− dq−i(A)

and

bi(A) = lim sup
m→∞

1
m

log ρi(m)

≤ lim sup
m→∞

1
m

log‖(Am)
∧(q−i+1)‖+ lim sup

m→∞
− 1

m
log‖(Am)

∧(q−i)‖

= dq−i+1(A)− cq−i(A)

for i = 1, . . . , q− 1. These inequalities also hold for i = q, with the convention that c0(A) =

d0(A) = 0. This implies that

bi(A)− ai(A) ≤ dq−i+1(A)− cq−i+1(A) + dq−i(A)− cq−i(A)

and so

α(A) ≤ max
{

dq−i+1(A)− cq−i+1(A) : i = 1, . . . , q
}
+ max

{
dq−i(A)− cq−i(A) : i = 1, . . . , q

}
≤ 2ε(A).

This completes the proof of the theorem.

We also introduce a second regularity coefficient. First recall that a bounded sequence
of matrices A = (Am)m∈N is regular if and only if the sequence of matrices (A∗mAm)1/(2m)

converges entry by entry when m→ ∞ (see [4]). Therefore, the function

µ(A) =
q

∑
i=1

q

∑
j=1

(
lim sup

m→∞
(A∗mAm)

1/(2m)
ij − lim inf

m→∞
(A∗mAm)

1/(2m)
ij

)
,

where Bij denotes the ij entry of a matrix B, is a regularity coefficient. Moreover, we have the
following result.

Theorem 4.2. There exists a constant Cq > 0 depending only on q such that for each bounded sequence
A = (Am)m∈N of invertible q× q matrices such that A−1 = (A−1

m )m∈N is also bounded we have

C−1
q ‖A−1‖−1

∞ α(A) ≤ µ(A) ≤ Cq‖A‖∞α(A).
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Proof. Since the matrices (A∗mAm)1/2 are symmetric and positive definite, there exist orthogo-
nal matrices Sm such that

S−1
m (A∗mAm)

1/(2m)Sm = diag(ρ1(m)1/m, . . . , ρq(m)1/m). (4.3)

Moreover, it is shown in [4] that one can always choose the matrices Sm so that they converge
entry by entry to some orthogonal matrix S when m → ∞. Hence, it follows from (4.3) that
there exists a constant Cq > 0 depending only on q such that

max
1≤i≤q

(
lim sup

m→∞
ρi(m)1/m − lim inf

m→∞
ρi(m)1/m

)
≤ Cq

q

∑
i=1

q

∑
j=1

(
lim sup

m→∞
(A∗mAm)

1/(2m)
ij − lim inf

m→∞
(A∗mAm)

1/(2m)
ij

)
.

(4.4)

Again by (4.3) we have

(A∗mAm)
1/(2m) = Sm diag(ρ1(m)1/m, . . . , ρq(m)1/m)S−1

m

and so we also obtain
q

∑
i=1

q

∑
j=1

(
lim sup

m→∞
(A∗mAm)

1/(2m)
ij − lim inf

m→∞
(A∗mAm)

1/(2m)
ij

)
≤ Cq max

1≤i≤q

(
lim sup

m→∞
ρi(m)1/m − lim inf

m→∞
ρi(m)1/m

)
,

(4.5)

taking the same constant Cq without loss of generality.
Now observe that by (4.2) with k = 1, we have

‖A−1
m ‖−1 ≤ ρi(m) ≤ ‖Am‖

for each i = 1, . . . , q. Therefore,

‖A−1‖−1
∞ ≤ ρi(m)1/m ≤ ‖A‖∞

and it follows from the mean value theorem that

bi(A)− ai(A) = log lim sup
m→∞

ρi(m)1/m − log lim inf
m→∞

ρi(m)1/m

≤ ‖A−1‖∞

(
lim sup

m→∞
ρi(m)1/m − lim inf

m→∞
ρi(m)1/m

)
.

Similarly, we have

lim sup
m→∞

ρi(m)1/m − lim inf
m→∞

ρi(m)1/m = exp lim sup
m→∞

1
m

log ρi(m)− exp lim inf
m→∞

1
m

log ρi(m)

≤ ‖A‖∞(bi(A)− ai(A)).

Together with (4.4) and (4.5) this yields the desired result.
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