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1 Introduction

It has been shown that coupled nonlinear systems with time delay can exhibit
very complex dynamics, such as the appearance of chaotic attractors and
chaotic synchronization[1, 2]. Consequently, studies of such systems become
very important in order to understand their cooperative dynamics. From
recent works [3, 4, 5, 6, 7], the Krasovskii-Lyapunov theory [8] is used to
discuss the synchronization in the coupled time-delayed system

ẋ(t) = −ax(t) + bf(x(t− τ)),

ẏ(t) = −ay(t) + bf(y(t− τ)) + k(t)[x(t) − y(t)],
(1.1)
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where a and b are positive constants, τ > 0 is the time delay, k(t) is the
coupling function between the drive and the response system, f(x) is some
nonlinear continuous function.

In [7], Senthilkumar et.al. introduced the difference system with the state
variable ∆ = x(t) − y(t) for small values of ∆

∆̇ = −[a + k(t)]∆ + bf ′(y(t− τ))∆τ , ∆τ = ∆(t− τ), (1.2)

whose coefficients are all time dependent. By use of Krasovskii-Lyapunov
theory, they gave the condition

a+ k(t) > |bf ′(y)|, for t ≥ 0, y ∈ R

under which the zero solution of Eq.(1.2) is stable, which means that the
complete synchronization in the coupled time-delayed systems occurs.

The purpose of the present paper is to investigate the coupled system also
in view of bifurcation. We choose the coupling function k(t) = k > 0, which
is the coupling strength. Then Eq.(1.1) becomes

ẋ(t) = −ax(t) + bf(x(t− τ)),

ẏ(t) = −ay(t) + bf(y(t− τ)) + k[x(t) − y(t)],
(1.3)

and we make the general assumption that

f(0) = 0, f ′(0) = ε 6= 0.

By use of the results of Wei [12] we get the stability of the zero solution and
the existence of Hopf bifurcation when the delay varies for the first equation
of (1.3). Then by using the center manifold theory and normal form method
introduced by Faria and Magalhães[10, 11], we derive an explicit algorithm
for determining the direction of the Hopf bifurcation and the stability of
the bifurcating periodic solutions. Futhermore we discuss the stability and
the existence of periodic solutions of the coupled system (1.3) by using a
continuation theorem of coincidence degree theory.

The rest of the present paper is organized as follows: in Section 2, we
analyze the stability of the zero solution of the first equation of (1.1) including
the special and complex cases under which the corresponding characteristic
equation has a simple zero root, and discuss the existence of local Hopf
bifurcation. In Section 3, we determine the properties of the bifurcating
periodic solution. In Section 4, we discuss the stability of the zero solution of
the origin coupled system (1.3). Finally, in Section 5 the existence of periodic
solutions for system (1.3) are established by using a continuation theorem of
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coincidence degree theory, and some numerical simulations are carried out to
illustrate the analytic results.

We would like to mention that there are several articles focus on Hopf
bifurcation and complexity of dynamics in delayed models, by employing the
center manifold theorem and normal forms method, see [21, 22, 23] and the
references therein.

2 Stability analysis of the uncoupled system

Notice that the first equation is uncoupled with the other one, therefore we
begin with the investigation of the scalar equation

ẋ(t) = −ax(t) + bf(x(t− τ)). (2.1)

Clearly the origin is the fixed point of the equation and the linearization of
Eq.(2.1) around the origin is given by

ẋ(t) = −ax(t) + bεx(t− τ), (2.2)

and the characteristic equation associated with Eq.(2.2) is

∆(λ, τ) := λ+ a− bεe−λτ = 0. (2.3)

Since Eq.(2.2) and Eq.(2.3) have the same form as that of equations (4) and
(5) in [12] except for some constant coefficients, we give the following results
without proof.

Theorem 2.1. For system (2.1)
(i) If |ε| < a

b
, then all the roots of (2.3) have negative real parts. Furthermore,

the zero solution of (2.1) is asymptotically stable for all τ ≥ 0;
(ii) If ε > a

b
, then Eq. (2.3) has at least one positive root, and hence the zero

solution of (2.1) is unstable for all τ ≥ 0;
(iii) If ε < −a

b
, then there exists τ0 < τ1 < · · · < τj < · · · , such that all the

roots of (2.3) have negative real parts when τ ∈ [0, τ0), and Eq.(2.3) has at
least a pair of roots with positive real parts when τ > τ0. Furthermore, the
zero solution of (2.1) is asymptotically stable when τ ∈ [0, τ0), and unstable
when τ > τ0;
(iv) If |ε| > a

b
, then (2.1) undergoes a Hopf bifurcation at the origin when

τ = τj , j = 0, 1, 2, · · · , where

τj =

{

1
ω0

(arccos a
bε

+ 2jπ), for ε < 0,
1
ω0

(2π − arcsin a
bε

+ 2jπ), for ε > 0, j = 0, 1, 2, · · · ,
and

ω0 =
√
b2ε2 − a2.
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The theorem above shows that ε = ±a
b

is a critical value of the stability
of the zero solution of Eq.(2.1). A mathematical question is whether the zero
solution of Eq.(2.1) is stable at this critical situation.

The following theorem is to describe the stability of the zero solution of
Eq.(2.1) when ε = ±a

b
.

Theorem 2.2. (i) If ε = −a
b
, then the zero solution of system (2.1) is

asymptotically stable;
(ii) If ε = a

b
, then system (2.1) undergoes a fixed point bifurcation; and if

f ′′(0) 6= 0, the zero solution of system (2.1) is unstable; if f ′′(0) = 0, the
zero solution of system (2.1) is asymptotically stable when f ′′′(0) < 0, and
unstable when f ′′′(0) > 0 .

Proof. (i) When ε = −a
b
, the characteristic equation (2.3) becomes

λ+ a+ ae−λτ = 0 (2.4)

Obviously, λ = 0 is not a root of Eq.(2.4), and λ = −2a < 0 When τ = 0.
Suppose λ = iω is a root of Eq.(2.4), then we have

iω + a+ a cosωτ − ia sinωτ = 0,

separating the real and imaginary parts yields

a+ a cosωτ = 0, ω − a sinωτ = 0,

which implies that a2 + ω2 = a2. Furthermore, we get λ = 0, which is a
contradiction since we have known that λ = 0 is not a root of Eq.(2.4). This
shows that all roots of Eq.(2.4) have negative real part.

(ii) Clearly, λ = 0 is a simple root of the characteristic equation (2.3)
with ε = a

b
, since

d∆(0, τ)

dλ
= 1 + aτ > 0.

From theorem 2.1 we know that all roots of characteristic equation (2.3) have
negative real parts except λ = 0 when ε = a

b
. In order to study the stability of

the zero solution of system (2.1), similar to the method in [13, 14], we employ
the center manifold theory and normal form method for FDE introduced by
Faria et al. [10, 11].

Let Λ = {0} and B = 0, clearly the non-resonance conditions relative to
Λ are satisfied. Therefore there exists a 1-dimensional ODE which governs
the dynamics Eq.(2.1) near the origin.
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Firstly, we re-scale the time delay by t 7→ (t/τ) to normalize the delay so
that Eq.(2.1) can be written in the form:

ẋ(t) = −aτx(t) + bτf(x(t − 1)). (2.5)

Clearly, the phase space for Eq.(2.5) is C := C([−1, 0],R). For ϕ ∈ C,
define

L(ϕ) = −aτϕ(0) + aτϕ(−1).

and

F (ϕ) = bτ

[

f ′′(0)

2!
ϕ2(−1) +

f ′′′(0)

3!
ϕ3(−1)

]

+O(ϕ4(0), ϕ4(−1)).

Then Eq. (2.5) can be rewritten in the form:

d

dt
x(t) = L(xt) + F (xt).

Choosing

η(θ) =

{

0, θ = −1 or 0

aτ, θ ∈ (−1, 0),

we obtain

Lϕ =

∫ 0

−1

dη(θ)ϕ(θ).

Using the formal adjoint theory for FDEs[8], we decompose C by Λ as C =
P ⊕Q, where P = spanΦ(θ) with Φ(θ) = 1 being the center space for

d

dt
x(t) = L(xt).

Choosing a basis Ψ for the adjoint space P ∗ such that < Ψ,Φ >= 1, where
< ·, · > is the bilinear form on C∗ × C defined by

< ψ, ϕ >= ψ(0)ϕ(0) −
∫ 0

−1

∫ θ

ξ=0

ψ(ξ − θ)dη(θ)ϕ(θ)dξ.

Thus Ψ(s) = (1 + aτ)−1. Taking the enlarged phase space

BC = {ϕ : [−1, 0) 7→ C, ϕ is continuous on [−1, 0) and lim
θ→0

ϕ(θ) exists},

we obtain the abstract ODE with the form:

d

dt
x(t) = Axt +X0F (xt). (2.6)
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Here for any ϕ ∈ C,

Aϕ = ϕ̇(θ) +X0(L0ϕ− ϕ̇(0)),

and X0 is given by

X0 =

{

I, θ = 0

0, θ ∈ [−1, 0).

The definition of the continuous projection

π : BC 7→ P, π(ϕ+X0α) = Φ[< Ψ, ϕ > +Ψ(0)α]

allows us to decompose the enlarged space by Λ as BC = C ⊕ Kerπ. Since
π commutes with A in C1, and using the decomposition

xt = Φx(t) + y, x(t) ∈ C, y = y(θ) ∈ Q1,

the abstract ODE (2.6) is therefore decomposed as the system

ẋ = Bx+ Ψ(0)F (Φx+ y),

ẏ = AQ1 + (I − π)X0F (Φx+ y).
(2.7)

Since

Ψ(0)F (Φx+ y) =
bτ

1 + aτ

[

f ′′(0)

2!
(x+ y(−1))2 +

f ′′′(0)

3!
(x+ y(−1))3

]

+O(4),

therefore the local invariant manifold of system (2.1) tangent to P at the
origin satisfying y(θ) = 0 and the flow on this manifold is given by the
following 1-dimensional ODE:

ẋ(t) =
bτ

1 + aτ

[

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3

]

+O(4). (2.8)

Since a, b and τ are all positive, the zero solution of ODE (2.8) is unstable
when f ′′(0) 6= 0; and if f ′′(0) = 0, the zero solution of ODE (2.8) is asymp-
totically stable when f ′′′(0) < 0, and unstable when f ′′′(0) > 0, and so is the
zero solution of system (2.1). The proof is completed.

3 Hopf bifurcation analysis

In section 2, we obtain the conditions under which Eq. (2.1) undergoes a
Hopf bifurcation at some critical values of τ . In this section we shall study
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the direction and stability of the bifurcating periodic solutions. The method
we use here is based on the normal form method and center manifold theory
introduced by Faria et al. [10, 11].

For convenience, let τ = τj +µ, µ ∈ R, then µ = 0 is the bifurcation value
of Eq. (2.1). Defining

Lµ(ϕ) = −a(τj + µ)ϕ(0) + bε(τj + µ)ϕ(−1),

Fµ(ϕ) = b(τj + µ)

[

f ′′(0)

2!
ϕ2(−1) +

f ′′′(0)

3!
ϕ3(−1)

]

+O(ϕ4(0), ϕ4(−1)).

Then we can rewrite Eq.(2.1) in the following form:

ẋ(t) = Lµ(xt) + Fµ(xt). (3.1)

Using the normal form method introduced by Farai directly, we get

L0(ϕ(θ)) = −aτjϕ(0) + bετjϕ(−1),

L0(θe
iω0θ) = −bετje−iω0 = −(aτj + iτjω0),

L0(1) = −aτj + bετj ,

L0(e
2iω0θ) = −aτj + bετje

−2iω0 = −aτj +
(aτj + iτjω0)

2

bετj
,

(3.2)

and

F (x1e
iω0θ + x2e

−iω0θ + x31 + x4e
2iω0θ, 0)

=
bτj
2!
f ′′(0)(x1e

−iω0 + x2e
iω0 + x3 + x4e

−2iω0)2

+
bτj
3!
f ′′′(0)(x1e

−iω0 + x2e
iω0 + x3 + x4e

−2iω0)3 +O(4)

= B(2,0,0,0)x
2
1 +B(1,1,0,0)x1x2 +B(1,0,1,0)x1x3 +B(0,1,0,1)x2x4

+B(2,1,0,0)x
2
1x2 + · · · .

Comparing the coefficients, we have

B(2,0,0,0) =
bτj
2
f ′′(0)e−2iω0 =

1

2bτjε2
f ′′(0)(aτj + iτjω0)

2,

B(1,1,0,0) =bτjf
′′(0),

B(1,0,1,0) =bτjf
′′(0)e−iω0 =

1

ε
f ′′(0)(aτj + iτjω0),

B(0,1,0,1) =bτjf
′′(0)e−iω0 =

1

ε
f ′′(0)(aτj + iτjω0),

B(2,1,0,0) =
bτj
2
f ′′′(0)e−iω0 =

1

2ε
f ′′′(0)(aτj + iτjω0).

(3.3)

EJQTDE, 2011 No. 85, p. 7



By Faria’s normal form theory, the flow of Eq.(3.1) on the center manifold
of the origin is given in polar coordinates (ρ, ξ) by equation

{

ρ̇ = µα′(0)ρ+Kρ3 +O(µ2ρ+ |(ρ, µ)|4),
ξ̇ = −ω +O(|(ρ, µ)|),

where

K = Re

[

1

1 − L0(θeiωθ)

(

B(2,1,0,0) −
B(1,1,0,0)B(1,0,1,0)

L0(1)
+
B(2,0,0,0)B(0,1,0,1)

2iω − L0(e2iωθ)

)]

.

(3.4)
Substituting (3.2) and (3.3) into (3.4), and since we have that α′(0) > 0,

we obtain the following theorem.

Theorem 3.1. If K < 0 (respectively, K > 0), there exists a unique nontriv-
ial periodic orbit in the neighborhood of ρ = 0 for µ > 0 (respectively, µ < 0)
and no nontrivial periodic orbits for µ < 0 (respectively, µ > 0); and the bi-
furcating periodic solution on the center manifold is orbitally asymptotically
stable (respectively, unstable). Particularly, the stability of the bifurcating
periodic solutions of (2.1) and that on the center manifold are coincident at
the first critical value τ0.

Corollary 3.2. If f ′′(0) = 0, then the nontrivial periodic orbit exists in
the neighborhood of ρ = 0 for µ > 0 ( µ < 0) and the bifurcating periodic
solutions on the center manifold are orbitally asymptotically stable ( unstable)
when εf ′′′(0) < 0(> 0).

In fact, from (3.3) it follows that

B(1,1,0,0) = B(1,0,1,0) = B(2,0,0,0) = B(0,1,0,1) = 0,

and

B(2,1,0,0) =
1

2ε
f ′′′(0)(aτj + iτjω0).

Substituting the coefficients above into (3.4), it follows that

K =
f ′′′(0)

2ε

aτj + a2τ 2
j + τ 2

j ω
2
0

(1 + aτj)2 + τ 2
j ω

2
0

.

And hence from (3.4) and theorem 3.1, the conclusion is reached.
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4 Stability analysis of the coupled system

So far, we have investigated the stability and Hopf bifurcation for the first
equation of system (1.3). In the following we will focus on the stability of the
zero solution of the coupled system. The theory we use here is from[15, 16],
and its notions are discussed below.

Lemma 4.1. ([16]) Let e be a locally asymptotically stable equilibrium of Θ
and Ws(e) = {x ∈ X : Θ(t, x) → e, t → ∞} its basin of attraction(or stable
set). Then every pre-compact Φ orbit whose ω−Φ−limit set intersects Ws(e)
converges to e.

To make use of the lemma above, similar to [17], we introduce some
notations first.

Define C := C([−τ, 0],R), and

d(x, y) = max
θ∈[−τ,0]

|x(θ) − y(θ)|,

for any x, y ∈ C. Suppose Ω is an open subset of C, F ∈ C(Ω,R), and F is
Lipschitz in each compact set in Ω. Consider the following equation

ẋ(t) = F (xt) +G(t), t ≥ σ,

xσ = φ,
(4.1)

with (σ, φ) ∈ R × C.
E.q.(4.1) is a 1-dimensional non-autonomous retarded differential equa-

tion and has a unique solution through any given initial function. Let
x(s, φ)(t) be the unique solution through (σ, φ) and well-defined for all t ∈
[σ− τ, σ+α]. Here we assume further that the maximal existence interval of
the solutions is [σ − τ,∞). From [8], we know that x(s, φ)(t) is continuous
in σ, φ, t for σ ∈ R, φ ∈ C and t ∈ [σ − τ,∞).

Consider a mapping Φ : ∆ × C → C, which is defined as Φ(t, s, φ) =
xt(s, φ) ∈ C, with xt(s, φ)(θ) = x(x, φ)(t + θ). It can be verified that Φ is
continuous non-autonomous semiflow on ∆×C by the existence and unique-
ness of solutions.

Further we consider the corresponding autonomous equation

ẋ(t) = F (xt),

x0 = ψ,
(4.2)

for ψ ∈ C. Under the same assumptions, let y(ψ)(t) be the unique solution
through (0, ψ), and define Θ : [0,∞) × C → C as Θ(t, ψ) = y(ψ), with
yt(ψ)(θ) = y(ψ)(t + θ). Similarly we can verify that Θ is a continuous
autonomous semiflow. Before stating the main theorem, we give the following
property of Φ and Ψ defined above.
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Lemma 4.2. [17] If G(t) → 0, t → ∞, then Φ is the asymptotically au-
tonomous -with limit-semiflow Θ.

Theorem 4.3. If −a
b
≤ ε < a

b
, then the zero solution of the coupled system

(1.3) is asymptotically stable.

Proof. Consider the second equation of (1.3) as follows

ẏ(t) = −(a + k)y(t) + bf(y(t− τ)) + kx(t)

= F (yt) +G(t)
(4.3)

and the corresponding autonomous equation

ẏ(t) = −(a + k)y(t) + bf(y(t− τ))

= F (yt)
(4.4)

From theorem 2.1,we know that the zero solution of (2.1) is asymptotically
stable, which implies that G(t) → 0 as t→ ∞. Therefore Φ defined by (4.3)
is asymptotically autonomous with limit-semiflow Θ defined by (4.4), where
lemma 4.2 is used. Next we begin to investigate the asymptotic behavior of
the autonomous system (4.4). Similar to theorem 2.1, it can be proved that
the zero solution of (4.4) is asymptotically stable when −a+k

b
≤ ε < a+k

b
.

Furthermore, let e = 0 be the stable equilibrium of Θ on C and then the in-
tersection of C and e’s basin of attraction is nonempty. On the other hand, it
is known that every Φ-orbit is pre-compact by Ascoli-Arzela theorem. There-
fore, lemma 4.1 implies that the zero solution of Eq.(4.3) is asymptotically
stable. Notice that [−a

b
, a

b
) ⊂ [−a+k

b
, a+k

b
), this completes the proof.

5 Existence of periodic solutions in the cou-

pled system

Results in section 3 show that under certain conditions, there exist non-
constant periodic solutions to (2.1) due to Hopf bifurcation when τ lies in
some neighborhood of each bifurcation value. In the following we assume that
these conditions ensuring the appearance of Hopf bifurcation are met. For
convenience, we denote by D the region where τ lies and bifurcating periodic
solutions for (2.1) exist. Our purpose is to obtain sufficient conditions for
the existence of the periodic solutions to the original coupled system

ẋ(t) = −ax(t) + bf(x(t− τ)),

ẏ(t) = −ay(t) + bf(y(t− τ)) + k[x(t) − y(t)],
(5.1)
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by employing the coincide degree theory from Gaines and Mawhin[18].
To make use of the continuation theorem of coincidence degree theory,

similar to [17, 19, 20], we need to introduce following notations.
Let X, Y be real Banach spaces, L : DomL ⊂ X → Y be a Fredholm

mapping of index zero, and let P : X → X, Q : Y → Y be continuous
projectors such that ImP = KerL, KerQ = ImL andX = KerL⊕KerP, Y =
ImL⊕ ImQ. Denote by LP the restriction of L to DomL∩KerP . Denote by
KP : ImL→ KerP∩DomL the inverse of LP , and denote by J : ImQ→ KerL
an isomorphism of ImQ onto KerL.

For convenience, we also cite below the continuation theorem.

Lemma 5.1. [18] Let Ω ⊂ X be an open bounded set and let N : X → Y
be a continuous operator which is L−compact on Ω(i.e.,QN : Ω → Y and
KP (I −Q)N : Ω → Y are compact). Assume

(i) for each λ ∈ (0, 1), x ∈ ∂Ω ∩ DomL, Lx 6= λNx;
(ii) for each x ∈ ∂Ω∩KerL, QNx 6= 0, and deg{JQN,Ω∩KerL, 0} 6= 0.
Then Lx = Nx has at least one solution on Ω ∩ Doml.

To use the continuation theorem of coincidence degree theory, we take
X = Y = {y(t) ∈ C(R,R) : y(t + ω) = y(t)}. With the maximal norm
| · |0, X and Y are Banach spaces. Set

L : DomL ∩X, Ly = ẏ,

where DomL = {y(t) ∈ C1(R,R)}. Define two projectors P and Q as

Py = Qy =
1

ω

∫ ω

0

y(t)dt, y ∈ X.

Clearly, KerL = R, ImL = {y ∈ X :
∫ ω

0
y(t)dt = 0} is closed in X and

dimKerL = ImL = 1. Hence, L is a Fredholm mapping of index 0. Further-
more, through an easy computation, we find that the inverse KP of LP has
the form

KP : ImL→ DomL ∩ KerP,

KP (y) =

∫ t

0

y(s)ds− 1

ω

∫ ω

0

∫ u

0

y(s)dsdu, t ∈ [0, ω].

We are now in a position to state and prove our main result.

Theorem 5.2. If |ε| > a
b
, then system (1.3) has at least one periodic solution

for τ ∈ D.
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Proof. Consider the second equation of (5.1)

ẏ(t) = −(a + k)y(t) + bf(y(t− τ)) + kx(t). (5.2)

Then x(t) is a ω-periodic solution of (2.1) when τ ∈ D. To complete the
proof, it suffices to show that (5.2) has an ω-periodic solution. Define N :
X → Y as

Ny = −(a + k)y(t) + bf(y(t− τ)) + kx(t).

Notice that QN : X → X takes the form

QN(y) =
1

ω

∫ ω

0

[−(a + k)y(t) + bf(y(t− τ)) + kx(t)]dt.

By some computation, we can show that KP (I − Q)N : X → Y takes the
form

KP (I −Q)N(y) =

∫ t

0

[−(a + k)y(s) + bf(y(s− τ)) + kx(s)]ds

− 1

ω

∫ ω

0

∫ u

0

[−(a + k)y(s) + bf(y(s− τ)) + kx(s)]dsdu

+(
1

2
− t

ω
)

∫ ω

0

[−(a + k)y(t) + bf(y(t− τ)) + kx(t)]dt.

The integration form of the terms of both QN and KP (I − Q)N imply
that they are continuously differentiable with respect to t and that they
map bounded continuous functions to bounded continuous functions. By the
Ascoli-Arzela theorem, we see that QN(Ω), KP (I − Q)N(Ω) are relatively
compact for any open bounded set Ω ⊂ X. Therefore, N is L−compact on
Ω for any open bounded set Ω ⊂ X. Corresponding to the operator equation
Ly = λNy, λ ∈ (0, 1), we have

ẏ(t) = λ[−(a + k)y(t) + bf(y(t− τ)) + kx(t)]. (5.3)

Suppose that y(t) ∈ X is a solution of (5.3) for some λ ∈ (0, 1). On one
hand, we choose tM ∈ [0, ω] and tm ∈ [0, ω] such that

y(tM) = max
t∈[0,ω]

y(t), y(tm) = min
t∈[0,ω]

y(t).

Then it is clear that ẏ(tM) = ẏ(tm) = 0. From this and (5.3), we obtain

y(t) ≥ y(tm) =
1

a+ k
[bf(y(tm − τ)) + kx(tm)],

y(t) ≤ y(tM) =
1

a + k
[bf(y(tM − τ)) + kx(tM)],
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which implies that

−1

a + k
(bM + k|x|0) ≤ y(t) ≤ 1

a + k
(bM + k|x|0),

where M > 0 satisfies |f(u)| ≤ M, ∀u ∈ X since f is continuous. On the
other hand, suppose y ∈ KerL satisfies QNy = 0, and notice that KerL = R,
which means that y(t) = y is a constant, we obtain

QNy =
1

ω

∫ ω

0

[−(a + k)y + bf(y) + kx(t)]dt

= −(a + k)y + bf(y) +
1

ω

∫ ω

0

kx(t)dt = 0.

This implies that

|y| =

∣

∣

∣

∣

1

a+ k

[

bf(y) +
1

ω

∫ ω

0

kx(t)dt

]
∣

∣

∣

∣

≤ 1

a+ k
(bM + k|x|0).

Taking A = 1
a+k

(bM + k|x|0 + 1) and Ω = {y(t) ∈ X : |y|0 < A}, then it
is clear that Ω satisfies condition (i) and the first part of condition (ii) in
Lemma 5.1.

Furthermore, take J = I : ImQ→ KerL, x 7→ x and by a straightforward
computation, we see that

deg[JQN,KerL ∩ Ω, 0] 6= 0.

The conclusion now follows from Lemma (5.1). This completes the proof.

6 An example

Taking f(x) = − sin x as an example, then Eq.(2.1) has the form:

ẋ(t) = −ax(t) − b sin(x(t− τ)). (6.1)

Obviously x = 0 is the fixed point of (6.1), and

f(0) = 0, ε := f ′(0) = −1, f ′′(0) = 0, f ′′′(0) = 1.

Basing on the discussion above, we get the following conclusions directly.

Theorem 6.1. For Eq. (6.1)
(i) If 0 < b < a, then the zero solution of (6.1) is asymptotically stable for
all τ ≥ 0;
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(ii) If b > a, then there exists τ0 < τ1 < · · · < τj < · · · such that the
zero solution of (6.1) is stable when τ ∈ [0, τ0), and unstable for τ > τ0,
and Eq.(6.1) undergoes a Hopf bifurcation at the origin when τ = τj , j =
0, 1, 2, · · · , where τj is defined as

τj =
1

ω0

(

arccos(−a
b
) + 2jπ

)

, j = 0, 1, 2 · · · .

and
ω0 =

√
b2 − a2.

And the bifurcating periodic solution exists for τ > τj, and the bifurcating
periodic solutions on the center manifold are stable. Particularly, the bifur-
cating periodic solutions from the first bifurcation vale τ0 are asymptotically
stable.

If we take a = 1, b = 3, k = 1, then (5.1) becomes

ẋ(t) = −x(t) − 3 sin(x(t− τ)),

ẏ(t) = −y(t) − 3 sin(y(t− τ)) + [x(t) − y(t)].
(6.2)

Clearly, f(0) = f ′′(0) = 0, ε := f ′(0) = −1, f ′′′(0) = 1, ω0 =
√
b2 − a2 =

2.828, τ0 = 0.6756. Then by the discussion above, the zero solution of (6.2)
is asymptotically stable when τ ∈ [0, 0.6756), and has periodic solutions in
the right neighborhood of τj .
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Figure 1: Numerical simulations for system (6.2) with τ = 0.5 ∈ [0, 0.6756)
shows that the origin is asymptotically stable.
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Figure 2: Wave plot for (6.2) with τ = 0.7 > τ0 shows that the bifurcating
periodic solutions are stable.
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