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Abstract. The purpose of this paper is to prove uniform boundedness and so
global existence of solutions for reaction-diffusion systems with a full matrix
of diffusion coefficients satisfying a balance law. Our techniques are based on
invariant regions and Lyapunov functional methods. The nonlinearity of the
reaction term which we take positive in an invariant region has been supposed
to be polynomial..

1. INTRODUCTION

We consider the following reaction-diffusion system

∂u

∂t
-a∆u-b∆v = -σf(u, v) in R

+ × Ω(1.1)

∂v

∂t
-c∆u-a∆v = ρf(u, v) in R

+ × Ω,(1.2)

with the boundary conditions

∂u

∂η
=

∂v

∂η
= 0 on R

+ × ∂Ω,(1.3)

and the initial data

u(0, x) = u0(x), v(0, x) = v0(x) in Ω,(1.4)

where Ω is an open bounded domain of class C1 in Rn, with boundary ∂Ω, and
∂

∂η
denotes the outward normal derivative on ∂Ω, σ, ρ, a, b and c are positive

constants satisfying the condition 2a > (b+ c) which reflects the parabolicity of the
system. The initial data are assumed to be in the following region

Σ =



















{

(u0, v0) ∈ IR2 such that v0 ≥
√

c
b
|u0|

}

when
√

b
c

<
σ

ρ
,

{

(u0, v0) ∈ IR2 such that u0 ≥
√

b
c
|v0|

}

when
√

b
c

>
σ

ρ
.
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The function f(r, s) is continuously differentiable, nonnegative on Σ with



















f(−
√

b
c
s, s) = 0, for all s ≥ 0, when

√

b
c

<
σ

ρ
and

f(r,
√

c
b
r) = 0, for all r ≥ 0, when

√

b
c

>
σ

ρ
,

(1.5)

and


















lim
s→+∞

[

log(1+f(r,s))
s

]

= 0, for any r ≥ 0, when
√

b
c

<
σ

ρ
,

and

lim
r→+∞

[

log(1+f(r,s))
r

]

= 0, for all s ≥ 0, when
√

b
c

>
σ

ρ
.

(1.6)

The system (1.1)-(1.2) may be regarded as a perturbation of the simple and
trivial case where b = c = 0; for which nonnegative solutions exist globally in time.

When the coefficient of −∆u in equation (1.1) is different from the one of −∆v
in equation (1.2), N. Alikakos [1] established global existence and L∞-bounds of

solutions for positive initial data for f(u, v) = uvβ and 1 < β < (n+2)
n

and K.
Masuda [16] showed that solutions to this system exist globally for every β > 1
and converge to a constant vector as t → +∞. A. Haraux and A. Youkana [6]
have generalized the method of K.Masuda to handle nonlinearities uF (v) that are
form a particular case of ours; since the hypothesis (1.5) is replaced automatically
by f(0, s) = 0 for any s ≥ 0 . Recently S. Kouachi and A. Youkana [14] have
generalized the method of A. Haraux and A. Youkana to the case c > 0 and the
limit (1.6) is a small number strictly positive , hypothesis that is in fact, weaker
than the last one.

The components u(t, x) and v(t, x) represent either chemical concentrations or
biological population densities and system (1.1)-(1.2) is a mathematical model de-
scribing various chemical and biological phenomena ( see E. L. Cussler [2], P. L.
Garcia-Ybarra and P. Clavin [4], S. R. De Groot and P. Mazur [5], J. Jorne [9], J.
S. Kirkaldy [13], A. I. Lee and J. M. Hill [15] and J. Savchik, b. Changs and H.
Rabitz[18].

It is well known that, to establish a global existence of unique solutions for (1.1)-
(1.3), usual techniques based on Lyapunov functionals wich need invariant regions(
see M. Kirane and S. Kouachi [11], [12] and S. Kouachi and A. Youkana [14] ) are
not directly applicable. For this purpose we construct invariant regions.

2. EXISTENCE.

2.1. Local existence. The usual norms in spaces Lp(Ω), L∞(Ω) and C
(

Ω
)

are
respectively denoted by :
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‖u‖p

p =
1

|Ω|

∫

Ω

|u(x)|p dx,

‖u‖
∞

= max
x∈Ω

|u(x)| .

For any initial data in C
(

Ω
)

or Lp(Ω), p ∈ (1, +∞); local existence and unique-
ness of solutions to the initial value problem (1)-(4) follow from the basic existence
theory for abstract semilinear differential equations (see A. Friedman [3], D. Henry
[7] and Pazy [17]). The solutions are classical on ]0, T ∗[ , where T ∗ denotes the
eventual blowing-up time in L∞(Ω).

2.2. Invariant regions.

Proposition 1. Suppose that the function f is nonnegative on the region Σ and
that the conditions (1.5) and (1.6) are satisfied, then for any (u0, v0) in Σ the
solution (u(t, .), v(t, .)) of the problem (1.1)-(1.4) remains in Σ for any time and
there exists a positive constant M such that



















∥

∥

∥

√
cu(t, .) +

√
bv(t, .)

∥

∥

∥

∞

≤ M,when
√

b
c

<
σ

ρ
and

∥

∥

∥

√
cu(t, .) −

√
bv(t, .)

∥

∥

∥

∞

≤ M, when
√

b
c

>
σ

ρ
.

(2.1)

Proof. One starts with the case where
√

b
c

<
σ

ρ
:

Multiplying equation (1.1) through by
√

c and equation (1.2) by
√

b, subtracting
the resulting equations one time and adding them an other time we have

∂w

∂t
− (a +

√
bc)∆w = (ρ

√
b − σ

√
c)F (w, z) in ]0, T ∗[ × Ω(2.2)

∂z

∂t
− (a −

√
bc)∆z = (ρ

√
b + σ

√
c)F (w, z) in ]0, T ∗[ × Ω,(2.3)

with the boundary conditions

∂w

∂η
=

∂z

∂η
= 0 on ]0, T ∗[ × ∂Ω ,(2.4)

and the initial data

w(0, x) = w0(x), z(0, x) = z0(x) in Ω,(2.5)

where,

w(t, x) =
√

cu(t, x) +
√

bv(t, x) and z(t, x) = −
√

cu(t, x) +
√

bv(t, x),(2.6)

for any (t, x) in ]0, T ∗[ × Ω, and

F (w, z) = f(u, v).
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First, let’s notice that the condition of parabolicity of the system (1.1)-(1.2) implies

the one of the (2.2)-(2.3) system; since 2a > (b + c) ⇒ a −
√

bc > 0.
Now, it suffices to prove that the region

{

(w0, z0) ∈ IR2 such that w0 ≥ 0, z0 ≥ 0
}

= IR+ × IR+,

is invariant for system (2.2)-(2.3) and w(t, x) is uniformly bounded in ]0, T ∗[ × Ω.

Since, from (1.5), F (0, z) = f(−
√

b
c
v, v) = 0 for all z ≥ 0 and all v ≥ 0, then

w(t, x) ≥ 0 for all (t, x) ∈ ]0, T ∗[×Ω, thanks to the invariant region’s method ( see
Smoller [19] ) and because F (w, z) ≥ 0 for all (w, z) in IR+×IR+ and z0(x) ≥ 0 in
Ω, we can deduce by the same method applied to equation (2.3), that

z(t, x) =
√

cu(t, x) −
√

bv(t, x) ≥ 0 in ]0, T ∗[ × Ω;

then Σ is an invariant region for the system (1.1)-(1.3).
At the end, to show that w(t, x) is uniformly bounded on ]0, T ∗[×Ω, it is sufficient
to apply the maximum’s principle directly to equation (2.2).

For the case
√

b
c

>
σ

ρ
, the same reasoning with equations

∂w

∂t
− (a −

√
bc)∆w = −(ρ

√
b + σ

√
c)F (w, z) in ]0, T ∗[ × Ω,(2.2)

′

∂z

∂t
− (a +

√
bc)∆z = (ρ

√
b − σ

√
c)F (w, z) in ]0, T ∗[ × Ω(2.3)

′

with the same boundary condition (2.4) implies the invariance of IR+ × IR+ and
the uniform boundeness of w(t, x) on ]0, T ∗[ × Ω, where in this case we take

w(t, x) =
√

cu(t, x) −
√

bv(t, x) and z(t, x) =
√

cu(t, x) +
√

bv(t, x),(2.6)
′

for all (t, x) in ]0, T ∗[ × Ω.

Once, invariant regions are constructed, one can apply Lyapunov technique and
establish global existence of unique solutions for (1.1)-(1.4).

2.3. Global existence. As the determinant of the linear algebraic system (2.6)

or (2.6)
′

, with regard to variables u and v, is different from zero, then to prove
global existence of solutions of problem (1.1)-(1.4) comes back in even to prove it
for problem (2.2)-(2.5). To this subject, it is well known that (see Henry [7]) it
suffices to derive an uniform estimate of ‖F (w, z)‖p on [0, T ∗[ for some p > n/2.

The main result and in some sense the heart of the paper is:

Theorem 2. Let (w(t, .), z(t, .)) be any solution of system (2.2)-(2.3) (respectively

(2.2)
′−(2.3)

′

) with initial data in IR+ × IR+and boundary conditions (2.4), then
the functional

t −→ L(t) =

∫

Ω

(M -w(t, x))-γ exp βz(t, x)dx(2.7)

is nonincreasing on [0, T ∗[, for all positive constants β and γ such that
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βM
µ

λ
< γ <

a2 − bc

bc
,(2.8)

and all M satisfying

‖w0‖∞ < M,(2.9)

where λ = σ
√

c − ρ
√

b and µ = σ
√

c + ρ
√

b ( respectively λ = ρ
√

b + σ
√

c and

µ = ρ
√

b − σ
√

c ) and w(t, x) and z(t, x) are given by (2.6) (respectively (2.6)
′

).

Proof. Let’s demonstrate the theorem in the case
√

b
c

<
σ

ρ
. Tak-

ing θ = a +
√

bc and ϕ = a −
√

bc.

Differentiating L with respect to t yields:

·

L(t) =

∫

Ω

[

γ
(

(M -w)-γ-1eβz
) ∂w

∂t
+

(

β(M -w)-γeβz
) ∂z

∂t

]

dx

=

∫

Ω

(

γ(M -w)-γ-1eβz
)

(θ∆w-λF (w, z)) dx +

∫

Ω

(

β(M -w)-γeβz
)

(ϕ∆z + µF (w, z)) dx

=

∫

Ω

[

γθ(M -w)-γ-1eβz∆w + βϕ(M -w)-γeβz∆z
]

dx

+

∫

Ω

[

µβ(M -w)-γ-λγ(M -w)-γ-1
]

eβzF (w, z)dx

= I + J.
By simple use of Green’s formula, we get

I = -

∫

Ω

T (∇w,∇z)(M − w)-γ-2eβzdx,

where

T (∇w,∇z) = θγ(γ + 1) |∇w|2 +

β(M − w)(θ + ϕ)γ∇w∇z +

ϕβ2(M − w)2 |∇z|2 .

The discriminant of T is given by:
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D =
[

((θ + ϕ)γ)2 − 4ϕθγ(γ + 1)
]

β2(M − w)2

=
(

(θ − ϕ)2γ2 − 4θϕγ
)

β2(M − w)2.

D < 0, if

γ > 0 and (θ − ϕ)2γ − 4θϕ < 0.

Theses two last inequalities can be written as follows:

0 < γ <
4θϕ

(θ − ϕ)2
.

Using the following inequality

ξx2 + σxy + ρy2 ≤ -

(

σ2-4ξρ
)

2

[

y2

4ξ
+

x2

4ρ

]

for all (x, y) ∈ R
2,

where ξ and ρ are two negative constants and σ ∈ R, we can show that

I ≤ -

∫

Ω

(

m1 |∇w|2 + m2 |∇z|2
)

(M -w)-γ-2eβzdx,

where the positive constants m1 and m2 are given by:

m1 =

(

4θϕ-γ (θ-ϕ)
2
)

γ

8ϕ

m2 =

(

4θϕ-γ (θ-ϕ)
2
)

β2(M − ‖w0‖∞)2

8θ(γ + 1)
.

=

∫

Ω

((Mµβ-λγ)-µβw) (M -w)-γ-1eβzF (w, z)dx,

if we choose

β <
λγ

Mµ
,

then

J ≤ −C(β, γ, λ, µ, M)

∫

Ω

(M − w)-γ-1eβzF (w, z)dx,

where C(β, γ, λ, µ, M) is a positive constant.
Hence,
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·

L(t) ≤ -

∫

Ω

(

m1 |∇w|2 + m2 |∇z|2
)

(M -w)-γ-2eβzdx

-C(β, γ, λ, µ, M)

∫

Ω

(M -w)-γ-1eβzF (w, z)dx ≤ 0.

Concerning the case
√

b
c

>
σ

ρ
, we take θ = a −

√
bc , ϕ = a +

√
bc, λ =

ρ
√

b + σ
√

c and µ = ρ
√

b − σ
√

c . The same reasoning with equations (2.2)
′

and

(2.3)
′

implies that the functional given by (2.7) is nonincreasing on [0, T ∗[, for all
positive constants β, γ and M satisfying (2.8) and (2.9).

Theorem 2.2 is completely proved.

Corollary 3. Suppose that the function f(r, s) is continuously differentiable, non-
negative on Σ and satisfying conditions (1.5) and (1.6) .Then all solutions of (1.1)-
(1.3) with initial data in Σ are global in time and uniformly bounded on (0, +∞)×Ω.

Proof. Let’s take
√

b
c

<
σ

ρ
, as it has been mentioned in the beginning of section 1.3;

it suffices to derive an uniform estimate of ‖F (w, z)‖p on [0, T ∗[ for some p > n/2.

Since, for u and v in Σ, w ≥ 0 and z ≥ 0, and as w + z = 2
√

bv with w uniformly
bounded on [0, T ∗[ × Ω by M , then (1.6) is equivalent to

lim
s→+∞

[

log (1 + F (r, s))

s

]

= 0, for all r ≥ 0.

As F is continuous on R+ × R+, then

lim
s→+∞

[

log (1 + F (r, s))

s

]

= 0,

uniformly for r ∈ [0, M ] and we can choose positive constants α and C such that:

1 + F (r, s) ≤ Ceαs, for all s ≥ 0 and for all r ∈ [0, M ] ,(2.10)

and

α <
2λ

(

a2 − bc
)

nµbc ‖w0‖∞
,

then we can choose p > n/2 such that

pα <
λ

(

a2 − bc
)

µbc ‖w0‖∞
.(2.11)

Set β = pα, hence
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β ‖w0‖∞ <
λ

(

a2 − bc
)

µbc
,(2.12)

thus we can choose γ and M such that (2.8) and (2.9) are satisfied. Using Theorem
2.2 we get,

eβz(t,.) =
(

eαz(t,.)
)p

∈ L
∞

(

[0, T ∗[ ; L1 (Ω)
)

,

therefore

eαz(t,.) ∈ L
∞ ([0, T ∗[ ; Lp (Ω)) ,

and from (2.10) we deduce that

f(w(t, .), z(t, .)) ∈ L
∞ ([0, T ∗[ ; Lp (Ω)) , for some p > n/2.

By the preliminary remarks, we conclude that the solution is global and uniformly
bounded on [0, +∞[× Ω.

For the case
√

b
c

>
σ

ρ
, the same reasoning with w and z given by (2.6)

′

and

using the limit (1.6) we deduce the same result.

3. Remarks and comments

Remark 1. In the case when
√

b
c

=
σ

ρ
and initial data given in Σ ( definied in the

case when
√

b
c

>
σ

ρ
) we have global existence of solutions of problem (1.1)-(1.4)

with no condition on the constants or on the growth of the function f to part its
positivity and f(r,

√

c
b
r) = 0, for all r ≥ 0. To verify this, it suffices to apply the

maximum principle directly to equations (2.2)
′−(2.3)

′

.

Remark 2. By application of the comparison’s principle to equation (2.3), blowing-

up in finite time can occur in the case where
√

b
c

=
σ

ρ
, especially when the reaction

term satifies an inequality of the form:

|f(u, v)| ≥ C1 |u|α1 + C2 |v|α2 ,

where C1, C2, α1 and α2 are positive constants such that

C2
1 + C2

2 6= 0, α1 > 1 and α2 > 1.

Remark 3. One showed the global existence for functions f(u, v) of polynomial
growth (condition 1.6), but our results remain valid for functions of exponential
growth (but small) while replacing the condition 1.6 by:






















lim
s→+∞

[

log(1+f(r,s))
s

]

<
λ

(

a2 − bc
)

2nµbc ‖w0‖∞
, for any r ≥ 0,when

√

b
c

<
σ

ρ
,

and

lim
r→+∞

[

log(1+f(r,s))
r

]

<
λ

(

a2 − bc
)

2nµbc ‖w0‖∞
, for any s ≥ 0,when

√

b
c

>
σ

ρ
.
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Remark 4. If bc = 0, we have global existence for any exponential growt.
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