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Abstract. It is our purpose in this paper to make a detailed description for the structure
of the set of the nonconstant steady states for the two-dimensional epidemic S-I model
with diffusion incorporating demographic and epidemiological processes with zero-
flux boundary conditions. We first study the conditions of diffusion-driven instability
occurrence, which induces spatial inhomogeneous patterns. The results will extend
to the derivative of prey’s functional response with prey is positive. Moreover, we
establish the local and global structure of nonconstant positive steady state solutions.
A priori estimates for steady state solutions will play a key role in the proof. Our
results indicate that the diffusion has a great influence on the spread of the epidemic
and extend well the finding of spatiotemporal dynamics in the epidemic model.
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1 Introduction

Since the pioneer work of King [15], Kermack and McKendrick [14], mathematical models
have been contributing to improve our understanding of infectious disease dynamics and help
us develop preventive measures to control infection spread. Over a period of time, researchers
in theoretical and mathematical epidemiology have proposed many epidemic models, and the
temporal dynamics of infectious disease transmission described with differential equations
has been investigated in either qualitative or numerical analysis [1, 2, 6, 20].

In epidemic models, the incidence rate plays a key role in the spread of an infection [3, 6,
8, 17, 19, 21, 24]. Traditionally, two different types of incidence rate are been frequently used
in well-known epidemic models [4, 9]: The density-dependent transmission is the case in
which the contact rate between susceptible and infective individuals increases linearly with
population size; the frequency-dependent transmission is the case in which the number of
contacts is independent of population size [13].

In [5], the susceptible S is a capable of reproducing with logistic law and strong Allee effect
and the infected individuals I do not reproduce but they still contribute with S to population
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growth toward the carrying capacity. This assumption is based on [28–30]. If we assume I is
capable of reproducing without strong Allee effect, and assume that the disease is not to be
transmitted to offspring, newborns of the infected are in the susceptible class. The infected
I is removed only by death at rate µ, there is no recovery from the disease. The disease
transmission is assumed to be standard incidence term βSI

S+I , and no vertical transmission, i.e.,
the number of contacts between infected and susceptible individuals is constant [11]. The
transmission coefficient is β > 0.

From the above assumption, we can establish the following model

dS
dt

= r(S + ρI)[1− a(S + I)]− βSI
S + I

,

dI
dt

=
βSI

S + I
− µI.

(1.1)

Here S and I denote the density of the uninfected (susceptible) and infected hosts, respectively.
All parameters are nonnegative. Parameter r denotes the maximum birth rate of the hosts;
and 0 ≤ ρ ≤ 1 describes the reducing reproduction ability of infected hosts: ρ = 0 means
that infected hosts lose their reproducing ability while ρ = 1 indicates that they experience no
reduction in reproduction fitness; a measures the per capita density-dependent reduction in
birth rate. If a 6= 0, then 1/a is also called the carrying capacity; if a = 0, then the model not
consider horizontally transmitted that not reduces fecundity and survival of its host, which in
turn is not regulated by density-dependent birth. However, considering the impact of various
aspects such as resources and environment on population growth and the model has more
practical significance, this paper mainly considers a 6= 0.

Suppose that the susceptible (S) and the infections individuals (I) move randomly in
the space-described as Brownian random motion [10], and then we propose a simple spatial
model corresponding to (1.1) as follows

∂S
∂t
− d1∆S = r(S + ρI)[1− a(S + I)]− βSI

S + I
, x ∈ Ω, t > 0,

∂I
∂t
− d2∆I =

βSI
S + I

− µI, x ∈ Ω, t > 0,

∂S
∂n

=
∂I
∂n

= 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω.

(1.2)

Here Ω is a bounded domain in RN(N ≥ 1) with smooth boundary ∂Ω, n is the outward unit
normal vector of the boundary ∂Ω and the homogeneous Neumann boundary condition is be-
ing considered. The diffusion coefficients d1 and d2 are positive constants, and the initial data
S0(x), I0(x) are continuous functions. ∆ = ∂2

∂x2 is the Laplacian operator in two-dimensional
space, which describes the Brownian random motion. The diffusion model provides a useful
framework to evaluate some spatially related control measures.

The Turing instability refers to “diffusion driven instability”, i.e., the stability of the endemic
equilibrium changing from stable for the ordinary differential equations (ODE) dynamics (1.1),
to unstable, for the partial differential equations (PDE) dynamics (1.2). And the reason of the
occurrence of Turing pattern is the existence of nonconstant positive steady states of model
(1.2) as a result of diffusion. And there naturally comes two questions:

(1) How about the existence of nonconstant positive steady states of model (1.2)?
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(2) What is the structure of nonconstant positive steady states of model (1.2)?

The main goal of this paper is to solve the two questions above completely. So, we will
concentrate on the following steady state problem corresponding to (1.2) is given by

−d1∆S = r(S + ρI)[1− a(S + I)]− βSI
S + I

, x ∈ Ω,

−d2∆I =
βSI

S + I
− µI, x ∈ Ω,

∂S
∂n

=
∂I
∂n

= 0, x ∈ ∂Ω.

(1.3)

The rest of the paper is organized as follows. In section 2, we perform a priori estimates
of positive steady state solutions of (1.3). In section 3, the stability of constant steady state
solution and the conditions of Turing instability of model (1.2) are discussed. In section 4, the
existence, local and global structure of nonconstant positive solutions of (1.3) are investigated.
In the last section, we make some comments on our studies and propose some interesting
problems for future studies.

2 A priori estimates

In this section, we investigate the basic estimates of the reaction-diffusion model (1.3) use the
following lemma.

Lemma 2.1 ([23]). Suppose that g ∈ C(Ω×R).

(1) Assume that w ∈ C2(Ω)∩ C1(Ω) and satisfies ∆w(x) + g(x, w(x)) ≥ 0 x ∈ Ω, ∂νw ≤ 0, x ∈
∂Ω, if w(x0) = maxΩ w, then g(x0, w(x0)) ≥ 0;

(2) Assume that w ∈ C2(Ω) ∩ C1(Ω), and satisfies ∆w(x) + g(x, w(x)) ≤ 0, x ∈ Ω, ∂νw ≥ 0, x ∈
∂Ω, if w(x0) = minΩ w, then g(x0, w(x0)) ≤ 0.

Lemma 2.2 ([25]). Let Ω be a bounded Lipschitz domain in Rn, and let g ∈ C(Ω×R).

(1) If z ∈W1,2(Ω) is a weak solution of the inequalities

∆z + g(x, z) ≥ 0 in Ω, ∂nz ≤ 0 on ∂Ω.

and if there is a constant K such that g(x, z) < 0 for z > K, then z ≤ K a.e. in Ω.

(2) If z ∈W1,2(Ω) is a weak solution of the inequalities

∆z + g(x, z) ≤ 0 in Ω, ∂nz ≥ 0 on ∂Ω.

and if there is a constant K such that g(x, z) > 0 for z < K, then z ≥ K a.e. in Ω.

In order to obtain the existence of nonconstant positive steady states, a priori estimates
will play a key role. Our main result in this section is the following.

Theorem 2.3. If d1 < d2, or d1 > d2 and d1(β − µ) < d2β, then all the non-negative solutions
of model (1.3) that start in Ω are bounded with ultimate bound Γ = 1

a independent of the initial
conditions.
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Proof. Model (1.3) can reduces to

−d1∆S = r(S + ρI)[1− a(S + I)]− βSI
S + I

,

−d1∆I =
d1

d2

βSI
S + I

− d1

d2
µI.

(2.1)

Summing up the two equations of (2.1), we have

− d1∆(S + I) = r(S + ρI)[1− a(S + I)]− βSI
S + I

+
d1

d2

βSI
S + I

− d1

d2
µI. (2.2)

(i) If d1 < d2, then from (2.2) it follows that

−d1∆(S + I) ≤ r(S + ρI)[1− a(S + I)]−
(

1− d1

d2

)
βSI

S + I

≤ r(S + ρI)[1− a(S + I)].

(ii) If d1 > d2 and d1(β− µ) < d2β, then from (2.2) lead to

−d1∆(S + I) ≤ r(S + ρI)[1− a(S + I)] +
((

d1

d2
− 1
)

β− d1

d2
µ

)
I

≤ r(S + ρI)[1− a(S + I)].

In addition, by Lemma 2.2, we have 0 < S + I ≤ 1
a , and easy to see that Γ = 1

a independent of
the initial conditions, then we can conclude the proof.

Theorem 2.4. If (S(x), I(x)) is any positive solution of (1.3) and β > µ holds, then

0 < S(x) <
1
a

, 0 < I(x) <
β− µ

µa
, x ∈ Ω.

Furthermore, if M := r−raα(1+ρ)−β
ra > 0 holds, then (S(x), I(x)) satisfies

M < S(x) <
1
a

,
β− µ

µ
M < I(x) <

β− µ

µa
, x ∈ Ω, (2.3)

where α = β−µ
µa .

Proof. Let (S, I) be a given positive solution of (1.3). First of all, by Theorem 2.3, it is clear that
S(x) < 1

a , for all x ∈ Ω. To obtain the upper bound for I, we let for some z0 ∈ Ω such that
I(z0) = max I(x). By virtue of Lemma 2.1, we have

βS(z0)I(z0)

S(z0) + I(z0)
≥ µI(z0).

Thus
I(z0) ≤

β− µ

µ
S(z0) <

β− µ

µa
.

In the following, we proof the lower bound of (S(x), I(x)), and α = β−µ
µa . Since

−d1∆S = r(S + ρI)[1− a(S + I)]− βSI
S + I

≥ r(S + ρI)[1− a(S + I)]− βS

≥ S(r− raS− raα(1 + ρ)− β) + rρI(1− aI).
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By Theorem 2.3, we have

−d1∆S ≥ S(r− raS− raα(1 + ρ)− β).

Hence, by Lemma 2.2 and strong maximum principle, we can obtain

S(x) >
r− raα(1 + ρ)− β

ra
:= M > 0.

Similarly, we have

I(x) >
β− µ

µ
M.

This completes our proof.

3 Constant steady states and Turing instability

In this section, we mainly discuss the stability of constant steady state solution. For conve-
nience, we denote

g1(S, I) = r(S + ρI)[1− a(S + I)]− βSI
S + I

, g2(S, I) =
βSI

S + I
− µI. (3.1)

Clearly, ODE model (1.1) or PDE model (1.2) has a unique constant steady state E∗ =

(S∗, I∗) with positive coordinates

S∗ =
(

1− µ(β− µ)

r(µ + ρ(β− µ))

)
µ

aβ
, I∗ = S∗

β− µ

µ

if and only if

(P) µ < β < rµ
µ−rρ + µ and µ > rρ hold.

In addition, model (1.1) or model (1.2) has a trivial equilibrium U0 =
( 1

a , 0
)
. By the

standard linearization method, we can easily prove the following result.

Theorem 3.1. The trivial equilibrium U0 is locally asymptotically stable if µ > β and is unstable if
µ < β.

Next, we will focus on the stability of E∗ for model (1.1) and model (1.2), respectively. By
simple calculation, the Jacobian matrix of (1.1) evaluated at E∗ is given by

J(E∗) =
(

a11 a12

a21 a22

)
, (3.2)

where

a11 = r[1− a(S∗ + I∗)]− ar(S∗ + ρI∗)− βI∗2

(S∗ + I∗)2 ,

a12 = rρ[1− a(S∗ + I∗)]− ar(S∗ + ρI∗)− βS∗2

(S∗ + I∗)2 ,

a21 =
βI∗2

(S∗ + I∗)2 > 0, a22 = − βS∗ I∗

(S∗ + I∗)2 < 0.

(3.3)
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The characteristic equation of J(E∗) is

η2 − Tη + Q = 0,

where
T = a11 + a22, Q = a11a22 − a21a12. (3.4)

By direct calculation, under the condition (P), we have T < 0, Q > 0. Thus, we can obtain
the following theorem.

Theorem 3.2. Assume condition (P) holds, then the constant steady state solution E∗ of model (1.1)
is locally asymptotically stable.

Next, we analyse the stability of the endemic equilibrium E∗ for the reaction-diffusion
model (1.2). Form now on, let

0 = λ0 < λ1 < λ2 < · · · < λi < · · ·

be the sequence of eigenvalues for the operator −∆ subject to the Neumann boundary condi-
tion on Ω [7]. By E(λi), we denote the space of eigenfunctions corresponding to λi in H1(Ω).
Set {φij : j = 1, 2, · · · , dim E(λi)} be the orthonormal basis of E(λi), X = [H1(Ω)]2, Xij =

{cφij : c ∈ R2}. Then

X =
+∞⊕
i=1

Xi and Xi =
dim E(λi)⊕

j=1

Xij.

Assume that a11 > 0 and d1λ1 < a11, then we may define N0 = N0(r, a, ρ, β, µ, Ω) to be the
largest positive integer such that

d1λi < a11, for i ≤ N0.

Obviously, if d1λ1 < a11 is satisfied, then 1 ≤ N0 < ∞. In this situation, define

d̃2 := min
1≤i≤N0

d2,i, d2,i =
a11a22 − a12a21 − a22d1λi

λi(a11 − d1λi)
. (3.5)

And naturally we can give the stability of E∗ of model (1.2).

Theorem 3.3. Assume condition (P) holds.

(i) If a11 < 0, then E∗ is locally asymptotically stable.

(ii) If a11 > 0, then

(ii-1) if d1λ1 < a11 and 0 < d2 < d̃2, then E∗ is locally asymptotically stable;

(ii-2) if d1λ1 < a11 and d2 > d̃2, then E∗ is Turing unstable.

Proof. Consider the linearization operator evaluated at E∗ of model (1.2)

L =

(
d1∆ + a11 a12

a21 d2∆ + a22

)
.

It is easy to see that the eigenvalues of L are given by those of the following operator Li

Li =

(
−d1λi + a11 a12

a21 −d2λi + a22

)
,
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whose characteristic equation is

ξ2 − ξTi + Qi = 0, i = 0, 1, 2, . . . , (3.6)

where

Ti = −(d1 + d2)λi + a11 + a22,

Qi = λi(d1λi − a11)

{
d2 −

d1a22λi − a11a22 + a12a21

λi(d1λi − a11)

}
.

(3.7)

(i) If a11 < 0, then Ti < 0 and Qi > 0, which implies that Re{ξi} < 0 for all eigenvalues ξ.
Therefore, the constant solution E∗ is locally asymptotically stable.

(ii) Since T < 0, Q > 0, then Ti < 0 and d1a22λi − a11a22 + a12a21 < 0.
(ii-1) If a11 > 0, d1λ1 < a11 and 0 < d2 < d̃2, then d1λi < a11 and d2 < d2,i for all

i ∈ [1, N0]. Thus

Qi = λi(d1λi − a11)

{
d2 −

d1a22λi − a11a22 + a12a21

λi(d1λi − a11)

}
> 0.

One the other hand, if i > N0, then d1λi > a11. Thus, we have Qi > 0. The analysis yields the
local asymptotic stability of E∗.

(ii-2) If a11 > 0, d1λ1 < a11 and d2 > d̃2, then we may assume the minimum is attained
at j ∈ [1, N0]. Thus d2 > d2,j, which implies

Qj = λj(d1λj − a11)

{
d2 −

d1a22λj − a11a22 + a12a21

λj(d1λj − a11)

}
< 0.

Hence, E∗ is unstable in this case.

Remark 3.4. From Theorem 3.2 and 3.3, we can know that if a11 > 0, under mild extra
conditions, the stability of the constant equilibrium E∗ may change from stable, for the (ODE)
dynamics (1.1), to unstable, for the (PDE) dynamics (1.2), whereas those of other constant
equilibria are invariant.

Remark 3.5. When we regard Qi as a quadratic polynomial with respect to λi, i.e., Qi =

d1d2λ2
i − (d1a22 + d2a11)λi + a11a22 − a12a21, using the method of [26], we can also get that the

condition of Turing instability: Assume that (P) and a11 > 0 hold. If

d2

d1
>
−(2a12a21 − a11a22) + 2

√
a12a21(a12a21 − a11a22)

a2
11

,

then Turing instability occurs.

Example 3.6. As an example, we take the parameters in model (1.2) as

a = 1, ρ = 0.1, β = 1, µ = 0.35, r = 0.61, d1 = 0.01.

There is a unique positive equilibrium E∗ ≈ (0.03546, 0.06586), and a11 = 0.1 > 0, d̃2 = 0.1073.
For the ODE model (1.1), easy to verify that T = −0.1275 < 0, Q = 0.0166 > 0, then E∗ is

locally asymptotically stable from Theorem 3.2.
For the PDE model (1.2) on one-dimensional space domain (0, π), d1λ1− a11 = −0.09 < 0.

If 0.1 = d2 < d̃2, then E∗ is locally asymptotically stable (see Fig. 3.1), and if 0.25 = d2 > d̃2, E∗

is Turing instability from Theorem 3.3. The model (1.2) exhibits Turing pattern (see Fig. 3.2).
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Figure 3.1: Stable behavior with d2 = 0.1 for the model (1.2).

Figure 3.2: Turing instability behavior with d2 = 0.25 for the model (1.2).

For the sake of learning the effect of the diffusion on the Turing pattern of model (1.2)
more, as an example, in Fig. 3.3, we demonstrate that the spatial-temporal dynamics to (1.2)
are complicated and the pattern formation is extremely sensitive to the variation in diffusion
rate d2 around 0.1073. The transitions between regular and irregular patterning have been
well observed in model (1.2).

(a) d2 = 0.4 (b) d2 = 1 (c) d2 = 1.35

(d) d2 = 1.5 (e) d2 = 1.54 (f) d2 = 1.8

Figure 3.3: Transitions between regular and irregular patterning in model (1.2)
with different values of d2.
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4 Nonconstant positive steady states

In this section, we will focus on the existence and the structure of nonconstant positive solution
for the system (1.3).

4.1 Existence of nonconstant positive steady states

In this subsection, we apply priori estimates to yield the existence and nonexistence results
of positive nonconstant solutions to (1.3). First, we can easily obtain the nonexistence of
nonconstant positive solutions by using the energy method [27], which is relatively simple
and we omit the proof here. Also, for notational convenience, we write Θ = (r, a, ρ, β, µ) in
the sequel.

Theorem 4.1. Under the assumption (P), let D2 be a fixed positive constant satisfying D2 > µ
λ1

. Then
there exists a positive constant D1 = D1(Θ, D2) such that model (1.3) has no nonconstant positive
solution provided that d1 ≥ D1 and d2 ≥ D2.

With the help of Theorem 4.1, by using the Leray–Schauder degree theory, we discuss the
existence of positive nonconstant solutions to (1.3) when the diffusion coefficients d1 and d2

vary while the parameters r, a, ρ, β, µ keep fixed.
Rewrite model (1.3) in the form:

−∆E = D−1F(E), x ∈ Ω,
∂E
∂n

= 0, x ∈ ∂Ω,
(4.1)

where D = diag(d1, d2), E = (S, I), F(E) = (g1(S, I), g2(S, I))T. Therefore, E solves (4.1) if and
only if it satisfies

f̂ (d1, d2, E) := E− (I− ∆)−1{D−1F(E) + E} = 0 on X, (4.2)

where I is the identity matrix, (I− ∆)−1 represents the inverse of I− ∆ with homogeneous
Neumann boundary condition.

A straightforward computation reveals

DE f̂ (d1, d2, E∗) = I− (I− ∆)−1(D−1 J + I).

For each Xi, ξ is an eigenvalue of DE f̂ (d1, d2, E∗) on Xi if and only if ξ(1+ λi) is an eigenvalue
of the matrix

Mi := λi I − D−1 J =
(

λi − d−1
1 a11 −d−1

1 a12

−d−1
2 a21 λi − d−1

2 a22

)
.

Clearly,
detMi = d−1

1 d−1
2 [d1d2λ2

i + (−d1a22 − d2a11)λi + a11a22 − a12a21],

and
trMi = 2λi − d−1

1 a11 − d−1
2 a22.

Define
ĝ(d1, d2, λ) := d1d2λ2 + (−d1a22 − d2a11)λ + a11a22 − a12a21.

Thus, ĝ(d1, d2, λi) = d1d2 det Mi. If

d1a22 + d2a11 > 2
√

d1d2(a11a22 − a12a21), (4.3)
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then ĝ(d1, d2, λ) = 0 has two real roots, that is

λ+(d1, d2) =
d1a22 + d2a11 +

√
(d1a22 + d2a11)2 − 4d1d2(a11a22 − a12a21)

2d1d2
,

λ−(d1, d2) =
d1a22 + d2a11 −

√
(d1a22 + d2a11)2 − 4d1d2(a11a22 − a12a21)

2d1d2
.

Let

A = A(d1, d2) = {λ : λ ≥ 0, λ−(d1, d2) < λ < λ+(d1, d2)},
Sp = {λ0, λ1, λ2, . . . },

and let m(λi) be multiplicity of λi. In order to calculate the index of f̂ (d1, d2, ·) at E∗, we need
the following lemma.

Lemma 4.2. Suppose ĝ(d1, d2, λi) 6= 0 for all λi ∈ Sp. Then

index( f̂ (d1, d2, ·), E∗) = (−1)σ,

where

σ =

{
∑λi∈A∩Sp

m(λi), A∩ Sp 6= ∅,

0, A∩ Sp = ∅.

In particular, σ = 0 if ĝ(d1, d2, λi) > 0 for all λi ≥ 0.

From Lemma 4.2, in order to calculate the index of f̂ (d1, d2, ·) at E∗, we need to determine
the range of λ for which ĝ(d1, d2, λ) < 0.

Theorem 4.3. Under the conditions of Theorem 2.4 and (P), a11 > 0 hold. If a11
d1
∈ (λk, λk+1) for

some k ≥ 1, and σk = ∑k
i=1 m(λi) is odd, then there exists a positive constant D∗ such that for all

d2 ≥ D∗, model (1.3) has at least one nonconstant positive solution.

Proof. Since a11 > 0, it follows that if d2 is large enough, then (4.3) holds and λ+(d1, d2) >

λ−(d1, d2) > 0. Furthermore,

lim
d2→∞

λ+(d1, d2) =
a11

d1
, lim

d2→∞
λ−(d1, d2) = 0.

As a11
d1
∈ (λk, λk+1), there exists d0 � 1 such that

λ+(d1, d2) ∈ (λk, λk+1), 0 < λ−(d1, d2) < λ1 ∀d2 ≥ d0. (4.4)

From Theorem 4.1, we know that there exists d > d0 such that (1.3) with d1 = d and d2 ≥ d
has no nonconstant positive solution. Let d > 0 be large enough such that a11

d1
< λ1. Then

there exists D∗ > d such that

0 < λ−(d1, d2) < λ+(d1, d2) < λ1 for all d2 ≥ D∗. (4.5)

Now we prove that, for any d2 ≥ D∗, (1.3) has at least one nonconstant positive solution.
By way of contradiction, assume that the assertion is not true for some D∗2 ≥ D∗. By using
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the homotopy argument, we can derive a contradiction in the sequel. Fixing d2 = D∗2 , for
τ ∈ [0, 1], we define

D(τ) =

(
τd1 + (1− τ)d 0

0 τd2 + (1− τ)D∗

)
,

and consider the following problem
−∆E = D−1(τ)F(E), x ∈ Ω,

∂E
∂n

= 0, x ∈ ∂Ω.
(4.6)

Thus, E is a positive nonconstant solution of (1.3) if and only if it solves (4.6) with τ = 1.
Evidently, E∗ is the unique positive constant solution of (4.6). For any τ ∈ [0, 1], E is a positive
nonconstant solution of (4.6) if and only if

h(E, τ) = E− (I− ∆)−1{D−1(τ)F(E) + E} = 0 on X. (4.7)

From the discussion above, we know that (4.7) has no positive nonconstant solution when
τ = 0, and we have assumed that there is no such solution for τ = 1 at d2 = D∗2 . Clearly,
h(E, 1) = f̂ (d1, d2, E), h(E, 0) = f̂ (d, D∗, E) and

DE f̂ (d1, d2, E∗) = I− (I− ∆)−1(D−1 J + I),

DE f̂ (d, D∗, E∗) = I− (I− ∆)−1(D̃−1 J + I),

where f̂ (·, ·, ·) is as given in (4.2) and D̃ = diag(d, D∗). From (4.4) and (4.5), we have
A(d1, d2) ∩ Sp = {λ1, λ2, . . . , λk} and A(d, D∗) ∩ Sp = ∅. Since σk is odd, Lemma 4.2 yields

index(h(·, 1), E∗) = index( f̂ (d1, d2, ·), E∗) = (−1)σk = −1,

index(h(·, 0), E∗) = index( f̂ (d, D∗, ·), E∗) = (−1)0 = 1.

From Theorem 2.4, there exist positive constants C = C(d, d1, D∗, D∗2 , Θ) and C = C(d, D∗, Θ)

such that the positive solutions of (4.7) satisfy C < S(x), I(x) < C on Ω for all τ ∈ [0, 1].
Define Σ = {(S, I)T ∈ C1(Ω, R2) : C < S(x), I(x) < C, x ∈ Ω}. Then h(E, τ) 6= 0 for all

E ∈ ∂Σ and τ ∈ [0, 1]. By virtue of the homotopy invariance of the Leray–Schauder degree,
we have

deg(h(·, 0), Σ, 0) = deg(h(·, 1), Σ, 0). (4.8)

Notice that both equations h(E, 0) = 0 and h(E, 1) = 0 have a unique positive solution E∗ in
Σ, and we obtain

deg(h(·, 0), Σ, 0) = index(h(·, 0), E∗) = 1,

deg(h(·, 1), Σ, 0) = index(h(·, 1), E∗) = −1,

which contradicts (4.8). The proof is complete.

Remark 4.4. Theorem 4.3 shows that, if the parameters are properly chosen, the existence of
nonconstant steady states, i.e., Turing pattern can arise as a result of diffusion.
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Next we investigate the structure of nonconstant positive solution for the system (1.3) in
the one-dimensional space domain Ω = (0, π). Thus, (1.3) become

d1∆S + r(S + ρI)[1− a(S + I)]− βSI
S + I

= 0, x ∈ (0, π),

d2∆I +
βSI

S + I
− µI = 0, x ∈ (0, π),

S
′
= I

′
= 0, x = 0, π.

(4.9)

For the sake of simplicity, we denote d1 = 1 and d2 = d.
It is well known that the operator u → −∆u with no-flux boundary conditions has eigen-

values
λ0 = 0, λj = j2, j = 1, 2, 3, . . .

and eigenfunctions

φ0(x) =

√
1
π

, φj(x) =

√
2
π

cos jx, j = 1, 2, 3, . . .

We translate (S∗, I∗) to the origin by the translation (Ŝ, Î) = (S− S∗, I − I∗). For convenience,
we still denote Ŝ, Î by S, I respectively, then we can obtain the following system

∆S + r(S + S∗ + ρ(I + I∗))[1− a((S + S∗) + (I + I∗))]− β(S + S∗)(I + I∗)
(S + S∗) + (I + I∗)

= 0, x ∈ (0, π),

d∆I +
β(S + S∗)(I + I∗)
(S + S∗) + (I + I∗)

− µ(I + I∗) = 0, x ∈ (0, π),

S
′
= I

′
= 0, x = 0, π.

(4.10)

4.2 Local structure of nonconstant positive steady states

In this subsection, we study the local structure of nonconstant positive solutions for the new
system (4.10). In brief, by regarding d as the bifurcation parameter, we verify the existence of
positive solutions bifurcating form (d, (0, 0)). The Crandall–Rabinowitz bifurcation theorem
from the simple eigenvalue in [18] will be applied to obtain bifurcations. For the case of
double eigenvalues, we shall apply some techniques in [16] and [22] to deal with it.

Let X = {(S, I) ∈ W2,p(0, π) ×W2,p(0, π) : S
′
= I

′
= 0, x = 0, π} and Y = Lp(0, π) ×

Lp(0, π). We define the map F : R+ × X → Y by

F(d, (S, I)) =

(
∆S + r(S + S∗ + ρ(I + I∗))[1− a((S + S∗) + (I + I∗))]− β(S+S∗)(I+I∗)

(S+S∗)+(I+I∗)

d∆I + β(S+S∗)(I+I∗)
(S+S∗)+(I+I∗) − µ(I + I∗)

)
.

Thus, the solutions of (4.10) are exactly zeros of this map F(d, (S, I)). Note that (0, 0) is the
unique constant solution of (4.10), then we have F(d, (0, 0)) = 0. The Fréchet derivative of
F(d, (S, I)) with respect to (S, I) at (0, 0) can be given by

L(d) = F(S,I)(d, (0, 0)) =
(

∆ + a11 a12

a21 d∆ + a22

)
.

The characteristic equation of L(d) is given by

ξ2 − ξTi + Qi = 0, i = 0, 1, 2, . . . , (4.11)
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where, Ti = −(1 + d)λi + a11 + a22 and Qi = dλ2
i + (−a22 − da11)λi + a11a22 − a12a21.

Throughout this section, we always assume that λ1 < a11. Then there exists the largest
positive integer N0 ≥ 1 such that λj < a11 for 1 ≤ j ≤ N0. Letting ξ = 0 in (4.11), we have

d = dj =
a11a22 − a12a21 − a22λj

λj(a11 − λj)
, for 1 ≤ j ≤ N0.

We shall prove that there exists a nonconstant positive solution of F(d, (S, I)) = 0 near
(dj, (0, 0)).

Theorem 4.5. Let d = dj, λj = j2, for 1 ≤ j ≤ N0. Assume that

r 6=
{
(β− µ)(2µ2 − ρ(β− µ)(β− 2µ))

ρ2(β− µ)2 + 2µρ(β− µ) + µ2 ,
2µβ(β− µ)2 + µ2(β− 2µ)

ρ2(β− µ)2 + 2µρ(β− µ) + µ2

}
.

Suppose that di 6= dj whenever i 6= j, 1 ≤ i, j ≤ N0. Then (dj, (0, 0)) is a bifurcation point
of F(d, (S, I)) = 0. Moreover, there is a curve of nonconstant solutions (d(s), (S(s), I(s))) of
F(d, (S, I)) = 0 for |s| sufficiently small, satisfying d(0) = dj, (S(0) I(0)), S(s) = sφj + O(s2),
I(s) = sejφj + O(s2), where d(s), S(s), I(s) are continuously differentiable function with respect to s

and ej =
λj−a11

a12
.

Proof. By the Crandall–Rabinowitz bifurcation theorem about simple eigenvalues in [18], we
see that (d, (0, 0)) is a bifurcation point if the following conditions are satisfied:

(a) the partial derivatives Fd, F(S,I), and F(d,(S,I)) exist and are continuous.

(b) dim ker F(S,I)(d, (0, 0)) = codimR(F(S,I)(d, (0, 0))) = 1.

(c) Let ker F(S,I)(d, (0, 0)) = span{Φ}, then F(d,(S,I))(d, (0, 0))Φ /∈ R(F(S,I)(d, (0, 0))).

Note that

L(dj) = F(S,I)(d, (0, 0)) =
(

∆ + a11 a12

a21 dj∆ + a22

)
,

and

Fd(d, (0, 0)) =
(

0
∆

)
, F(d,(S,I))(d, (0, 0)) =

(
0 0
0 ∆

)
.

It is obvious that the linear operators Fd, F(S,I), F(d,(S,I)) are continuous. So assertion (a) holds.
Suppose Φj = (φ, ψ) ∈ ker L(dj), and write φ = Σajφj, ψ = Σbjφj. Then

∞

∑
j=0

Bj

(
aj
bj

)
φj = 0, where Bj =

(
a11 − λj a12

a21 a22 − djλj

)
. (4.12)

And

det Bj = 0 ⇔ d = dj =
a11a22 − a12a21 − a22λj

λj(a11 − λj)

implies that

ker L(dj) = span{Φj}, Φj =

(
1
ej

)
φj,

where ej =
λj−a11

a12
. The adjoint operator is defined by

L∗(dj) =

(
∆ + a11 a21

a12 dj∆ + a22

)
.
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In the same way as above we obtain

ker L∗(dj) = span{Φ∗j }, Φ∗j =

(
1
e∗j

)
φj,

where e∗j =
λj−a11

a21
.

Since R(L) = ker(L∗)⊥ (R: image; ⊥: complementary set), thus

codim(R(L(dj))) = dim(ker(L∗(dj))) = 1.

So assertion (b) holds.
Next, we verify assertion (c) holds. Since

F(d,(S,I))(dj, (0, 0))Φj =

(
0 0
0 ∆

)
Φj =

(
0

−λjejφj

)
.

and
〈F(d,(S,I))(dj, (0, 0))Φj, Φ∗j 〉Y = 〈−λjejφj, e∗j φj〉 = −λjeje∗j 6= 0.

we see that F(d,(S,I))(dj, (0, 0))Φj /∈ R(L(dj)). Hence, the proof is completed.

Remark 4.6. Under the assumption of Theorem 4.5, each (dj, (S∗, I∗)) is a bifurcation point
with respect to the trivial branch (d, (S∗, I∗)). The number of such bifurcation points is infinite.

Remark 4.7. Theorem 4.5 implies that each bifurcation curve Γj around (dj, (S∗, I∗)) is of
pitchfork type.

4.3 Global structure of nonconstant positive steady states

In this subsection, we study the global structure of the bifurcation solutions form simple
eigenvalues. Let J denote the closure of the nonconstant solution set of (4.9), and Γj the
connected component of J ∪ (dj, (S∗, I∗)) to which (dj, (S∗, I∗)) belongs. Theorem 4.5 provides
no information on the bifurcating curve Γj far form the equilibrium (S∗, I∗). In order to
understand its global structure, a further study is necessary.

Theorem 4.8. Under the same assumption of Theorem 4.5, the projection of the bifurcation curve Γj
on the d-axis contains (dj, ∞).

Proof. Rewrite (4.9) as {
−∆S = a11S + a12 I + h1(S, I),

−d∆I = a21S + a22 I + h2(S, I),

where h1(S, I), h2(S, I) are higher-order terms of S and I. The constant steady state (S∗, I∗) of
(1.3) is shifted to (0, 0) of this new system. Let

G = (−∆ + a11)
−1, Gd = (−d∆− a22)

−1, E = (S, I).

We next rewrite (4.9) in a form that the standard global bifurcation theory can be more
conveniently used. Then

K(d)E = (2a11G(S) + a12G(I), a21Gd(S))
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and
H(E) = (G(h1(S, I)), Gd(h2(S, I))).

Then (4.9) can be interpreted as the equation

E = K(d)E + H(E). (4.13)

For any fixed d > 0, it is noted that K(d) is a compact liner operator on X. H(E) = o(|E|)
for E near zero uniformly on closed d sub-intervals of (0, ∞), and is also a compact operator
on X.

To apply Rabinowitz’s global bifurcation theorem, we first verify that 1 is an eigenvalue of
K(dj) of algebraic multiplicity one. From the argument in the proof of Theorem 4.5 it is seen
that ker(K(dj)− Id) = ker L = span{Φj} (Id: identity operator), so 1 is indeed an eigenvalue
of K(dj), and dim ker(K(dj)− Id) = 1. According to [12], we know that the algebraic multi-
plicity of the eigenvalue 1 is the dimension of the generalized null space ∪∞

i=1 ker(K(dj)− Id)i.
For our purpose, we need to verify that

ker(K(dj)− Id) = ker(K(dj)− Id)2, or ker(K(dj)− Id) ∩ R(K(dj)− Id) = {0}.

Now, We compute ker(K∗(dj) − Id), where K∗(dj) is the adjoint of K(dj). Let (ϕ, χ) ∈
ker(K∗(dj)− Id). Then we have

2a11G(ϕ) + a21Gd(χ) = ϕ, a12G(ϕ) = χ.

By the definition of G and Gd, we obtain

−dja12∆ϕ = fϕ ϕ + fχχ, −∆χ = a12ϕ− a11χ,

where
fϕ = 2dja11a12 + a12a22, fχ = a12a21 − 2a11a22 − 2dja2

11.

Let ϕ = Σaiφi, χ = Σbiφi. Then

∞

∑
i=0

B∗i

(
ai
bi

)
φi = 0, where B∗i =

(
−dja12λi + fϕ fχ

a12 −λi − a11

)
.

By a straightforward calculation one can check that det B∗i = a12 det Bi, where Bi is given in
(4.12). Thus det B∗i = 0 only for i = j, and

ker(K∗(dj)− Id) = span{Φ′
j} where Φ

′
j =

(
λj + a11

a12
, 1
)>

φj.

In addition, we can check that
∫ π

0 Φ
′
jΦjdx =

2λj
a12
6= 0, which implies that

Φj /∈ (ker(K∗(dj)− Id))⊥ = R((K(dj)− Id)).

Hence, we show ker(K(dj) − Id) ∩ R(K(dj) − Id) = {0} and the eigenvalue 1 has algebraic
multiplicity one.

Suppose that 0 < d 6= dj is in a small neighborhood of dj, then, for this given d, the liner
operator Id−K(d) : X → X is a bijection and 0 is an isolated solution of (4.13). The index of
this isolated zero of Id−K(d)− H is given by

index(Id−K(d)− H, (d, 0)) = deg(Id−K(d), B, 0) = (−1)P,
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where B is a sufficiently small ball center at 0, and P is the sum of the algebraic multiplicities
of the eigenvalues of K(d) that are greater than one.

For our purpose, it is also necessary to show that this index changes when d crosses dj,
that is, for ε > 0 sufficiently small, we need verify

index(Id−K(dj − ε)− H, (dj − ε, 0)) 6= index(Id−K(dj + ε)− H, (dj + ε, 0)). (4.14)

Indeed, suppose that ζ is an eigenvalue of K(d) with an eigenfunction (φ̃, ψ̃), then

−ζ∆φ̃ = (2− ζ)a11φ̃ + a12ψ̃,

−dζ∆ψ̃ = a21φ̃ + a22ζψ̃.

Using the Fourier cosine series φ̃ = Σãiφi and ψ̃ = Σb̃iφi leads to

∞

∑
i=0

B̃i

(
ãi
b̃i

)
φi = 0, where B̃i =

(
(2− ζ)a11 − λiζ a12

a21 (a22 − dλi)ζ

)
.

Thus, the set of eigenvalues of K(d) consists of all ζ
′
s, which solve the characteristic equation

ζ2 − 2a11

a11 + λi
ζ − a12a21

(a11 + λi)(dλi − a22)
= 0, (4.15)

where the integer i runs from zero to ∞. In particular, for d = dj, if ζ = 1 is a root of
(4.15), then a simple calculation leads to dj = di, and so j = i by the assumption. Therefore,
without counting the eigenvalues corresponding to i 6= j in (4.15), K(d) has the same number
of eigenvalues greater than 1 for all d close to dj, and they have the same multiplicities. On
the other hand, for i = j in (4.15), we let ζ(d), ζ̃(d) denote the two roots. By a straightforward
calculation, we find that

ζ(dj) = 1 and ζ̃(dj) =
a11 − λj

a11 + λj
< 1.

When d close to dj, we obtain ζ̃(d) < 1. As the constant term −a12a21/(dλi − a22) in (4.15) is
a decreasing function of d when a12 < 0, we know that

ζ(dj + ε) > 1, ζ(dj − ε) < 1.

Consequently, K(dj + ε) has exactly one more eigenvalues that are larger than 1 than K(dj− ε)

does. Furthermore, by a similar argument above, we can show this eigenvalue has algebraic
multiplicity one. So (4.14) holds. And the proof is complete.

Remark 4.9. Theorem 4.8 shows that there is a smooth curve Γj bifurcating from (dj, (S∗, I∗)),
with Γj contained in a global branch of the positive solutions of (4.9).

5 Conclusions

In this paper, we study the dynamics of a reaction-diffusion model in the susceptible popu-
lation. In particular, we are interested in the positive steady states. Diffusion-induced insta-
bility of the positive equilibrium E∗ is investigated, which produces spatial inhomogeneous
patterns (see Theorem 3.3). Since a priori estimates for steady states are necessary in obtaining
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the existence of nonconstant positive steady states by applying the global bifurcation theory,
establishing a priori bounds for steady states is the key point.

The condition di 6= dj for any integer i 6= j in Theorem 4.5 guarantees dim KerL(dj) = 1,
that is 0 is a simple eigenvalue of L(dj). Hence, we can apply the global bifurcation theory
from a simple eigenvalue in this paper. In fact, j 7→ dj is not a one-to-one correspondence. On
the other hand, dj is not monotonous function for λj. If di = dj for some integer i 6= j, then
dim Ker L(dj) > 1. We hope to discuss this case in the near future.

We also remark that we do not know if it is possible that Γj obtained in Theorem 4.8 meets
some bifurcation points and then reaches infinity; note that our argument only rules out
the possibility that Γj meets some bifurcation points without finally reaching infinity. If this
case occurs, then some bifurcation branches “collide” each other and the solution undergo
a symmetry breaking. Understanding this phenomenon is very important in studying the
pattern formation in living organisms.
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