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Abstract. This paper is devoted to the study of the oscillatory behavior of half-linear
functional differential equations with deviating argument of the form(

r(t)(y′(t))α
)′

= p(t)yα(τ(t)). (E)

We introduce new technique based on monotonic properties of nonoscillatory solutions
to offer new oscillatory criteria for (E). We will show that presented results essentially
improve existing ones even for linear differential equations.
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1 Introduction

We consider half-linear second order differential equations with deviating argument(
r(t)(y′(t))α

)′
= p(t)yα(τ(t)). (E)

Throughout the paper it is assumed that

(H1) p, r ∈ C([t0, ∞)), p(t) > 0, r(t) > 0, α is the ratio of two positive odd integers,

(H2) τ(t) ∈ C1([t0, ∞)), τ′(t) ≥ 0, limt→∞ τ(t) = ∞.

By a solution of Eq. (E) we mean a function y(t) ∈ C1([Ty, ∞)), Ty ≥ t0, such that
r(t)(y′(t))α ∈ C1([Ty, ∞)) and y(t) satisfies Eq. (E) on [Ty, ∞). We consider only those so-
lutions y(t) of (E) which satisfy sup{|y(t)| : t ≥ T} > 0 for all T ≥ Ty. We assume that
(E) possesses such a solution. A solution of (E) is called oscillatory if it has arbitrarily large
zeros on [Ty, ∞) and otherwise it is called to be nonoscillatory. An equation itself is said to be
oscillatory if all its solutions are oscillatory.
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Throughout the paper we consider (E) in canonical form, that is,

R(t) =
∫ t

t0

1
r1/α(s)

ds→ ∞ as t→ ∞.

The problem of establishing oscillatory criteria for various types of differential equations has
been a very active research area over the past decades (see [1–11]).

The half-linear ordinary differential equation(
(y′(t))α

)′
= p(t)yα(t)

to which (E) reduces when τ(t) ≡ t and r(t) ≡ 1 is nonoscillatory in the sense that all of
its solutions are nonoscillatory; see Elbert [6]. However, the presence of deviating argument
τ(t) 6≡ t may generate oscillation of some or all of its solutions.

It is known that (E) may possess only two types of nonoscillatory solutions. So, if y(t) is a
nonoscillatory solution of (E) it is easy to see that y′(t) is eventually of constant sign, so that
either

y(t)y′(t) < 0 (1.1)

or
y(t)y′(t) > 0, (1.2)

eventually. Moreover, if y(t) is an eventually positive solution satisfying inequality (1.2), then
r(t)(y′(t))α > k > 0, and an integration of y′(t) > k1/α

r1/α(t) yields

y(t) ≥ k1/α
∫ t

t1

1
r1/α(s)

ds→ ∞ as t→ ∞.

Consequently, if (E) is in canonical form, then y(t) is bounded or unbounded according to
whether (1.1) or (1.2) holds. Effort of mathematicians was aimed to show that (E) admits no
bounded or unbounded nonoscillatory solutions in the case where τ(t) is retarded (τ(t) ≤ t)
or advanced argument (τ(t) ≥ t), respectively. To illustrate this we recall classical result of
Kusano and Lalli [10].

Theorem A. Suppose that

(i) τ(t) < t and

lim sup
t→∞

∫ t

τ(t)

(
1

r(u)

∫ t

s
p(s)ds

)1/α

du > 1.

Then (E) has no bounded nonoscillatory solutions.

(ii) If τ(t) > t and

lim sup
t→∞

∫ τ(t)

t

(
1

r(u)

∫ s

t
p(s)ds

)1/α

du > 1.

Then (E) has no unbounded nonoscillatory solutions.

In this paper we are interested in the situation when τ(t) is of mixed type which means
that its retarded part

Rτ = {t ∈ (t0, ∞) : τ(t) < t}

and its advanced part
Aτ = {t ∈ (t0, ∞) : τ(t) > t}
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are both unbounded subset of (t0, ∞). The presence of mixed argument may cause that (E)
has neither bounded nor unbounded nonoscillatory solutions which means oscillation of (E).
This fact has been observed by Kusano [9], who showed that the second order differential
equation

y′′(t) = p0y(t + sin t) (Ex)

is oscillatory provided that

p0 ≥
1

sin 1− 0.5
≈ 2.9285. (1.3)

In this paper we present new technique for investigation of (E) with mixed argument and
the progress achieved will be demonstrated via equation (Ex) and its oscillatory criterion (1.3).

2 Main results

We are about to establish new criteria for (E) to do not possess neither bounded nor un-
bounded solutions. We start with some useful lemma concerning monotonic properties of
nonoscillatory solutions for studied equations.

Lemma 2.1. Let that there exist a sequence {tk} such that tk ∈ Rτ, tk → ∞ as k → ∞. Assume
that y(t) is a positive bounded solution of (E). If there exists some positive constant β such that for all
k ∈ {1, 2, . . . } [∫ t

τ(t)
p(s)ds

]1/α

≥ β on [τ(tk), tk], (2.1)

then y(τ(t))eβR(τ(t)) is decreasing on all [τ(tk), tk].

Proof. Assume that y(t) is a positive decreasing solution of (E) and t ∈ [τ(tk), tk]. An integra-
tion of (E) from τ(t) to t yields

r(t)
(
y′(t)

)α − r(τ(t))
(
y′(τ(t))

)α ≥ yα(τ(t))
∫ t

τ(t)
p(s)ds ≥ βαyα(τ(t)).

That is
−r1/α(τ(t))y′(τ(t)) ≥ β y(τ(t)).

Therefore [
y(τ(t))eβR(τ(t))

]′
=

eβR(τ(t))τ′(t)
r1/α(τ(t))

[
βy(τ(t)) + r1/α(τ(t))y′(τ(t))

]
≤ 0

and we conclude that function y(τ(t))eβR(τ(t)) is decreasing. The proof is complete.

Now we apply the above monotonicity to establish criterion for absence of decreasing
solutions.

Theorem 2.2. Let that there exist a sequence {tk} such that tk ∈ Rτ, tk → ∞ as k → ∞ and (2.1)
hold. If

lim sup
k→∞

eβR(τ(tk))
∫ tk

τ(tk)

1
r1/α(u)

[∫ tk

u
p(s) e−αβR(τ(s)) ds

]1/α

du > 1, (2.2)

then (E) has no bounded nonoscillatory solutions.
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Proof. Assume on the contrary, that (E) possesses an eventually positive decreasing solution
y(t). We assume that u ∈ [τ(tk), tk] Integrating (E) from u to tk and using monotonic property
of eβR(τ(t))y(τ(t)), we obtain

−r(u)(y′(u))α ≥
∫ tk

u
p(s)yα(τ(s))eαβR(τ(s))e−αβR(τ(s)) ds

≥ yα(τ(tk))eαβR(τ(tk))
∫ tk

u
p(s)e−αβR(τ(s)) ds.

Extracting the α root and integrating once more from τ(tk) to tk, we get

y(τ(tk)) ≥ eβR(τ(tk))y(τ(tk))
∫ tk

τ(tk)

1
r1/α(v)

[∫ tk

v
p(s)e−αβR(τ(s)) ds

]1/α

dv

which contradicts to condition (2.2) and we conclude, that (E) does not possess decreasing
solutions.

Now we turn our attention to monotonic properties for possible unbounded solutions
of (E).

Lemma 2.3. Let that there exist a sequence {sk} such that sk ∈ Aτ, sk → ∞ as k→ ∞. Assume that
y(t) is a positive unbounded solution of (E). If there exists some positive constant γ such that for all
k ∈ {1, 2, . . . } [∫ τ(t)

t
p(s)ds

]1/α

≥ γ on [sk, τ(sk)], (2.3)

then y(τ(t))e−γR(τ(t)) is increasing on all [sk, τ(sk)].

Proof. Assume that y(t) is a positive increasing solution of (E) and t ∈ [sk, τ(sk)]. An integra-
tion of (E) from t to τ(t) yields

r(τ(t))
(
y′(τ(t))

)α ≥ yα(τ(t))
∫ τ(t)

t
p(s)ds ≥ γαyα(τ(t)).

This means
r1/α(τ(t))y′(τ(t)) ≥ γ y(τ(t)).

it is easy to see that

[
y(τ(t))e−γR(τ(t))

]′
=

e−γR(τ(t))τ′(t)
r1/α(τ(t))

[
−γy(τ(t)) + r1/α(τ(t))y′(τ(t))

]
≥ 0

and we verified that function y(τ(t))e−γR(τ(t)) is increasing. The proof is complete.

Theorem 2.4. Let that there exist a sequence {sk} such that sk ∈ Aτ, sk → ∞ as k → ∞ and (2.3)
hold. If

lim sup
k→∞

e−γR(τ(sk))
∫ τ(sk)

sk

1
r1/α(u)

[∫ u

sk

p(s) eαγR(τ(s)) ds
]1/α

du > 1, (2.4)

then (E) has no unbounded nonoscillatory solutions.
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Proof. Assume on the contrary, that (E) has an eventually positive increasing solution y(t). We
consider u ∈ [sk, τ(sk)]. Integrating (E) from sk to u and employing monotonic property of
e−γR(τ(t))y(τ(t)), one gets

r(u)(y′(u))α ≥
∫ u

sk

p(s)yα(τ(s))e−αγR(τ(s))eαγR(τ(s)) ds

≥ yα(τ(sk))e−αγR(τ(sk))
∫ u

sk

p(s)eαγR(τ(s)) ds.

Simplifying and then integrating once more from sk to u we obtain

y(u) ≥ e−γR(τ(sk))y(τ(sk))
∫ u

sk

1
r1/α(v)

[∫ v

sk

p(s)eαγR(τ(s)) ds
]1/α

dv.

Putting u = τ(sk), we have

y(τ(sk)) ≥ e−γR(τ(sk))y(τ(sk))
∫ τ(sk)

sk

1
r1/α(v)

[∫ v

sk

p(s)eαγR(τ(s)) ds
]1/α

dv

which contradicts to condition (2.4) and we conclude, that (E) does not possess decreasing
solutions.

Picking up the previous results we can formulate the following oscillatory criterion.

Theorem 2.5. Assume that there exist two sequences {tk} and {sk} such that tk ∈ Rτ, sk ∈ Aτ

tk, sk → ∞ as k → ∞. Let β and γ be defined by (2.1) and (2.3), respectively. If (2.2) and (2.4) are
satisfied, then (E) is oscillatory.

3 Examples

Example 3.1. We consider the differential equation

y′′(t) = py(t + sin t), p > 0. (Ex)

We shall show that (Ex) is oscillatory provided that p ≥ p0 = 1.5955.
To verify that (Ex) has no bounded nonoscillatory solutions we set tk =

3
2 π + 2kπ. Then it

is easy to see that τ(tk) =
3
2 π − 1 + 2kπ. So condition (2.1) reduces to

−p sin(t) ≥ −p0 sin(t) ≥ β on [τ(tk), tk], k = 1, 2, . . .

Since −p0 sin(t) is increasing function on [τ(tk), tk] , we can choose

β = −p0 sin(τ(tk)) = p0 cos 1,

On the other hand, condition (2.2) for (Ex) takes the form

lim sup
k→∞

eβτ(tk)
∫ tk

τ(tk)

∫ tk

u
p0 e−βτ(s) ds du > 1. (3.1)

Changing order of integration in (3.1) we get simpler form

lim sup
k→∞

p0eβτ(tk)
∫ tk

τ(tk)
e−βτ(s)(s− τ(tk))ds > 1. (3.2)
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Setting the corresponding values into (3.2) one gets

p0eβτ(tk)
∫ tk

τ(tk)
e−βτ(s)(s− τ(tk))ds

= p0eβ( 3
2 π−1+2kπ)

∫ tk

τ(tk)
e−β(s+sin s)

(
s−

(
3
2

π − 1 + 2kπ

))
ds.

Substitution s−
( 3

2 π − 1 + 2kπ
)
= t yields

p0eβτ(tk)
∫ tk

τ(tk)
e−βτ(s)(s− τ(tk))ds = p0

∫ 1

0
te−β(t−cos(1−t)) dt

= 0.6268p0 = 1.000004 > 1,

where for evaluation of the above integral we employed Matlab. We have verified that (2.2)
holds true and by Theorem 2.2 (Ex) has no bounded solutions.

On the other hand, to ensure that (Ex) has no unbounded nonoscillatory solutions we
chose sk =

π
2 + 2kπ. Then τ(sk) =

π
2 + 1 + 2kπ. Now,condition (2.4) takes the form

p sin(t) ≥ p0 sin(t) ≥ γ on [sk, τ(sk)], k = 1, 2, . . .

Using the fact that p0 sin(t) is decreasing function on [sk, τ(sk)], we set

γ = p0 sin(τ(sk)) = p0 cos 1 = β,

Condition (2.4) reduces to

lim sup
k→∞

e−γτ(tk)
∫ τ(sk)

sk

∫ u

sk

p0 eγτ(s) ds du > 1

which is equivalent to

lim sup
k→∞

p0e−γτ(sk)
∫ τ(sk)

sk

eγτ(s)(τ(sk)− s)ds > 1,

which for parameters of (Ex) means

p0e−γτ(sk)
∫ τ(sk)

sk

eγτ(s)(τ(sk)− s)ds

= p0e−γ( π
2 +1+2kπ)

∫ τ(sk)

sk

eγ(s+sin s)
(π

2
+ 1 + 2kπ − s

)
ds.

Substitution π
2 + 1 + 2kπ − s = t provides

p0e−γτ(sk)
∫ τ(sk)

sk

eγτ(s)(τ(sk)− s)ds = p0

∫ 1

0
te−β(t−cos(1−t)) dt

= 0.6268p0 = 1.000004 > 1,

Consequently, condition (2.4) is satisfied and by Theorem 2.4 Eq. (Ex) has no unbounded
nonoscillatory solutions. By comparing with Kusano’s result mentioned in the motivation
part, our oscillatory constant is significantly better.
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4 Summary

In this paper we improved Kusano’s technique for investigation of differential equations with
mixed arguments. The progress achieved has been presented via Kusano’s differential equa-
tion.

As a matter of fact the results presented in this paper can be rewritten also for differential
equation of the form (

r(t)|y′(t)|αsgn y′(t)
)′
= p(t)|y(τ(t))|αsgn y(τ(t)).

The details are left to the reader.
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