

Weak center for a class of Λ - Ω differential systems

Zhengxin Zhou[™]

School of Mathematical Sciences, Yangzhou University, China

Received 30 July 2021, appeared 12 May 2022 Communicated by Gabriele Villari

Abstract. In this paper, we give the necessary and sufficient conditions for a class of higher degree polynomial systems to have a weak center. As corollaries, we prove the correctness of the two conjectures about the weak center problem for the Λ - Ω differential systems.

Keywords: weak center, Λ – Ω system, composition center, center conditions.

2020 Mathematics Subject Classification: 34C07, 34C05, 34C25, 37G15.

1 Introduction

Consider differential system of the form

$$\begin{cases} x' = -y + P, \\ y' = x + Q, \end{cases}$$
(1.1)

where $P = \sum_{k=2}^{m} P_k(x, y)$ and $Q = \sum_{k=2}^{m} Q_k(x, y)$, P_k and Q_k are homogeneous polynomials in *x* and *y* of degree *k*. The equilibrium point O(0,0) is a center if there exists an open neighborhood *U* of *O* where all the orbits contained in *U/O* are periodic. The center-focus problem asks about the conditions on the coefficients of *P* and *Q* under which the origin of system (1.1) is a center. The study of the centers of analytical or polynomial differential system (1.1) has a long history. The first works are due to Poincaré [13] and Dulac [8], and continued by Liapunov [9] and many others. Unfortunately, the center-focus problem has been solved only for quadratic system and some special cubic system and others [2, 6, 7, 12]. Up to now, very little is known about the center conditions for polynomial differential system with arbitrary degree m (m > 2).

A center of (1.1) is called a **weak center** if the Poincaré–Liapunov first integral can be written as $H = \frac{1}{2}(x^2 + y^2)(1 + h.o.t.)$. By literature [10, 11] we know that a center of a polynomial differential system (1.1) is a weak center if and only if it can be written as

$$\begin{cases} x' = -y(1+\Lambda) + x\Omega, \\ y' = x(1+\Lambda) + y\Omega, \end{cases}$$
(1.2)

[™]Corresponding author. Email: zxzhou@yzu.edu.cn

Z. Zhou

where $\Lambda = \Lambda(x, y)$ and $\Omega = \Omega(x, y)$ are polynomials of degree at most m - 1 such that $\Lambda(0, 0) = \Omega(0, 0) = 0$. The weak centers contain the uniform isochronous centers and the holomorphic isochronous centers [10], they also contain the class of centers studied by Alwash and Lloyd [5], but they do not coincide with all classes of isochronous centers [10].

The class of differential system (1.2) is called the Λ - Ω system. The reason of called such system in this way is due to the fact that a subclass of these systems already appears in physics [11].

In [11] the authors put forward such conjectures:

Conjecture 1.1. *The polynomial differential system of degree m*

$$\begin{cases} x' = -y(1 + \mu(a_2x - a_1y)) + x((a_1x + a_2y) + \Phi_{m-1}), \\ y' = x(1 + \mu(a_2x - a_1y)) + y((a_1x + a_2y) + \Phi_{m-1}), \end{cases}$$
(1.3)

where $(\mu + m - 2)(a_1^2 + a_2^2) \neq 0$ and $\Phi_{m-1} = \Phi_{m-1}(x, y)$ is a homogeneous polynomial of degree m - 1, has a weak center at the origin if and only if system (1.3) after a linear change of variables $(x, y) \rightarrow (X, Y)$ is invariant under the transformations $(X, Y, t) \rightarrow (-X, Y, -t)$.

Conjecture 1.2. *The polynomial differential system of degree m*

$$\begin{cases} x' = -y(1 + a_1x + a_2y) + x\Phi_{m-1}, \\ y' = x(1 + a_1x + a_2y) + y\Phi_{m-1} \end{cases}$$
(1.4)

has a weak center at the origin if and only if system (1.4) after a linear change of variables $(x, y) \rightarrow (X, Y)$ is invariant under the transformations $(X, Y, t) \rightarrow (-X, Y, -t)$.

The authors of [11] have used Poincaré–Liapunov first integral and Reeb inverse integrating factor to prove that Conjecture 1.1 and Conjecture 1.2 are correct when m = 2, 3, 4, 5, 6. They remarked that the only difficulty for proving Conjectures 1.1 and 1.2 for the Λ – Ω system of degree m with m > 6 is the huge number of computations for obtaining the conditions that characterize the centers.

In this paper we will research the weak center problem of the Λ - Ω system

$$\begin{cases} x' = -y(1 + \mu(a_2x - a_1y)) + x(\nu(a_1x + a_2y) + \Lambda_{m-1} + \Omega_{2m-1}), \\ y' = x(1 + \mu(a_2x - a_1y)) + y(\nu(a_1x + a_2y) + \Lambda_{m-1} + \Omega_{2m-1}), \end{cases}$$
(1.5)

in which m > 2 and $(\mu^2 + \nu^2)(\mu + \nu(m - 2))(a_1^2 + a_2^2) \neq 0$, $\Lambda_{m-1} = \Lambda_{m-1}(x, y)$, $\Omega_{2m-1} = \Omega_{2m-1}(x, y)$ are respectively homogeneous polynomials of degree m - 1 and 2m - 1. In the section 3 we will see that by suitable transformation this system can be transformed into

$$\begin{cases} x' = -y(1 - \mu y) + x(\nu x + \Phi_{m-1} + \Psi_{2m-1}), \\ y' = x(1 - \mu y) + y(\nu x + \Phi_{m-1} + \Psi_{2m-1}). \end{cases}$$
(1.6)

In the following we use a method different from Llibre [11] and more simply, without huge number of computation, to prove that for system (1.6), under several restrictive conditions, it has a weak center at the origin if and only if

$$\int_{0}^{2\pi} \sin^{i} \theta \, \Phi_{m-1}(\cos \theta, \sin \theta) d\theta = 0 \qquad (i = 0, 1, 2, \dots, m-1)$$
(1.7)

and

$$\int_{0}^{2\pi} \sin^{j} \theta \,\Psi_{2m-1}(\cos \theta, \sin \theta) d\theta = 0 \qquad (j = 0, 1, 2, \dots, 2m-1).$$
(1.8)

As corollaries, we also show that for arbitrary m (> 2), Conjecture 1.1 with $\mu = 1$ and Conjecture 1.2 are correct; When $\mu \neq 1$ under several restrictive conditions Conjecture 1.1 is correct, too.

2 Several lemmas

In polar coordinates, the system (1.1) becomes

$$rac{dr}{d heta} = rac{\sum_{k=2}^m A_k(heta) r^k}{1 + \sum_{k=2}^m B_k(heta) r^{k-1}},$$

where

$$A_k(\theta) = \cos\theta P_k(\cos\theta, \sin\theta) + \sin\theta Q_k(\cos\theta, \sin\theta),$$

$$B_k(\theta) = \cos\theta Q_k(\cos\theta, \sin\theta) - \sin\theta P_k(\cos\theta, \sin\theta).$$

By [3,4], the **composition condition** is satisfied if there exists a trigonometric polynomial $u(\theta)$ such that

$$A_k(\theta) = u'(\theta) \sum a_{kj} u^j(\theta), \qquad B_k(\theta) = \sum b_{kj} u^j(\theta) \qquad (k = 2, 3, \dots, m), \tag{2.1}$$

where a_{kj} , b_{kj} are real numbers.

Lemma 2.1 ([4]). *If the conditions* (2.1) *are satisfied, then the origin point of* (1.1) *is a center and this center is called* **composition center**.

Lemma 2.2 ([14]). If

$$P_n = \sum_{i+j=n} p_{ij} \cos^i \theta \sin^j \theta, \qquad p_{ij} \in R,$$
$$\hat{P}_1 = p_{10} \sin \theta - p_{01} \cos \theta, \qquad p_{10}^2 + p_{01}^2 \neq 0$$

and

$$\int_0^{2\pi} \hat{P}_1^k P_n d\theta = 0 \qquad (k = 0, 1, 2, \dots, n),$$

then

$$P_n = P_1 \sum_{i=1}^n \lambda_i \hat{P}_1^{i-1},$$

where λ_i (i = 1, 2, ..., n) are real numbers.

Lemma 2.3. Let $\Phi_{m-1}(x,y) = \sum_{i+j=m-1} \phi_{ij} x^i y^j$ ($\phi_{ij} \in \mathbb{R}$). If relation (1.7) holds, then

$$\Phi_{m-1}(\cos\theta,\sin\theta) = \cos\theta \sum_{i=1}^{m-1} \lambda_i \sin^{i-1}\theta,$$

where λ_i (i = 1, 2, ..., m - 2) are real numbers and

$$\lambda_{m-1} = \sum_{i=0}^{\left[\frac{m-2}{2}\right]} (-1)^i \phi_{2i+1 \ m-2-2i}.$$
(2.2)

Proof. In Lemma 2.2, taking $P_1 = \cos \theta$, $\hat{P}_1 = \sin \theta$ we get

$$\Phi_{m-1}(\cos\theta,\sin\theta) = \cos\theta\sum_{i=1}^{m-1}\lambda_i\sin^{i-1}\theta,$$

thus

$$\Phi_{m-1}(x,y) = \sum_{i+j=2n} \phi_{ij} x^i y^j = x \sum_{i=1}^n \lambda_{2i} y^{2i-1} (x^2 + y^2)^{n-i}, \qquad m-1 = 2n;$$

$$\Phi_{m-1}(x,y) = \sum_{i+j=2n+1} \phi_{ij} x^i y^j = x \sum_{i=0}^n \lambda_{2i+1} y^{2i} (x^2 + y^2)^{n-i}, \qquad m-1 = 2n+1$$

Equating the corresponding coefficients of the same power of x, y, we obtain

$$\lambda_{m-1} = \sum_{i=0}^{n-1} (-1)^i \phi_{2i+12(n-i)-1}, \qquad m-1 = 2n;$$

$$\lambda_{m-1} = \sum_{i=0}^n (-1)^i \phi_{2i+12(n-i)}, \qquad m-1 = 2n+1.$$

Therefore, the conclusion of the present lemma is valid.

By this lemma, it is easy to deduce the following conclusion.

Lemma 2.4. Let $\Phi_{m-1}(x, y)$ be a homogeneous polynomial of degree m - 1. Then it can be written as

$$\Phi_{m-1}(x,y) = x\check{\Phi}(x^2 + y^2, y)$$

if and only if the relation (1.7) *holds. Where* $\check{\Phi}$ *is a polynomial on* $x^2 + y^2$ *and* y*.*

3 Main results

As $a_1^2 + a_2^2 \neq 0$, taking the linear change:

$$X = a_1 x + a_2 y, \qquad Y = -a_2 x + a_1 y, \tag{3.1}$$

the system (1.5) becomes

$$\begin{cases} X' = -Y(1 - \mu Y) + X(\nu X + \Phi_{m-1} + \Psi_{2m-1}), \\ Y' = X(1 - \mu Y) + Y(\nu X + \Phi_{m-1} + \Psi_{2m-1}), \end{cases}$$

where $\Phi_{m-1} = \Lambda_{m-1}(\frac{a_1X - a_2Y}{a_1^2 + a_2^2}, \frac{a_1Y + a_2X}{a_1^2 + a_2^2}), \Psi_{2m-1} = \Omega_{2m-1}(\frac{a_1X - a_2Y}{a_1^2 + a_2^2}, \frac{a_1Y + a_2X}{a_1^2 + a_2^2})$, and they are respectively homogeneous polynomials of degree m - 1 and 2m - 1.

Obviously, if $\Phi_{m-1} = X \check{\Phi}_{m-1}(X^2 + Y^2, Y)$, $\Psi_{2m-1} = X \check{\Psi}_{2m-1}(X^2 + Y^2, Y)$, then the Λ - Ω system (1.5) after a linear change of variables $(x, y) \rightarrow (X, Y)$ is invariant under the transformations $(X, Y, t) \rightarrow (-X, Y, -t)$. By Lemma 2.4, in order to find the necessary and sufficient conditions for (1.5) to have a weak center, only need to seek the conditions under which the identities (1.7) and (1.8) are valid.

Case A. If $\nu \neq 0$, applying the transformation $X = \frac{1}{\nu}x$, $Y = \frac{1}{\nu}y$, we get

$$\begin{cases} x' = -y(1 - \hat{\mu}y) + x(x + \hat{\Phi}_{m-1} + \hat{\Psi}_{2m-1}) \\ y' = x(1 - \hat{\mu}y) + y(x + \hat{\Phi}_{m-1} + \hat{\Psi}_{2m-1}), \end{cases}$$

where $\hat{\mu} = \frac{\mu}{\nu}$, $\hat{\Phi}_{m-1} = \frac{1}{\nu^{m-1}} \Phi_{m-1}(x, y)$, $\hat{\Psi}_{2m-1} = \frac{1}{\nu^{2m-1}} \Psi_{2m-1}(x, y)$. Thus, if the identities (1.7) and (1.8) are valid, then replacing Φ_{m-1} and Ψ_{2m-1} by $\hat{\Phi}_{m-1}$ and $\hat{\Psi}_{2m-1}$ respectively, these identities also hold.

Case 1. $\nu \neq 0$, $\hat{\mu} = 1$.

Consider the Λ - Ω system

$$\begin{cases} x' = -y(1-y) + x(x + \Phi_{m-1} + \Psi_{2m-1}), \\ y' = x(1-y) + y(x + \Phi_{m-1} + \Psi_{2m-1}). \end{cases}$$
(3.2)

Theorem 3.1. Suppose that

$$\prod_{m-1 \le k \le 2m-3} L_k \neq 0; \tag{3.3}$$

$$L_{2m-2} + \frac{m(2m-1)}{2(m-1)^2} \lambda_{m-1}^2 \neq 0;$$
(3.4)

$$L_{2m-1} + \left(2d_1 + e_1 \frac{m(m+1)}{(m-1)^2}\right) \lambda_{m-1}^2 \neq 0,$$
(3.5)

where λ_{m-1} is expressed by (2.2),

$$L_{k} := e_{k} + \sum_{i=0}^{k-m+1} \frac{k+1-2i}{m-1+i} d_{i} e_{k-m+1-i} \lambda_{m-1} \qquad (k = m-1, m, \dots, 2m-1),$$

$$d_{k} = (m-1) \frac{(m+k-1)^{k-1}}{k!}, \qquad e_{k} = (2m-1) \frac{(2m+k-1)^{k-1}}{k!} \qquad (3.6)$$

$$(k = 1, 2, 3, \dots), \qquad d_{0} = 1, \ e_{0} = 1.$$

Then the origin point of (3.2) is a center if and only if (1.7) and (1.8) hold.

Moreover, this center is a composition center and weak center.

Proof. In polar coordinates, the system (3.2) can be written as

$$\frac{dr}{d\theta} = \frac{r^2 \cos \theta + \Phi_{m-1} r^m + \Psi_{2m-1} r^{2m}}{1 - r \sin \theta},$$

where $\Phi_{m-1} = \Phi_{m-1}(\cos\theta, \sin\theta), \Psi_{2m-1} = \Psi_{2m-1}(\cos\theta, \sin\theta).$

Taking $\rho = \frac{r}{e^{r \sin \theta}}$, the above equation becomes

$$\frac{d\rho}{d\theta} = \rho^m e^{(m-1)r\sin\theta} \Phi_{m-1} + \rho^{2m} e^{(2m-1)r\sin\theta} \Psi_{2m-1}.$$
(3.7)

Now we recall the Langrange–Bürman formula [1]. If real or complex w and z satisfy that $w = \frac{z}{\phi(z)}$, where $\phi(0) = 1$ and $\phi(z)$ is analytic at z = 0, then in a neighborhood of w = 0, the analytic function F(z) can be expressed as a power series:

$$F(z) = F(0) + \sum_{n=1}^{\infty} \frac{w^n}{n!} \frac{d^{n-1}(F'(x)\phi^n(x))}{dx^{n-1}} \Big|_{x=0},$$

which is analytic at w = 0.

Applying the Langrange–Bürman formula we have

$$e^{(m-1)r\sin\theta} = 1 + (m-1)\sum_{n=1}^{\infty} \frac{(m+n-1)^{n-1}}{n!} \rho^n \sin^n \theta,$$
$$e^{(2m-1)r\sin\theta} = 1 + (2m-1)\sum_{n=1}^{\infty} \frac{(2m+n-1)^{n-1}}{n!} \rho^n \sin^n \theta.$$

Thus the equation (3.7) can be written as

$$\frac{d\rho}{d\theta} = \Phi_{m-1} \sum_{n=0}^{\infty} d_n \rho^{m+n} \sin^n \theta + \Psi_{2m-1} \sum_{n=0}^{\infty} e_n \rho^{2m+n} \sin^n \theta, \qquad (3.8)$$

where d_n , e_n (n = 0, 1, 2, ...) are expressed by (3.6).

Therefore, the system (3.2) has a center at (0,0) if and only if all the solutions $\rho(\theta)$ of equation (3.8) near $\rho = 0$ are periodic [2].

Let $\rho(\theta, c)$ be the solution of (3.8) such that $\rho(0, c) = c \ (0 < c \ll 1)$. We write

$$\rho(\theta,c)=c\sum_{n=0}^{\infty}a_n(\theta)c^n,$$

where $a_0(0) = 1$ and $a_n(0) = 0$ for $n \ge 1$. The origin point of (3.2) is a center if and only if $\rho(\theta + 2\pi, c) = \rho(\theta, c)$, i.e., $a_0(2\pi) = 1$, $a_n(2\pi) = 0$ (n = 1, 2, 3, ...) [5].

Substituting $\rho(\theta, c)$ into (3.8) we obtain

$$c\sum_{i=0}^{\infty} a_{i}'(\theta)c^{n} = \Phi_{m-1}\sum_{n=0}^{\infty} d_{n}\sin^{n}\theta \left(c\sum_{i=0}^{\infty} a_{i}(\theta)c^{i}\right)^{m+n} + \Psi_{2m-1}\sum_{n=0}^{\infty} e_{n}\sin^{n}\theta \left(c\sum_{i=0}^{\infty} a_{i}(\theta)c^{i}\right)^{2m+n}.$$
 (3.9)

Equating the corresponding coefficients of c^n of (3.9) yields

$$a_0(\theta) = 1, a_i(\theta) = 0, \qquad (i = 1, 2, \dots, m-2).$$

Rewriting

$$\rho = c(1 + c^{m-1}h), \qquad h = \sum_{i=0}^{\infty} h_i(\theta)c^i, h_i(0) = 0, \qquad (i = 0, 1, 2...).$$

Substituting it into (3.8) we get

$$\sum_{k=0}^{\infty} h'_{k}(\theta) c^{k} = \Phi_{m-1} \sum_{k=0}^{\infty} d_{k} c^{k} \sin^{k} \theta \sum_{j=0}^{m+k} C^{j}_{m+k} h^{j} c^{(m-1)j}$$

$$+ \Psi_{2m-1} \sum_{k=0}^{\infty} e_{k} c^{m+k} \sin^{k} \theta \sum_{j=0}^{2m+k} C^{j}_{2m+k} h^{j} c^{(m-1)j}, \quad h_{k}(0) = 0 \quad (k = 0, 1, 2, ...).$$
(3.10)

In the following we denote

$$g_k = d_k \overline{\sin^k \theta \Phi_{m-1}}, \qquad \beta_k = e_k \overline{\sin^k \theta \Psi_{2m-1}}, \qquad (k = 0, 1, 2, ...),$$
 (3.11)

where

$$\overline{\sin^k \theta \Phi_{m-1}} = \int_0^\theta \sin^k \theta \Phi_{m-1} d\theta, \qquad \overline{\sin^k \theta \Psi_{2m-1}} = \int_0^\theta \sin^k \theta \Psi_{2m-1} d\theta.$$

Equating the corresponding coefficients of c^k of the equation (3.10) we obtain

$$h'_{k} = d_{k} \sin^{k} \theta \Phi_{m-1}, \qquad h_{k}(0) = 0 \qquad (k = 0, 1, 2, \dots, m-2),$$
$$h'_{m-1} = \Phi_{m-1} C_{m}^{1} h_{0} + \Phi_{m-1} d_{m-1} \sin^{m-1} \theta, \qquad h_{m-1}(0) = 0,$$

solving these equations we get

$$h_k(\theta) = g_k,$$
 $(k = 0, 1, 2, ..., m - 2),$
 $h_{m-1}(\theta) = g_{m-1} + \alpha_0,$ $\alpha_0 = \frac{m}{2}\bar{\Phi}_{m-1}^2.$

As $d_k \neq 0$ (k = 0, 1, 2...), from $h_k(2\pi) = 0$ (k = 0, 1, 2, ..., m - 1) follow that

$$\int_0^{2\pi} \sin^k \theta \, \Phi_{m-1} d\theta = 0 \qquad (k = 0, 1, 2, \dots, m-1),$$

i.e., the condition (1.7) is a necessary condition for $\rho = 0$ to be a center. By Lemma 2.3 which implies that

$$\Phi_{m-1} = \cos\theta \sum_{k=1}^{m-1} \lambda_k \sin^{k-1}\theta, \qquad \bar{\Phi}_{m-1} = \int_0^\theta \Phi_{m-1} d\theta = \sum_{k=1}^{m-1} \frac{\lambda_k}{k} \sin^k \theta, \qquad (3.12)$$

where λ_k (k = 1, 2, ..., m - 1) are real numbers and λ_{m-1} is expressed by (2.2).

Applying (3.12) we get

$$\int_0^{2\pi} \sin^k \theta \, \Phi_{m-1} d\theta = 0, \qquad g_k = g_k(\sin \theta), \qquad g_k(2\pi) = 0 \qquad (k = 0, 1, 2, \dots). \tag{3.13}$$

Equating the corresponding coefficients of c^{m-1+k} of the equation (3.10) we obtain

$$h'_{m-1+k} = \Phi_{m-1} \sum_{i=0}^{k} d_i \sin^i \theta C^1_{m+i} h_{k-i} + d_{m-1+k} \sin^{m-1+k} \theta \Phi_{m-1} + e_{k-1} \sin^{k-1} \theta \Psi_{2m-1},$$
$$h_{m-1+k}(0) = 0 \qquad (k = 1, 2, \dots, m-2),$$

solving these equations we get

$$h_{m-1+k}(\theta) = g_{m-1+k} + \alpha_k + \beta_{k-1}$$
 $(k = 1, 2, ..., m-2),$

where g_{m-1+k} and β_{k-1} are expressed by (3.11), α_k is the solution of the following equation

$$\alpha'_{k} = \Phi_{m-1} \sum_{i=0}^{k} d_{i} d_{k-i} \sin^{i} \theta C_{m+i}^{1} \overline{\sin^{k-i} \theta \Phi_{m-1}}, \ \alpha_{k}(0) = 0.$$
(3.14)

By this we get: when k = 2n,

$$\alpha_{k} = \sum_{i=0}^{n-1} d_{i} d_{k-i} \left(C_{m+i}^{1} \overline{\sin^{i} \theta \Phi_{m-1}} \overline{\sin^{k-i} \theta \Phi_{m-1}} + (C_{m+k-i}^{1} - C_{m+i}^{1}) \overline{\sin^{i} \theta \Phi_{m-1}} \sin^{k-i} \theta \Phi_{m-1} \right) \\
+ \frac{1}{2} d_{n}^{2} C_{m+n}^{1} \overline{\sin^{n} \theta \Phi_{m-1}}^{2};$$
(3.15)

when k = 2n + 1,

$$\alpha_{k} = \sum_{i=0}^{n} d_{i} d_{k-i} \left(C_{m+i}^{1} \overline{\sin^{i} \theta \Phi_{m-1}} \overline{\sin^{k-i} \theta \Phi_{m-1}} + (C_{m+k-i}^{1} - C_{m+i}^{1}) \overline{\sin^{i} \theta \Phi_{m-1}} \sin^{k-i} \theta \Phi_{m-1} \right).$$
(3.16)

By (3.13) we see that $\alpha_k = \alpha_k(\sin \theta)$, $\alpha_k(2\pi) = 0$ (k = 0, 1, 2, 3, ...). Then from

$$h_{m-1+k}(2\pi) = g_{m-1+k}(2\pi) + \alpha_k(2\pi) + \beta_{k-1}(2\pi) = 0 \qquad (k = 1, 2, \dots, m-2)$$

imply that

$$\beta_k(2\pi) = 0$$
 $(k = 0, 1, 2, ..., m - 3),$

in view of $e_k \neq 0$ (k = 0, 1, 2...), so

$$\int_0^{2\pi} \sin^k \theta \Psi_{2m-1} d\theta = 0 \qquad (k = 0, 1, 2..., m-3).$$
(3.17)

Equating the corresponding coefficients of c^{2m-2} of the equation (3.10) we get

$$h'_{2m-2} = \Phi_{m-1} \sum_{i=0}^{m-1} d_i \sin^i \theta C^1_{m+i} h_{m-1-i} + \Phi_{m-1} (C^1_m \alpha_0 + C^2_m h_0^2) + d_{2m-2} \sin^{2m-2} \theta \Phi_{m-1} + e_{m-2} \sin^{m-2} \theta \Psi_{2m-1}, \qquad h_{2m-2}(0) = 0,$$

by this we get

$$h_{2m-2}(\theta) = g_{2m-2} + \alpha_{m-1} + \beta_{m-2} + \delta_0,$$

where

$$\delta_0 = \frac{m(2m-1)}{6} \bar{\Phi}_{m-1}^3.$$

 α_{m-1} is a solution of (3.14) with k = m - 1 and $\alpha_{m-1} = \alpha_{m-1}(\sin \theta)$. Thus, using (3.12) and (3.13), from $h_{2m-2}(2\pi) = 0$ follows that $\beta_{m-2}(2\pi) = 0$, i.e.,

$$\int_0^{2\pi} \sin^{m-2}\theta \,\Psi_{2m-1}d\theta = 0. \tag{3.18}$$

Equating the corresponding coefficients of c^{2m-2+k} of the equation (3.10) we obtain

$$\begin{split} h'_{2m-2+k} &= \Phi_{m-1} \sum_{i=0}^{m-1+k} d_i \sin^i \theta C^1_{m+i} h_{m-1+k-i} + \Phi_{m-1} \sum_{i=0}^k d_i \sin^i \theta C^2_{m+i} \sum_{j+l=k-i} h_j h_j \\ &+ d_{2m-2+k} \sin^{2m-2+k} \theta \Phi_{m-1} + e_{m-2+k} \sin^{m-2+k} \theta \Psi_{2m-1} \\ &+ \Psi_{2m-1} \sum_{i=0}^{k-1} e_i \sin^i \theta C^1_{2m+i} h_{k-1-i}, \\ h_{2m-2+k}(0) &= 0 \qquad (k = 1, 2, \dots, m-2), \end{split}$$

solving these equations we get

$$h_{2m-2+k} = g_{2m-2+k} + \alpha_{k+m-1} + \beta_{k+m-2} + \delta_k + \varepsilon_{k-1} \qquad (k = 1, 2, \dots, m-2),$$

where α_{k+m-1} is a solution of (3.14), δ_k and ε_{k-1} are the solutions of the following equations, respectively,

$$\delta'_k = \Phi_{m-1}\left(\sum_{i=0}^k d_i \sin^i \theta C^1_{m+i} \alpha_{k-i} + \sum_{i=0}^k C^2_{m+i} d_i \sin^i \theta \sum_{j+l=k-i} h_l h_j\right),$$

$$\varepsilon_{k-1}' = \Phi_{m-1} \sum_{i=0}^{k-1} C_{m+i}^1 d_i \sin^i \theta \beta_{k-1-i} + \Psi_{2m-1} \sum_{i=0}^{k-1} e_i \sin^i \theta C_{2m+i}^1 g_{k-1-i}.$$
 (3.19)

By (3.12) and (3.13) we see that $\delta_k = \delta_k(\sin \theta)$ and $\delta_k(2\pi) = 0$.

Solving (3.19) we get

$$\varepsilon_{k-1} = \sum_{i=0}^{k-1} d_i e_{k-1-i} \left(C_{m+i}^1 \overline{\sin^i \theta \Phi_{m-1}} \overline{\sin^{k-1-i} \theta \Psi_{2m-1}} + (C_{2m+k-1-i}^1 - C_{m+i}^1) \overline{\overline{\sin^i \theta \Phi_{m-1}}} \sin^{k-1-i} \theta \Psi_{2m-1} \right). \quad (3.20)$$

Therefore, from $h_{2m-2+k}(2\pi) = 0$ (k = 1, 2, ..., m - 2) implies that

$$\beta_{k+m-2}(2\pi) + \varepsilon_{k-1}(2\pi) = 0$$
 (k = 1, 2, ..., m - 2),

simplifying this relation by using (3.17) and (3.18), (3.20) and (3.12) we get

$$\left(e_k + \sum_{i=0}^{k-m+1} \frac{k+1-2i}{m-1+i} d_i e_{k-m+1-i} \lambda_{m-1} \right) \int_0^{2\pi} \sin^k \theta \Psi_{2m-1} d\theta = L_k \int_0^{2\pi} \sin^k \theta \Psi_{2m-1} d\theta = 0,$$

$$(k = m-1, m, \dots, 2m-4).$$

By the hypothesis (3.3), $L_k \neq 0$, so

$$\int_{0}^{2\pi} \sin^{k} \theta \Psi_{2m-1} d\theta = 0 \qquad (k = m - 1, m, \dots, 2m - 4).$$
(3.21)

Equating the corresponding coefficients of c^{3m-3} of the equation (3.10) we obtain

$$h_{3m-3} = g_{3m-3} + \alpha_{2m-2} + \beta_{2m-3} + \delta_{m-1} + \varepsilon_{m-2},$$

where α_{2m-2} is a solution of (3.14) with k = 2m - 2 and $\alpha_{2m-2} = \alpha_{2m-2}(\sin \theta)$, ε_{m-2} is expressed by (3.20) with k = m - 1, δ_{m-1} is a solution of the following equation

$$\delta_{m-1}' = \Phi_{m-1} \left(\sum_{i=0}^{m-1} d_i \sin^i \theta C_{m+i}^1 \alpha_{m-1-i} + \sum_{i=0}^{m-1} C_{m+i}^2 d_i \sin^i \theta \sum_{j+l=m-1-i} g_l g_j + C_m^1 \delta_0 + 2C_m^2 h_0 \alpha_0 + C_m^3 h_0^3 \right).$$

By (3.12) and (3.13) we see that $g_k = g_k(\sin \theta)$ (k = 0, 1, 2, ..., m - 1) and $\delta_{m-1} = \delta_{m-1}(\sin \theta)$. Thus, from $h_{3m-3}(2\pi) = 0$ follows that

$$\beta_{2m-3}(2\pi) + \varepsilon_{m-2}(2\pi) = 0,$$

simplifying this relation by using (3.17) and (3.18) and (3.21), (3.20) and (3.12) we get

$$L_{2m-3} \int_0^{2\pi} \sin^{2m-3} \theta \Psi_{2m-1} d\theta = 0,$$

as $L_{2m-3} \neq 0$,

$$\int_{0}^{2\pi} \sin^{2m-3}\theta \Psi_{2m-1}d\theta = 0.$$
(3.22)

Equating the corresponding coefficients of c^{3m-2} of the equation (3.10) we obtain

$$h_{3m-2}(\theta) = g_{3m-2} + \alpha_{2m-1} + \beta_{2m-2} + \delta_m + \varepsilon_{m-1} + \eta_0$$

where α_{2m-1} is a solution of (3.14) with k = 2m - 1, ε_{m-1} is a solution of (3.19) with k = m, δ_m is a solution of the following equation

$$\delta'_{m} = \Phi_{m-1} \left(\sum_{i=0}^{m} d_{i} \sin^{i} \theta C_{m+i}^{1} \alpha_{m-i} + \sum_{i=0}^{m} d_{i} \sin^{i} \theta C_{m+i}^{2} \sum_{j+l=m-i} g_{j} g_{l} \right) + \Phi_{m-1} (C_{m}^{1} \delta_{1} + d_{1} \sin \theta C_{m+1}^{1} \delta_{0} + C_{m}^{2} (2h_{0}\alpha_{1} + 2h_{1}\alpha_{0}) + 3C_{m}^{3} h_{0}^{2} h_{1} + d_{1} \sin \theta C_{m+1}^{3} h_{0}^{3}),$$

by (3.12) and (3.13) we see that $\delta_m = \delta_m(\sin \theta)$. η_0 is a solution of equation

$$\eta_0' = \Phi_{m-1}(C_m^1 \varepsilon_0 + 2C_m^2 h_0 \beta_0) + \Psi_{2m-1}(C_{2m}^2 h_0^2 + C_{2m}^1 \alpha_0),$$

solving this we get

$$\eta_0 = \frac{1}{2}m(m-1)\bar{\Phi}_{m-1}^2\bar{\Psi}_{2m-1} + m^2\bar{\Phi}_{m-1}\overline{\Phi}_{m-1}\Psi_{2m-1} + \frac{2m^2 - m}{2}\overline{\Phi}_{m-1}^2\Psi_{2m-1}.$$
(3.23)

Thus, from $h_{3m-2}(2\pi) = 0$ follows that

$$\beta_{2m-2}(2\pi) + \varepsilon_{m-1}(2\pi) + \eta_0(2\pi) = 0$$

calculating this relation by using (3.17) and (3.18) and (3.20)–(3.23) and (3.12) we get

$$\left(L_{2m-2} + \frac{2m^2 - m}{2(m-1)^2}\lambda_{m-1}^2\right)\int_0^{2\pi} \sin^{2m-2}\Psi_{2m-1}d\theta = 0,$$

in view of the condition (3.4) we have

$$\int_0^{2\pi} \sin^{2m-2}\theta \Psi_{2m-1}d\theta = 0.$$
 (3.24)

Equating the corresponding coefficients of c^{3m-1} of the equation (3.10) we obtain

$$h_{3m-1}(\theta) = g_{3m-1} + \alpha_{2m} + \beta_{2m-1} + \delta_{m+1} + \varepsilon_m + \eta_1, \qquad (3.25)$$

where g_{3m-1} , α_{2m} , β_{2m-1} and ε_m are the same as above, δ_{m+1} is a solution of the equation

$$\delta_{m+1}' = \Phi_{m-1} \bigg(\sum_{i=0}^{m+1} d_i \sin^i \theta C_{m+i}^1 \alpha_{m+1-i} + \sum_{i=0}^{m+1} d_i \sin^i \theta C_{m+i}^2 \sum_{j+l=m+1-i} g_j g_l + \sum_{i=0}^2 d_i \sin^i \theta \bigg(C_{m+i}^1 \delta_{2-i} + C_{m+i}^2 \sum_{l+j=2-i} g_j \alpha_i + C_{m+i}^3 \sum_{l+j+k=2-i} g_l g_j g_k \bigg) \bigg).$$

By (3.12) and (3.13) and $\alpha_k = \alpha_k(\sin\theta)$ (k = 0, 1, 2...), $\delta_i = \delta_i(\sin\theta)$ (i = 0, 1, 2), which imply that $\delta_{m+1} = \delta_{m+1}(\sin\theta)$. η_1 is a solution of the following equation

$$\eta_1' = \Phi_{m-1}(C_m^1 \varepsilon_1 + d_1 \sin \theta C_{m+1}^1 \varepsilon_0 + C_m^2 (2h_0\beta_1 + 2h_1\beta_0) + d_1 \sin \theta C_{m+1}^2 2h_0\beta_0) + \Psi_{2m+1}(C_{2m}^2 2h_0h_1 + e_1 \sin \theta C_{2m+1}^2h_0^2 + C_{2m}^1(\alpha_1 + \beta_0) + e_1 \sin \theta C_{2m+1}^1\alpha_0),$$

solving this equation we get

$$\eta_{1} = m\bar{\Psi}_{2m-1}^{2} + e_{1}\left(\left(m^{2} - \frac{m}{2}\right)\bar{\Phi}_{m-1}^{2}\overline{\sin\theta\Psi_{2m-1}} + m(m+1)\bar{\Phi}_{m-1}\overline{\bar{\Phi}_{m-1}}\sin\theta\Psi_{2m-1} + m(m+1)\overline{\sin\theta\Psi_{2m-1}}\bar{\Phi}_{m-1}^{2}\right) \\ + m(m+1)\overline{\sin\theta\Psi_{2m-1}}\overline{\bar{\Phi}_{m-1}} + m(m-1)\bar{\Phi}_{m-1}\overline{\overline{\sin\theta\Phi_{m-1}}}\Psi_{2m-1} + m(m+1)\overline{\sin\theta\Phi_{m-1}}\overline{\bar{\Phi}_{m-1}}\Psi_{2m-1} + 2m\bar{\Psi}_{2m-1}\overline{\bar{\Phi}_{m-1}}\Psi_{m-1}\overline{\sin\theta} + 2(m^{2} - m)\overline{\bar{\Phi}_{m-1}}\Psi_{2m-1}\overline{\sin\theta\Phi_{m-1}}\right).$$
(3.26)

By (3.25) we see that if $h_{3m-1}(2\pi) = 0$, then

$$eta_{2m-1}(2\pi)+arepsilon_m(2\pi)+\eta_1(2\pi)=0$$
,

simplifying this equation by using (3.17) and (3.18) and (3.20)–(3.24), (3.26) and (3.12) we get

$$\left(L_{2m-1} + \left(2d_1 + e_1\frac{m(m+1)}{(m-1)^2}\right)\lambda_{m-1}^2\right)\int_0^{2\pi}\sin^{2m-1}\theta\Psi_{2m-1}d\theta = 0,$$

by the hypothesis (3.5) we obtain

$$\int_0^{2\pi} \sin^{2m-1}\theta \Psi_{2m-1}d\theta = 0.$$

In summary, under the conditions (3.3)–(3.5), the (1.7) and (1.8) are the necessary conditions for $\rho = 0$ to be a center of (3.2). Therefore, the necessity has been proved. On the other hand, by Lemma 2.1 and Lemma 2.3, if the conditions (1.7) and (1.8) are satisfied, then $\rho = 0$ is a center of equation (3.2), this means that the sufficiency is proved. By Lemma 2.3 this center is a composition center, by Lemma 2.4 this center is a weak center.

Corollary 3.2. For arbitrary m (> 2), if $\mu = 1$, then the origin point of (1.3) is a center if and only if (1.7) is satisfied.

Proof. Under the linear change of variables (3.1) the system (1.3) becomes

$$\begin{cases} x' = -y(1-y) + x(x + \Phi_{m-1}), \\ y' = x(1-y) + y(x + \Phi_{m-1}), \end{cases}$$

which in polar coordinates becomes

$$\frac{dr}{d\theta} = \frac{r^2 \cos \theta + \Phi_{m-1} r^m}{1 - r \sin \theta}.$$

Taking $\rho = \frac{r}{e^{r \sin \theta}}$ we get

$$rac{d
ho}{d heta} = \Phi_{m-1}
ho^m\sum_{n=0}^\infty d_n
ho^n\sin^n heta,$$

where $d_0 = 1$, $d_n = \frac{1}{n!}(m-1)(m+n-1)^{n-1}$, (n = 1, 2, 3, ...). Similar to Theorem 3.1, it can be deduced that the solution ρ of this equation such that $\rho(0) = c$ $(0 < |c| \ll 1)$ is

$$\rho = c + c^m \sum_{k=0}^{m-2} c^k d_k \overline{\sin^k \theta \Phi_{m-1}} + c^{2m-1} \left(d_{m-1} \overline{\sin^{m-1} \theta \Phi_{m-1}} + \frac{m}{2} \bar{\Phi}_{m-1}^2 \right) + o(c^{2m-1}).$$

As $d_n \neq 0$ (n = 0, 1, 2...), from $\rho(2\pi) = c$ it follows that the condition (1.7) is satisfied. Using Lemma 2.3 and Lemma 2.4, the conclusion of the present corollary is valid.

Remark 3.3. By Corollary 3.2, when $\mu = 1$, Conjecture 1.1 is correct for arbitrary m > 2.

Case 2. $\nu \neq 0$, $\hat{\mu} \neq 1$. Consider Λ - Ω system

$$\begin{cases} x' = -y(1 - \hat{\mu}y) + x(x + \Phi_{m-1} + \Psi_{2m-1}), \\ y' = x(1 - \hat{\mu}y) + y(x + \Phi_{m-1} + \Psi_{2m-1}). \end{cases}$$
(3.27)

Theorem 3.4. Suppose that

$$\prod_{1 \le n \le m-1} \tilde{d}_n \neq 0; \qquad \prod_{m-1 \le k \le 2m-3} \tilde{L}_k \neq 0;$$
$$\tilde{L}_{2m-2} + \frac{m(2m-1)}{2(m-1)^2} \lambda_{m-1}^2 \neq 0;$$
$$\tilde{L}_{2m-1} + \left(2\tilde{d}_1 + \tilde{e}_1 \frac{m(m+1)}{(m-1)^2}\right) \lambda_{m-1}^2 \neq 0,$$

where λ_{m-1} is expressed by (2.2),

$$\tilde{L}_k := \tilde{e}_k + \sum_{i=0}^{k-m+1} \frac{k+1-2i}{m-1+i} \tilde{d}_i \tilde{e}_{k-m+1-i} \lambda_{m-1}, \qquad (k=m-1,m,\ldots,2m-1),$$

$$\tilde{d}_n = \frac{\tilde{d}_1}{n!} \prod_{0 \le r \le n-2} (\sigma - r(1 - \hat{\mu}))$$

$$(n = 2, 3, ...), \ \tilde{d}_0 = 1, \ \tilde{d}_1 = m + \hat{\mu} - 2, \ \sigma = n + m + 2\hat{\mu} - 3; \ (3.28)$$

$$\tilde{e}_n = \frac{\tilde{e}_1}{n!} \prod_{0 \le r \le n-2} (\epsilon - r(1 - \hat{\mu}))$$

$$(n = 2, 3, \dots), \ \tilde{e}_0 = 1, \ \tilde{e}_1 = 2m + \hat{\mu} - 2, \ \epsilon = n + 2m + 2\hat{\mu} - 3.$$
(3.29)

Then the origin point of (3.27) is a center if and only if (1.7) and (1.8) hold.

Moreover, this center is a composition center and weak center.

Proof. In polar coordinates, the system (3.27) becomes

$$\frac{dr}{d\theta} = \frac{r^2 \cos\theta + \Phi_{m-1}r^m + \Psi_{2m-1}r^{2m}}{1 - \hat{\mu}r\sin\theta},\tag{3.30}$$

where $\Phi_{m-1} = \Phi_{m-1}(\cos\theta, \sin\theta), \Psi_{2m-1} = \Psi_{2m-1}(\cos\theta, \sin\theta).$

Taking

$$\rho = \frac{r}{(1 + (1 - \hat{\mu})r\sin\theta)^{\frac{1}{1-\hat{\mu}}}},$$

the equation (3.30) can be written as

$$\frac{d\rho}{d\theta} = \rho^m \Phi_{m-1} (1 + (1 - \hat{\mu})r\sin\theta)^{\frac{m+\hat{\mu}-2}{1-\hat{\mu}}} + \rho^{2m} \Psi_{2m-1} (1 + (1 - \hat{\mu})r\sin\theta)^{\frac{2m+\hat{\mu}-2}{1-\hat{\mu}}}.$$
(3.31)

Applying the Langrange–Bürman formula we have

$$(1+(1-\hat{\mu})r\sin\theta)^{\frac{m+\hat{\mu}-2}{1-\hat{\mu}}} = \sum_{n=0}^{\infty} \tilde{d}_n \rho^n \sin^n \theta;$$
$$(1+(1-\hat{\mu})r\sin\theta)^{\frac{2m+\hat{\mu}-2}{1-\hat{\mu}}} = \sum_{n=0}^{\infty} \tilde{e}_n \rho^n \sin^n \theta,$$

where \tilde{d}_n , \tilde{e}_n are expressed by (3.28), (3.29), respectively.

Substituting them into (3.31) we get

$$\frac{d\rho}{d\theta} = \Phi_{m-1}\rho^m \sum_{n=0}^{\infty} \tilde{d}_n \rho^n \sin^n \theta + \rho^{2m} \Psi_{2m-1} \sum_{n=0}^{\infty} \tilde{e}_n \rho^n \sin^n \theta.$$
(3.32)

Comparing the equations (3.8) and (3.32), we see that they have the same form, only with different coefficients. Similar to Theorem 3.1, the present theorem can be derived. \Box

Remark 3.5. When $\hat{\mu} = 0$, from Theorem 3.4 implies the Theorem 3.1 of [15].

Corollary 3.6. If $\mu \neq 1$ and $\hat{d}_n = \tilde{d}_n|_{\hat{\mu}=\mu} \neq 0$ (n = 1, 2, ..., m-1) (m > 2), where \tilde{d}_n (n = 1, 2, ..., m-1) is expressed by (3.28). Then the origin point of (1.3) is a center if and only if (1.7) is satisfied.

Proof. Similar to Theorem 3.4, when $\Psi_{2m-1} = 0$, the equation (1.3) can be transformed as following

$$\frac{d\rho}{d\theta} = \Phi_{m-1}\rho^m \sum_{n=0}^{\infty} \hat{d}_n \rho^n \sin^n \theta.$$
(3.33)

Similar to Theorem 3.1, we get that the solution of (3.33) such that $\rho(0) = c \ (0 < |c| \ll 1)$ is

$$\rho = c + c^m \sum_{k=0}^{m-2} c^k \hat{d}_k \overline{\sin^k \theta \Phi_{m-1}} + c^{2m-1} \left(\hat{d}_{m-1} \overline{\sin^{m-1} \theta \Phi_{m-1}} + \frac{m}{2} \bar{\Phi}_{m-1}^2 \right) + o(c^{2m-1}).$$

As $\hat{d}_n = \tilde{d}_n|_{\hat{\mu}=\mu} \neq 0$ (n = 1, 2..., m-1), $\tilde{d}_0 = 1$, from $\rho(2\pi) = c$ follows that the condition (1.7) is satisfied. Using Lemma 2.4, the conclusion of the present corollary is valid.

Remark 3.7. By Corollary 3.6, if $\mu \neq 1$, Conjecture 1.1 is valid when $\prod_{1 \le n \le m-1} \hat{d}_n \neq 0$, (m > 2). **Case B.** $\nu = 0$, $\mu \neq 0$.

 $C_{\text{and}} = 0, \ \mu \neq 0.$

Consider Λ - Ω system

$$\begin{cases} x' = -y(1 - \mu y) + x(\Phi_{m-1} + \Psi_{2m-1}), \\ y' = x(1 - \mu y) + y(\Phi_{m-1} + \Psi_{2m-1}). \end{cases}$$
(3.34)

Theorem 3.8. Suppose that

$$\prod_{m-1 \le k \le 2m-3} \tilde{L}_k \neq 0;$$
$$\hat{L}_{2m-2} + \frac{m(2m-1)}{2(m-1)^2} \lambda_{m-1}^2 \neq 0;$$
$$\hat{L}_{2m-1} + \mu \left(2 + \frac{m(m+1)}{(m-1)^2}\right) \lambda_{m-1}^2 \neq 0,$$

where λ_{m-1} is expressed by (2.2), $\hat{L}_k := \mu^k + \mu^{1-m+k} \sum_{i=0}^{k-m+1} \frac{k+1-2i}{m-1+i} \lambda_{m-1}$, (k = m-1, m, ..., 2m-1). Then the origin point of (3.34) is a center if and only if (1.7) and (1.8) hold.

Moreover, this center is a composition center and weak center.

Proof. In polar coordinates, the system (3.34) becomes

$$\frac{dr}{d\theta} = \Phi_{m-1} \sum_{n=0}^{\infty} \mu^n r^{m+n} \sin^n \theta + \Psi_{2m-1} \sum_{n=0}^{\infty} \mu^n r^{2m+n} \sin^n \theta, \qquad (3.35)$$

where $\Phi_{m-1} = \Phi_{m-1}(\cos\theta, \sin\theta), \Psi_{2m-1} = \Psi_{2m-1}(\cos\theta, \sin\theta).$

Obviously, the equation (3.35) has the same form as (3.8), in Theorem 3.1 taking $d_k = e_k = \mu^k$ (k = 0, 1, 2, ...), the present theorem can be derived directly.

Corollary 3.9. For arbitrary m > 2, the origin point of (1.4) is a center if and only if (1.7) is satisfied.

Proof. Under the linear changes of variables (3.1) the system (1.4) becomes

$$\begin{cases} x' = -y(1-y) + x\Phi_{m-1}, \\ y' = x(1-y) + y\Phi_{m-1}. \end{cases}$$
(3.36)

In polar coordinates (3.36) can be written as

$$\frac{dr}{d\theta} = \Phi_{m-1} \sum_{n=0}^{\infty} r^{m+n} \sin^n \theta.$$
(3.37)

Similar to Theorem 3.1, we get that the solution of (3.37) such that r(0) = c ($0 < |c| \ll 1$) is

$$r = c + c^m \sum_{i=0}^{m-2} \overline{\sin^k \theta \Phi_{m-1}} + c^{2m-1} \left(\overline{\sin^{m-1} \theta \Phi_{m-1}} + \frac{m}{2} \bar{\Phi}_{m-1}^2 \right) + o(c^{2m-1})$$

Obviously, from $r(2\pi) = c$ follows that the condition (1.7) is satisfied. Using Lemma 2.4 the conclusion of the present corollary is correct.

Remark 3.10. By Corollary 3.9, Conjecture 1.2 is valid for m > 2.

Remark 3.11. In the case of $\mu = \nu = 0$, m = 2 the center problem of system (1.5) has been discussed by [14].

Acknowledgements

Funding: This study was funded by the National Natural Science Foundation of China (62173292, 12171418).

Conflict of interest: The author declares that she has no conflict of interest.

References

- [1] M. ABRAMOWITZ, I. A. STEGUN, Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1966. MR0208797; Zbl 0171.38503.
- [2] A. ALGABA, M. REYES, Computing center conditions for vector fields with constant angular speed, J. Comput. Appl. Math. 220(2003), No. 1, 143–159. https://doi.org/10.1016/ S0377-0427(02)00818-X; MR1970531; Zbl 032.34026.

- [3] M. A. M. ALWASH, Periodic solutions of Abel differential equations, J. Math. Anal. Appl. 329(2007), No. 2, 1161–1169. https://doi.org/10.1016/j.jmaa.2006.07.039; MR2296914; Zbl 1154.34397.
- [4] M. A. M. ALWASH, Composition conditions for two-dimensional polynomial systems, Differ. Equ. Appl. 5(2013), No. 1, 1–12. https://doi.org/10.7153/dea-05-01; MR3087263; Zbl 1287.34022.
- [5] M. A. M. ALWASH, N. G. LLOYD, Non-autonomous equations related to polynomial twodimensional systems, *Proc. Roy. Soc. Edinburgh Sect. A* 105(1987), 129–152. https://doi. org/10.1017/S0308210500021971; MR0890049; Zbl 0618.34026.
- [6] A. CIMA, A. GASULL, F. MAÑOSAS, Centers for trigonometric Abel equations, *Qual. Theory Dyn. Syst.* 11(2012), No. 1, 19–37. https://doi.org/10.1007/s12346-011-0054-9; MR2902723; Zbl 1264.34055.
- [7] J. DEVLIN, N. G. LLOYD, J. M. PEARSON, Cubic systems and Abel equations, J. Differential Equations 147(1998), No. 2, 435–454. https://doi.org/10.1006/jdeq.1998.3420; MR1633961; Zbl 0911.34020.
- [8] H. DULAC, Détermination et intégration d'une certaine classe d'équations différentielles ayant pour point singulier un centre (in French), Bull. Sci. Math. (2) 32(1908), 230–252. Zbl 39.0374.01
- [9] M. A. LIAPOUNOFF, Problème général de la stabilité du mouvement (in French), Annals of Mathematics Studies, Vol. 17, Princeton University Press, 1947. https://doi.org/10. 1515/9781400882311
- [10] J. LLIBRE, R. RAMÍREZ, V. RAMÍREZ, An inverse approach to the center problem, *Rend. Circ. Mat. Palermo* 68(2019), No. 1, 29–64. https://doi.org/10.1007/s12215-018-0342-1; MR4148722; Zbl 1423.34032
- [11] J. LLIBRE, R. RAMÍREZ, V. RAMÍREZ, Center problem for Λ-Ω differential systems, J. Differential Equations 267(2019), No. 11, 6409–6446. https://doi.org/10.1016/j.jde.2019.
 06.028; MR4001060; Zbl 1429.34036.
- [12] N. G. LLOYD, J. M. PEARSON, Computing centre conditions for certain cubic systems, J. Comput. Appl. Math. 40(1992), No. 3, 323–336. https://doi.org/10.1016/0377-0427(92) 90188-4; MR1170911; Zbl 0754.65072.
- [13] H. POINCARÉ, Sur l'intégration algébrique des équations différentielles du premier ordre et du premier degré I and II (in French), *Rend. Circ. Mat. Palermo* 5(1891), 161–191. https: //doi.org/10.1007/BF03015693
- [14] Z. ZHOU, The Poincaré center-focus problem for a class of higher order polynomial differential systems, *Math. Meth. Appl. Sci.* 42(2019), No. 6, 1804–1818. https://doi.org/10. 1002/mma.5475; MR3937634; Zbl 1458.34064.
- [15] Z. ZHOU, Y. YAN, On the composition conjecture for a class of rigid systems, *Electron. J. Qual. Theory Differ. Equ.* 2019, No. 95, 1–22. https://doi.org/10.14232/ejqtde.2019.1. 95; MR4049570; Zbl 1449.34106.