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Abstract. We establish the expansion of positivity of the nonnegative, local, weak solu-
tions to the class of doubly nonlinear parabolic equations

∂t(uq)− div (|Du|p−2Du) = 0, p > 1 and q > 0

considering separately the two possible cases q + 1− p > 0 and q + 1− p < 0. The
proof relies on the procedure presented by DiBenedetto, Gianazza and Vespri for both
the degenerate and the singular parabolic p-Laplacian equation.
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1 Introduction

In this work we consider the class of doubly nonlinear parabolic equations

∂t(uq)− div (|Du|p−2Du) = 0, in ΩT, p > 1 and q > 0, (1.1)

where ΩT = Ω × (0, T], being Ω a bounded domain in RN and T a real positive number;
which models, for instance, the turbulent filtration of non-Newtonian fluids through a porous
media (see [4]).

Along the past years many authors have studied this class of evolutionary equations: the
simpler case q = 1 was widely study (see for instance [2, 3] and the references therein); the
Trudinger’s equation, corresponding to q = p− 1, is still object of intensive study (cf. [16,18,19]
and more recently [5]; and, for the general case, there are already some results (see [12–14]).
In a certain extend, this class of doubly nonlinear equations can be seen as

∂tu− div (|u|m−1|Du|p−2Du) = 0, in ΩT, p > 1
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and many are the works concerning its weak solutions (just to mane a few, we refer to [6–10,
15, 20–22]).

The doubly nonlinear equation (1.1) presents several difficulties: for q > 1 (0 < q < 1)
equation (1.1) has a degeneracy (singularity) in time, since uq−1 is zero (explodes) at the
points where u = 0; while for 1 < p < 2 (p > 2) (1.1) exhibits a singularity (degeneracy) in
space, since the modulus of ellipticity |Du|p−2 explodes (is zero) at the points where Du = 0.
One aspect to always have into consideration is that in order to compensate the degradation
of equation’s parabolic structure one needs to consider proper cylinders within which the
equation behaves as the heat equation – this is known as intrinsic scaling.

The main goal of this work is to give one more contribution to the study of the properties
of the weak solutions to this class of doubly nonlinear evolutionary equations (1.1), for p > 1
and q > 0, namely to present the expansion of positivity for its nonnegative bounded weak
solutions, which roughly speaking means that the information on the measure of the positivity
set of u, at a certain time level s over a cuber Kρ(y), can be expanded to the measure of
the positivity set of u both in space (say from Kρ(y) to K2ρ(y)) and in time (from the time
level s to all further time levels s + θρp). The proof relies on energy estimates and DeGiorgi-
type lemmas and comprehends two steps. The first step consists on the propagation of the
positivity information known at a cube located in some time level, say Kρ(y)× {s}, to upper
times levels. Not only this is the easiest step but also it holds for all values of p > 1 and q > 0.
As for the second (more demanding and crucial) one, the spacial propagation of positivity
is derived from the cube Kρ(y) to the bigger cube K2ρ(y): the proof is more evolving and
requires the cases q + 1− p > 0 and q + 1− p < 0 to be studied separately.

The expansion of positivity is the key ingredient to derive Harnack estimates and it can
also be an important tool to prove local regularity of the weak solutions. If not only for the
mathematical interest per si, these two arguments give extra and relevant reasons for the study
at hands.

The paper is organized as follows. In Section 2, we present the notation and some known
results needed along the sections to come. In Section 3, we deduce the energy estimates and
prove two DeGiorgi-type lemmas which are the core results for the expansion of positivity. The
proofs of the main results, that is of the expansion of positivity, both for q + 1− p > 0 and
q + 1− p < 0, are presented in Section 4.

2 Setting the framework

Notation and known results

We start by presenting some notation and some already known results just to keep the text as
self contained as possible.

Due to the parabolic nature of our evolutionary equation, we will work with parabolic
cylinders and parabolic Sobolev spaces. For that purpose let (x0, t0) be an interior point in
the space-time domain Ω× (0, T]. For a cylinder with vertex at (x0, t0), of radius R > 0 and
height τ we can define: the backward cylinder

(x0, t0) + Q−(τ, R) := KR(x0)× (t0 − τ, t0)
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the forward cylinder

(x0, t0) + Q+(τ, R) := KR(x0)× (t0, t0 + τ),

where
KR(x0) = {x ∈ Ω : max |x− x0| < R} .

Let p ≥ 1. The Sobolev space H1,p(Ω) is defined to be the completion of C∞(Ω) with
respect to the Sobolev norm

‖u‖1,p,Ω =

(∫
Ω
(|u|p + |Du|p)

)1/p

.

A function u belongs to the local Sobolev space H1,p
loc (Ω) if it belongs to H1,p(K) for every

compactly contained subset K of Ω. Moreover, the Sobolev space with zero boundary values
H1,p

0 (Ω) is defined as the completion of C∞
0 (Ω) with respect to the Sobolev norm.

The parabolic Sobolev space Lp(t1, t2; H1,p(Ω)), with t1 < t2, is the space of functions
u(x, t) such that, for almost every t ∈ (t1, t2) the function u(·, t) belongs to H1,p(Ω) and∫ t2

t1

∫
Ω
(|u|p + |Du|p) < ∞.

The following result establishes an estimate for the gradient of a certain regular function
v at the points where k < v < l, k, l ∈ R.

Lemma 2.1. Let v ∈ H1,1(K) ∩ C(K) and k, l ∈ R, k < l. There exists a positive constant γ,
depending only on N and p, such that

(l − k) |K ∩ [v > l] | ≤ γ
|K|

|K ∩ [v < k]|

∫
K∩[k<v<l]

|∇v|. (2.1)

The result to come establishes a Sobolev embedding.

Proposition 2.2. There exists a positive constant γ, depending on N, p, and m, such that

∫∫
ΩT

|v|p N+m
N ≤ γp N+m

N

{∫∫
ΩT

|Dv|p
}
×
{

ess sup
0<t<T

∫
Ω
|v|m

} p
N

, (2.2)

for v ∈ L∞(0, T; Lm(Ω)) ∩ Lp(0, T; W1,p
0 (Ω)).

The next result concerns algebraic geometric convergence.

Lemma 2.3. Let (Yn)n be a sequence of positive numbers satisfying

Yn+1 ≤ CbnY1+α
n ,

where C, b > 1 and α > 0. Then (Yn)n converges to zero as n→ ∞, provided

Y0 ≤ C−1/αb−1/α2
.

All these results can be found in [2]. The following algebraic result can be found in [1] and
in [11], for 0 < q < 1 and q > 1, respectively.
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Lemma 2.4. For any q > 0, there exists a positive constant γ, depending on q, such that for all
a, b ∈ R

1
γ
|bq − aq| ≤ (|a|+ |b|)q−1 |b− a| ≤ γ |bq − aq| , (2.3)

where

bq =

{
|b|q−1b, b 6= 0,
0, b = 0.

As it will be made clearer in the section to come, in order to deduce appropriate energy
estimates we’ll have to work with the functions

g±(u, k) = ±q
∫ u

k
|s|q−1(s− k)± ds,

for which we need lower and upper bounds. This is the content of the next result (although
the proof follows quite closely the one presented in [5] we decided to presented it for the sake
of completeness).

Lemma 2.5. There exists a positive constant γ, depending on q, such that for all u, k ∈ R, the following
holds

1
γ
(|u|+ |k|)q−1 (u− k)2

± ≤ g±(u, k) ≤ γ (|u|+ |k|)q−1 (u− k)2
±. (2.4)

Proof. We will present the proof for g+(u, k), the other case can be treated in an analogous
way.

Observe that it is enough to considere u, k ∈ R, with u > k, since otherwise g+(u, k) = 0.
So, considering u > k, on the one hand

g+(u, k) = q
∫ u

k
|s|q−1(s− k)+ ds

≥ q
∫ u

k+u
2

|s|q−1(s− k) ds

≥ q
u− k

2

∫ u

k+u
2

|s|q−1 ds

=
u− k

2

(
|u|q−1 u−

∣∣∣∣ k + u
2

∣∣∣∣q−1 k + u
2

)

≥ (u− k)2

γ

(∣∣∣∣ k + u
2

∣∣∣∣+ |u|)q−1

≥ 1
γ
(u− k)2

+ (|u|+ |k|)q−1 ;

on the other hand

g+(u, k) ≤ (u− k) q
∫ u

k
|s|q−1 ds

≤ γ(u− k)2
+(|u|+ |k|)q−1.

The last inequalities in both lower and upper estimates were obtained realizing that

|u|+ |k|
2

≤
∣∣∣∣ k + u

2

∣∣∣∣+ |u| ≤ 2(|u|+ |k|)

and using (2.3).
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Definition of weak solution and Notion of parabolicity

In what follows we state what we mean by a local weak solution to (1.1).

Definition 2.6. A measurable function

u ∈ C(0, T; Lq+1
loc (Ω)) ∩ Lp

loc(0, T; H1,p
loc (Ω))

is a weak sub(super)solution to equation (1.1) in Ω× (0, T] if, for any compact K ⊂ Ω and for
almost every 0 < t1 < t2 < T, it satisfies

∫
K
[uq ϕ (x, t)]t2

t1
+
∫ t2

t1

∫
K

(
|Du|p−2Du · Dϕ− uq ϕt

)
≤ (≥) 0, (2.5)

for every nonnegative test function

ϕ ∈ H1,q+1
loc (0, T; Lq+1(K)) ∩ Lp

loc(0, T; H1,p
0 (K)).

A weak solution to (1.1) is a function that is both a weak subsolution and a weak supersolution
to (1.1).

Remark 2.7. Observe that the regularity assumption on u and on test functions η guarantee
the convergence of the integrals appearing in (2.5).

In the case 0 < q < 1, one can consider, and thereby recover, the regularity assumption on
u presented for the p-Laplacian, that is, u ∈ C(0, T; L2

loc(Ω)) ∩ Lp
loc(0, T; H1,p

loc (Ω)).

Equation (1.1) presents two interesting and relevant features: one is that the nonlinearity
exhibit by the time derivative part does not allow us to add constants to the solution and
still have a solution; the other one regards the notion of parabolicity (which does not come
directly from the differential equation). Taking this into account, we say that equation (1.1) is
parabolic if

for all k ∈ R, whenever u is a weak sub(super)solution, the function k ± (u− k)± is a
local weak sub(super)solution,

where
(u− k)− = max{0, k− u}, (u− k)+ = max{0, u− k},

and
k− (u− k)− = min{u, k}, and k + (u− k)+ = max{u, k}.

The following result asserts that equation (1.1) is a parabolic equation. The proof follows
closely the one presented in [2], for the p-Laplacian equation, and also the one presented in
[5] for the Trudinger’s equation.

Lemma 2.8. Let u be a local weak sub(super)solution to (1.1). Then for all k ∈ R, the truncated
functions k± (u− k)± are local weak sub(super)solutions to (1.1).

Proof. Let (x0, t0) be an interior point of ΩT, which by translation we will assume (x0, t0) =

(0, 0). Let u be a subsolution to (1.1) and consider a real number k ∈ R (the case of a superso-
lution can be treat analogously).
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It is well known that the time derivative ∂tu has to be avoided (its notion may not even
exist in a Sobolev sense) and so we use the regularization, proposed by Kinnunen and
Lindqvist [17],

u?(x, t) =
1
σ

∫ t

0
e

s−t
σ u(x, s) ds, σ > 0, (2.6)

to overcome this difficulty.
The mollified version of (2.5) is then given by∫∫

ΩT

∂t ((uq)?) ϕ +
(
|Du|p−2Du

)? · Dϕ ≤
∫

Ω
uq(x, 0)

(
1
σ

∫ T

0
e−

s
σ ϕ(x, s) ds

)
(2.7)

for all 0 ≤ η ∈ Lp(0, T; W1,p
0 (Ω)) ∩ Lq+1(ΩT).

Consider the test function

ϕ(x, t) = ξ p(x, t)ψε(t)
(u− k)+

(u− k)+ + h
, h, ε > 0,

being ξ ∈ C1(Q(τ, R)), verifying 0 ≤ ξ ≤ 1 and vanishing on the lateral boundary of Q(τ, R);
and ψε(t) a piecewise smooth cutoff function defined by

ψε(t) =



0, −τ ≤ t ≤ t1 − ε,

1 + t−t1
ε , t1 − ε ≤ t ≤ t1,

1, t1 ≤ t ≤ t2,

1− t−t2
ε , t2 ≤ t ≤ t2 + ε,

0, t2 + ε ≤ t ≤ 0.

Let vσ be such that (vœ)
q = (uq)?.

The parabolic and elliptic terms appearing in (2.7) will be treated separately. As for the
parabolic term∫∫

ΩT

∂t ((uq)?) ϕ =
∫∫

Q(τ,R)
∂t
(
(vœ)

q) ξ pψε

(
(vσ − k)+

(vσ − k)+ + h

)
+
∫∫

Q(τ,R)
∂t
(
(vœ)

q) ξ pψε

(
(u− k)+

(u− k)+ + h
− (vσ − k)+

(vσ − k)+ + h

)
.

By observing that

∂t

(∫ (vœ)q

kq

(s
1
q − k)+

(s
1
q − k)+ + h

ds

)
= ∂t

(
(vœ)

q) (vσ − k)+
(vσ − k)+ + h

and

∂t
(
(vœ)

q) = ∂t ((uq)?) =
uq − (vœ)

q

σ
,

the second integral appearing in the right hand side of the previous integral identity is non-

negative, since both factors have the same signal due the fact that f (s) = (s1/q−k)+
(s1/q−k)++h is a mono-

tone nondecreasing function. As for the first integral, note that

∂t
(
(vœ)

q) ( (vσ − k)+
(vσ − k)+ + h

)
= ∂t

(∫ (vœ)q

kq

(s
1
q − k)+

(s
1
q − k)+ + h

ds

)

= ∂t

(
kq + q

∫ vσ

k

(s− k)+
(s− k)+ + h

|s|q−1 ds
)

def
= ∂t (I(vσ, k, h,+)) .
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Gathering these informations we arrive at∫∫
ΩT

∂t ((uq)?) ϕ ≥
∫∫

Q(τ,R)
∂t (I(vœ, k, h,+)) ξ pψε

= −
∫∫

Q(τ,R)
I(vœ, k, h,+)

{
ξ pψ′ε + ∂t (ξ

p)ψε

}
.

The regularity assumptions considered allow us to, first pass to limit as σ → 0, and then let
ε→ 0, getting thereby the inferior bound

−
∫∫

Q(τ,R)
I(u, k, h,+)∂t (ξ

p)−
∫

KR×{t2}
I(u, k, h,+)ξ p +

∫
KR×{t1}

I(u, k, h,+)ξ p.

As for the elliptic term, we start by letting σ→ 0 and then ε→ 0 to arrive at∫ t2

t1

∫
KR

|Du|p−2Du ·
(

ξ p (u− k)+
(u− k)+ + h

)
=
∫ t2

t1

∫
KR

|Du|p−2Du · D(ξ p)
(u− k)+

(u− k)+ + h

+
∫ t2

t1

∫
KR

|D(u− k)+|p
h

((u− k)+ + h)2 ξ p

≥
∫ t2

t1

∫
KR

|Du|p−2Du · D(ξ p)
(u− k)+

(u− k)+ + h
,

since the last integral appearing in the integral identity is nonnegative. The proof is complete
once we let h→ 0; just take notice that

I(vσ, k, h,+)→
(

kq + q
∫ u

k
sq−1 ds

)
χ[u>k] = (k + (u− k)+)

q , as h→ 0

Remark 2.9. The purpose of this work is to present (and prove) the expansion of positivity
for the nonnegative, local, weak solutions to (1.1). The results to come will be stated in this
context (note that for u ≥ 0, uq = uq).

3 Energy estimates and DeGiorgi-type lemmas

The following result comprehends local integral estimates that are the starting point to the
proof of the expansion of positivity, the so called energy estimates.

Proposition 3.1. Let u be a nonnegative, local, weak sub(super)solution to (1.1) in ΩT in the sense
of (2.5). There exists a positive constant C, depending on N, p and q, such that for every cylinder
(xo, to) + Q−(τ, R) ⊂ ΩT, every real number k ∈ R and every piecewise smooth nonnegative cutoff
function ξ vanishing on the the lateral boundary of (x0, t0) + Q(τ, R) one has

ess sup
t0−τ<t<t0

∫
KR(x0)

g±(u, k)ξ p +
∫∫

(x0,t0)+Q(τ,R)
|D(u−k)±|pξ p

≤
∫

KR(x0)×{t0−τ}
g±(u, k)ξ p + C

∫∫
(x0,t0)+Q(τ,R)

{
(u−k)p

±|Dξ|p + g±(u, k) |∂t (ξ
p)|
}

.
(3.1)

Proof. The proof follows quite closely the one presented in Lemma 2.8. In fact, we start
by considering a nonnegative, local, weak subsolution u to (1.1) and then work with the
mollified version (2.7), taking as test function ϕ(x, t) = ξ p(x, t)ψε(t)(u − k)+, where ξ and
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ψε are precisely the same as before. Observe that ϕ is an admissible test function due to the
regularity assumptions on u.

By considering vσ to be such that (vσ)
q = (uq)? we get

∫∫
ΩT

∂t
(
(vσ)

q) ϕ +
(
|Du|p−2Du

)? · Dϕ ≤
∫

Ω
uq(x, 0)

(
1
σ

∫ T

0
e−

s
σ ϕ(x, s) ds

)
.

The left-hand side is estimated as follows. The term evolving the time derivative∫∫
ΩT

∂t
(
(vσ)

q) ϕ =
∫∫

Q(τ,R)
∂t
(
(vσ)

q) ξ pψε(vσ − k)+

+
∫∫

ΩT

∂t
(
(vσ)

q) ((u− k)+ − (vσ − k)+) ξ pψε

=
∫∫

ΩT

∂t (g+(vσ, k)) ξ pψε

+
∫∫

ΩT

uq − (vσ)q

σ
((u− k)+ − (vσ − k)+) ξ pψε

≥
∫∫

ΩT

∂t (g+(vσ, k)) ξ pψε

= −
∫∫

ΩT

g+(vσ, k)∂t (ξ
p)ψε −

∫∫
ΩT

g+(vσ, k)ξ pψ′ε

The inequality relies on the fact that f1(s) = (s− k)+ and f2(s) = sq, q > 0, are monotone
increasing functions. We now let σ→ 0 and thereby get

−
∫ t2+ε

t1−ε

∫
KR(x0)

g+(u, k)∂t (ξ
p)ψε −

1
ε

∫ t1

t1−ε

∫
KR(x0)

g+(u, k)ξ p +
1
ε

∫ t2+ε

t2

∫
KR(x0)

g+(u, k)ξ p,

since u ∈ Lq+1 ⊃ Lq we have (vσ) → u in Lq. We then pass to the limit as ε goes to zero,
obtaining

−
∫ t2

t1

∫
KR(x0)

g+(u, k)∂t (ξ
p)−

∫
KR(x0)×{t1}

g+(u, k)ξ p +
∫

KR(x0)×{t2}
g+(u, k)ξ p

and this completes the estimate of the parabolic term. As for the integral evolving the space
derivatives, we start by letting σ → 0, then we apply Young’s inequality to get the inferior
estimate

1
2

∫∫
ΩT

|D(u− k)+|pξ pψε − (2(p− 1))p−1
∫∫

ΩT

(u− k)p
+|Dξ|pψε

and finally, by letting ε→ 0, we obtain

1
2

∫ t2

t1

∫
KR(x0)

|D(u− k)+|pξ p − (2(p− 1))p−1
∫ t2

t1

∫
KR(x0)

(u− k)p
+|Dξ|p.

As for the right-hand side,

∫
Ω

uq(x, 0)
(

1
σ

∫ T

0
e−

s
σ ϕ(x, s) ds

)
→
∫

Ω
uq(x, 0)ϕ(x, 0) = 0, as σ→ 0.

Combining all the previous estimates we have
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∫
KR(x0)×{t2}

g+(u, k)ξ p +
1
2

∫ t2

t1

∫
KR(x0)

|D(u− k)+|pξ p

≤
∫

KR(x0)×{t1}
g+(u, k)ξ p +

∫ t2

t1

∫
KR(x0)

g+(u, k)∂t (ξ
p)

+ (2(p− 1))p−1
∫ t2

t1

∫
KR(x0)

(u− k)p
+|Dξ|p

≤
∫

KR(x0)×{t1}
g+(u, k)ξ p +

∫ t0

t0−τ

∫
KR(x0)

g+(u, k)|∂t (ξ
p) |

+ (2(p− 1))p−1
∫ t0

t0−τ

∫
KR(x0)

(u− k)p
+|Dξ|p.

By letting t1 → t0 − τ and recalling u ∈ C(Lq+1), we have∫
KR(x0)×{t1}

g+(u, k)ξ p →
∫

KR(x0)×{t0−τ}
g+(u, k)ξ p;

as for the left-hand side of the previous inequality we reason as follows: on the one hand, for
t0 − τ < t2 < t0,∫

KR(x0)×{t2}
g+(u, k)ξ p +

1
2

∫ t2

t0−τ

∫
KR(x0)

|D(u− k)+|pξ p ≥
∫

KR(x0)×{t2}
g+(u, k)ξ p,

and we then take the essential supremum over the set t0 − τ < t2 < t0; on the other hand,∫
KR(x0)×{t2}

g+(u, k)ξ p +
1
2

∫ t2

t0−τ

∫
KR(x0)

|D(u− k)+|pξ p

≥ 1
2

∫ t2

t0−τ

∫
KR(x0)

|D(u− k)+|pξ p → 1
2

∫ t0

t0−τ

∫
KR(x0)

|D(u− k)+|pξ p,

as t2 → t0.

A final remark: to prove the estimate for supersolutions it suffices to take ϕ(x, t) =

ξ p(x, t)ψε(t)(u− k)− and proceed in a similar way.

The next two results are DeGiorgi-type lemmas, being the second one a variant involving
information concerning initial data. They are presented for nonnegative, locally bounded,
weak supersolutions to (1.1), however, one can state (and prove) similar results for nonnega-
tive, locally bounded, weak subsolutions to (1.1). We recall that the local boundedness of the
nonnegative, local, weak solutions u to (1.1) was obtained in [13] and [14].

To simplify the writing consider

(y, s) + Q−(λ(2ρ)p, 2ρ) = (y, s) + Q−2ρ(λ)

(y, s) + Q+(λ(2ρ)p, 2ρ) = (y, s) + Q+
2ρ(λ)

Lemma 3.2. Let u be a nonnegative, locally bounded, weak supersolution to (1.1) in ΩT. Let M̃ be a
positive number. There exists a constant ν̃ depending on the N, p, q and on M̃ and λ, such that, if∣∣∣(y, s) + Q−2ρ(λ) ∩

[
u < M̃

]∣∣∣ ≤ ν̃
∣∣∣Q−2ρ(λ)

∣∣∣
then

u ≥ M̃
2

a.e. in (y, s) + Q−ρ (λ).
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Proof. Without loss of generality take (y, s) = (0, 0). Construct decreasing sequences of num-
bers (radii and levels, respectively), for n = 0, 1, . . . ,

ρn = ρ

(
1 +

1
2n

)
, kn =

M̃
2

(
1 +

1
2n

)
and define Qn = Q−ρn

(λ) and Kn = Kρn . Consider the cutoff function 0 ≤ ξ(x, t) = ξ1(x)ξ2(t) ≤
1 defined in Qn and such that

ξ1(x) = 1 in Kn+1; ξ1(x) = 0 in RN \ Kn; |Dξ| ≤ 2n+1

ρ
;

ξ2(t) = 1 for t ≥ −λρ
p
n+1; ξ2(t) = 0 for t ≤ −λρ

p
n; 0 ≤ ∂tξ2 ≤

2p(n+1)

λρp .

From the energy estimates (3.1) written over Qn for the truncated functions (u − kn)−, and
recalling the estimates for g−(u, kn) given in (2.4), we obtain

M̃q−1

γ(q)
ess sup
−λρ

p
n<t≤0

∫
Kn×{t}

(u− kn)
2
−ξ p +

∫∫
Qn

|D(u−kn)−|pξ p

≤ ess sup
−λρ

p
n<t≤0

∫
Kn×{t}

g−(u, kn)ξ
p +

∫∫
Qn

|D(u−kn)−|pξ p

≤ C(p, q) 2p(n+1) kp
n

ρp

{
1 +

kq+1−p
n

λ

}
|An|

≤ C(p, q) 2p(n+1) M̃p

ρp

{
1 +

M̃q+1−p

λ

}
|An|,

for |An| = |Qn ∩ [u < kn]|.
Observe that, by means of Hölder’s inequality together with the Sobolev embedding (2.2),

M̃
2n+2 |An+1| = (kn − kn+1)|An+1| ≤

∫∫
Qn+1

(u− kn)−

≤ C(N, p)
(∫∫

Qn

|D(u− kn)−ξ|p
) N

p(N+2)

×

 ess sup
−λρ

p
n<t≤0

∫
Kn×{t}

(u− kn)
2
−ξ p

 1
N+2

|An|1−
N

p(N+2)

and then, recalling the previous estimates and taking Yn = |An|
|Qn| , we get the recursive algebraic

estimate

Yn+1 ≤ C(N, p, q)
(

M̃p−(q+1)λ
) 1

N+2
(

1 +
M̃q+1−p

λ

) N+p
p(N+2)

bn Y
1+ 1

N+2
n , for b = 2

2N+p+2
N+2 .

The conclusion follows from the fast convergence Lemma 2.3 once we consider

ν̃ = C(N, p, q)−(N+2)b−(N+2)2
M̃q+1−p

λ(
1 + M̃q+1−p

λ

) N+p
p

.
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Lemma 3.3. Let u be a nonnegative, locally bounded, weak supersolution to (1.1) in ΩT. Let M̃ be a
positive number such that

u(x, s) ≥ M̃ for a.e. x ∈ K2ρ(y) (3.2)

and ∣∣∣(y, s) + Q+
2ρ(λ) ∩ [u < M̃]

∣∣∣ ≤ ν0
M̃q+1−p

λ

∣∣∣Q+
2ρ(λ)

∣∣∣ (3.3)

for ν0 depending only upon N, p and q. Then

u ≥ M̃
2

a.e. in Kρ(y) + (s, s + λ(2ρ)p].

Proof. Take (y, s) = (0, 0), construct decreasing sequences of numbers (radii and levels, re-
spectively),

ρn = ρ

(
1 +

1
2n

)
, kn =

M̃
2

(
1 +

1
2n

)
, n = 0, 1, . . .

and take a time independent cutoff function 0 ≤ ξ(x) ≤ 1 defined in Kρn and, such that, ξ = 1
in Kρn+1 and |Dξ| ≤ 2n+1/ρ.

Keeping in mind that u verifies (3.2), from the energy estimates (3.1) written over Qn =

Kρn × (0, λ(2ρ)p], for the truncated functions (u− kn)−, we obtain, for all t ∈ (0, λ(2ρ)p]

M̃q−1

γ(q)

∫
Kρn×{t}

(u− kn)
2
−ξ p +

∫∫
Qn

|D(u−kn)−|pξ p

≤
∫

Kρn×{t}
g−(u, kn)ξ

p +
∫∫

Qn

|D(u−kn)−|pξ p

≤ C(p)
∫∫

Qn

(u−kn)
p
−|Dξ|p ≤ C(p) 2np M̃p

ρp |An|,

for |An| = |Qn ∩ [u < kn]|. Arguing in a similar way as in the proof of Lemma 3.2, we deduce

M̃
2n+2 |An+1| ≤ C(N, p)

(∫∫
Qn

|D(u− kn)−ξ|p
) N

p(N+2)

×
(

ess sup
0<t<λ(2ρ)p

∫
Kρn×{t}

(u− kn)
2
−ξ p

) 1
N+2

|An|1−
N

p(N+2)

and then, recalling the previous estimates and considering Yn = |An|
|Qn| , we arrive at

Yn+1 ≤ C(N, p, q) M̃
p−(q+1)

N+2 λ
1

N+2 bn Y
1+ 1

N+2
n , b = 2

2N+p+2
N+2 .

The proof is completed once we take ν0 = C(N, p, q)−(N+2)b−(N+2)2
.

4 Expansion of positivity

As it is now well known the expansion of positivity is a property of nonnegative supersolutions,
to both stationary and evolutionary equations, that allows one to get Harnack inequalities
and to prove regularity results. Heuristically speaking it asserts that the information on the
measure of the positivity set of u, at a certain time level s over a cuber Kρ(y), can be expanded
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to the measure of the positivity set of u both in space (say from Kρ(y) to K2ρ(y)) and in time
(from the time level s to all further time levels till s + θρp).

The expansion of positivity is based on energy estimates and DeGiorgi-type lemmas and
comprehends two steps. The first step consists on the propagation of the positivity informa-
tion on a cube Kρ(y)× {s} to upper times levels. Not only this is the easiest step but also it
holds for all values of p > 1 and q > 0. On the second step, one derives spacial propagation
of positivity from the cube Kρ(y) to the bigger cube K2ρ(y). This is much more demanding
and the proof has to be performed separately for the cases q + 1− p > 0 and q + 1− p < 0.

In what follows we adopt the technical scheme devised by DiBenedetto, Gianazza and
Vespri for degenerate and singular p-Laplacian parabolic equations – the results can be found
in [3]: Chapter 4, Sections 4 and 5, respectively.

Along this section we will assume that u is a nonnegative, locally bounded, weak super-
solution to (1.1) in ΩT, for p > 1 and q > 0.

Lemma 4.1. Assume that, for some (y, s) ∈ ΩT and some ρ > 0,∣∣Kρ(y) ∩ [u(·, s) > M]
∣∣ ≥ α

∣∣Kρ(y)
∣∣ , (4.1)

for some M > 0 and some 0 < α < 1. Then there exist ε, δ ∈ (0, 1), depending on α and on N, p and
q, such that ∣∣Kρ(y) ∩ [u(·, t) > εM]

∣∣ ≥ α

2

∣∣Kρ(y)
∣∣ , (4.2)

for all t ∈ (s, s + δMq+1−pρp].

Proof. Without loss of generality we may take (y, s) = (0, 0). Consider the cylinder Q =

Kρ × (0, δMq+1−pρp] and assume Q ⊂ ΩT (take ρ as smaller as needed). Write the energy
estimates (3.1) for the cylinder Q, the level k = M and the smooth time independent cutoff
function 0 ≤ ξ = ξ(x) ≤ 1 defined in Kρ, vanishing on the boundary of Kρ and verifying, for
some σ ∈ (0, 1),

ξ = 1 in K(1−σ)ρ and |Dξ| ≤ 1
σρ

.

We then have, for all t ∈ (0, δMq+p−1ρp],∫
K(1−σ)ρ×{t}

g−(u, k) ≤
∫

Kρ×{t}
g−(u, k)ξ p

≤
∫

Kρ×{0}
g−(u, k)ξ p + C(p)

∫∫
Q
(u− k)p

−|Dξ|p

≤
∫

Kρ×{0}

(
q
∫ M

u
sq−1(M− s) ds

)
ξ pχ[u<M] + C(p)

Mp

σpρp |Q|.

The left-hand side is estimated by considering the integration over the smaller cube K(1−σ)ρ ∩
[u(·, t) < εM]∫

K(1−σ)ρ×{t}
g−(u, k) =

∫
K(1−σ)ρ×{t}

(
q
∫ M

u
sq−1(M− s) ds

)
χ[u<M]

≥
∫

K(1−σ)ρ×{t}

(
q
∫ M

u
sq−1(M− s) ds

)
χ[u<εM]
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≥
∫

K(1−σ)ρ×{t}

(
q
∫ M

εM
sq−1(M− s) ds

)
χ[u<εM]

=
∣∣∣K(1−σ)ρ ∩ [u(·, t) < εM]

∣∣∣×(q
∫ M

εM
sq−1(M− s) ds

)
and then, for all t ∈ (0, δMq+p−1ρp],

∣∣∣K(1−σ)ρ ∩ [u(·, t) < εM]
∣∣∣ ≤

∫
Kρ×{0}

(
q
∫ M

u sq−1(M− s) ds
)

ξ pχ[u<M]

q
∫ M

εM sq−1(M− s) ds

+ C(p)
δMq+1

σp
1

q
∫ M

εM sq−1(M− s) ds
|Kρ|

≤
{
(γ(q)εq + 1)(1− α) + C(p, q)

δ

σp

}
|Kρ|.

These inequalities were obtained arguing as follows: due to (2.4) and considering 0 < ε < 1
2

q
∫ M

εM
sq−1(M− s) ds ≥ 1

2γ(q)
Mq+1(1− ε)2(1 + ε)q−1 ≥ Mq+1

γ(q)
;

and by making use of the same inequality (2.4) and recalling (4.1)∫
Kρ×{0}

(
q
∫ M

u sq−1(M− s) ds
)

ξ pχ[u<M]

q
∫ M

εM sq−1(M− s) ds

=

∫
Kρ×{0}

(
q
∫ εM

u sq−1(M− s) ds
)

ξ pχ[u<M]

q
∫ M

εM sq−1(M− s) ds
+
∫

Kρ×{0}
χ[u<M]

≤
{ ∫ εM

0 sq−1M ds∫ M
εM sq−1(M− s) ds

+ 1

}
(1− α)|Kρ|

≤ (γ(q)εq + 1)(1− α)|Kρ|.

Therefore, for all t ∈ (0, δMq+p−1ρp],

∣∣Kρ ∩ [u(·, t) < εM]
∣∣ ≤ {(γ(q)εq + 1)(1− α) + C(p, q)

δ

σp + σN
}
|Kρ|.

The proof is complete once we choose σ ∈ (0, 1) such that Nσ ≤ α
8 ; then choose

δ ∈ (0, 1) such that C(p, q)
δ

σp ≤
α

8

and finally choose

ε ∈
(

0,
1
2

)
such that (γ(q)εq + 1)(1− α) ≤ 1− 3

4
α.

Observe that, with theses choices, the parameters δ and ε depend only on α and on N, p, q.
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Expansion of positivity when q + 1 − p > 0

Consider a point (y, s) ∈ ΩT and let ρ > 0 be such that

K16ρ(y)× (s, s + δMq+1−pρp] ⊂ ΩT,

where δ and M are the same positive real numbers presented in Lemma 4.1.

Consider that (4.1) holds. In order to obtain the expansion of positivity, we start to consider
the change of variables: in space, given by z = x−y

ρ and in time, given by

−e−τ =
t− (s + δMq+1−pρp)

δMq+1−pρp ,

which maps the original cylinder K16ρ(y)× (s, s + δMq+1−pρp] into K16 × (0,+∞).
Introduce the new function

v(z, τ) =
u(x, t)

M
e

τ
q+1−p

which verifies
∂τ(vq)− div

(
δ|Dv|p−2Dv

)
=

q
q + 1− p

vq (4.3)

where D denotes de space derivates of v with respect to z.
Keeping in mind that δ and ε are already determined and depend only on N, p, q and on

α, the conclusion of Lemma 4.1 now reads∣∣∣K1 ∩ [v(·, τ) > ε e
τ

q+1−p ]
∣∣∣ ≥ α

2
|K1| , ∀τ > 0

and therefore, once we take τ0 > 0 and consider the level k0 = ε e
τ0

q+1−p , we have

|K1 ∩ [v(·, τ) ≥ k0]| ≥
α

2
|K1| , ∀τ ≥ τ0

and then, for all k ≤ k0,

|K8 ∩ [v(·, τ) ≥ k]| ≥ |K8 ∩ [v(·, τ) ≥ k0]| ≥
α

2
|K1| =

α

21+3N |K8| , ∀τ ≥ τ0. (4.4)

With the time level τ0 and the level k0 we construct the cylinders

Qτ0 = K8 ×
(

τ0 + kq+1−p
0 , τ0 + 2kq+1−p

0

]
⊂ Q̃τ0 = K8 ×

(
τ0, τ0 + 2kq+1−p

0

]
and introduce smaller levels

k j =
k0

2j , for j = 0, 1, . . . , s∗,

where s∗ is to be chosen.
Consider a piecewise smooth cutoff 0 ≤ ξ(x, t) = ξ1(x)ξ2(t) ≤ 1 defined in Q̃τ0 and such

that

ξ1(x) =

{
1 in K8,

0 in RN \ K8,
and |Dξ1| ≤

1
8

and

ξ2(x) =

{
0 τ < τ0,

1 τ ≥ τ0 + kq+1−p
0 ,

and 0 ≤ ∂τξ2 ≤
1

kq+1−p
0

.
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At this stage we perform formally (the accurate way to proceed follows the procedure pre-
sented before when deducing the energy estimates): we start by multiplying (4.3) by
(v− k j)−ξ p and then integrate over Q̃τ0 . Note that the right-hand side is nonnegative, since
v ≥ 0 and q + 1− p > 0, and therefore we have∫∫

Q̃τ0

∂τ (vq) (v− k j)−ξ p + δ
∫∫

Q̃τ0

|Dv|p−2Dv · D
(
(v− k j)−ξ p) ≥ 0.

This integral inequality is equivalent to∫∫
Q̃τ0

∂τ

(
g−(v, k j)

)
ξ p + δ

∫∫
Q̃τ0

|D(v− k j)−|p−2D(v− k j)− · D
(
(v− k j)−ξ p) ≤ 0

from which we get, for all τ ∈ (0, τ0 + 2kq+1−p
0 ],∫∫

Q̃τ0

|D(v− k j)−|pξ p ≤ 1
δ

∫
K8×{τ0}

g−(v, k j)ξ
p +

C(p)
δ

∫∫
Q̃τ0

{
(v− k j)

p
−|Dξ|p + g−(v, k j)∂τ (ξ

p)
}

≤ C(p, q)
δ

kp
j |Q̃τ0 |.

We have used (2.4) to obtain an upper bound to g−(v, k j)

g−(v, k j) ≤ γ(q)(v− k j)
2
−(k j + v)q−1 ≤ γ(q)(k j + v)q+1 ≤ γ(q)kq+1

j

≤ γ(q) kp
j (2k0)

q+1−p.

We now apply inequality (2.1), for the levels k j and k j+1 to arrive at

k j

2

∣∣K8 ∩ [v(·, τ < k j+1]
∣∣ ≤ γ(N)∣∣K8 ∩ [v(·, τ) > k j]

∣∣ ∫K8∩[k j+1<v(·,τ)<k j]
|Dv|.

By integrating the previous inequality in time over (τ0 + kq+1−p
0 , τ0 + 2kq+1−p

0 ], then making
use of Hölder’s inequality and the estimate obtained previously to

∫∫
Q̃τ0
|D(v− k j)−|pξ p, we

get ∣∣Qτ0 ∩ [v < k j+1]
∣∣ ≤ γ(N)

α

(
γ(p, q)

δ

) 1
q

|Qτ0 |
1
p
∣∣Qτ0 ∩ [k j+1 < v < k j]

∣∣ p−1
p .

Take the power p
p−1 and add this inequality for j = 0, 1, . . . , s∗ − 1∣∣∣∣Qτ0 ∩

[
v <

k0

2s∗

]∣∣∣∣ ≤ γ(N, p, q)
α δp

1

s
p−1

p
∗

|Qτ0 |. (4.5)

The “natural” thought now would be to argue in a DeGiorgi fashion (something like what was
done in Lemma 3.2) to conclude that, for an appropriate choice of s∗, this measure theoretical
information (4.5) implies that

v ≥ k0

2s∗+1 in a smaller cylinder,

say K4 × (τ0 + λkq+1−p
0 , τ0 + 2kq+1−p

0 ], for some λ ∈ (0, 1). However, the cylinder’s length
kq+1−p

0 is too big for the level k0
2s∗ at hands; and that is the reason why one needs to work
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within thinner cylinders with length
( k0

2s∗

)q+1−p. That is precisely our purpose in what is to
come.

Assume for now that s∗ is determined. Consider the cylinder Qτ0 sliced into (2s∗)q+1−p

subcylinders of length
( k0

2s∗

)q+1−p (if necessary take a bigger s∗ so that (2s∗)q+1−p is an integer)

Qτ0 =
(2s∗ )q+1−p−1⋃

i=0

Qi

where

Qi = K8 ×
(

Ti
0, Ti

0 +

(
k0

2s∗

)q+1−p
]

for

Ti
0 = τ0 + kq+1−p

0 + i
(

k0

2s∗

)q+1−p

.

In at least one of these subcylinders, say Qi, the previous measure theoretical information (4.5)
holds, that is ∣∣∣∣Qi ∩

[
v <

k0

2s∗

]∣∣∣∣ ≤ γ(N, p, q)
α δp

1

s
p−1

p
∗

|Qi|,

for some i = 0, 1, . . . , (2s∗)q+1−p − 1 . Our goal now is to get a lower bound for v in a cylinder
contained in the upper half of the cylinder Qi, via a DeGiorgi argument. For that purpose, we
consider decreasing sequences of radii, cylinders and levels given by, for n = 0, 1, . . .

4 < Rn = 4
(

1 +
1
2n

)
≤ 8,

Qn = KRn ×
(

Ti
0 +

1
2

(
1− 1

2n

)(
k0

2s∗

)q+1−p

, Ti
0 +

(
k0

2s∗

)q+1−p
]
⊂ Qi,

and
k0

2s∗+1 < kn =
k0

2s∗+1

(
1 +

1
2n

)
≤ k0

2s∗

and cutoff function ξ defined in Qn and such that: 0 ≤ ξ ≤ 1, in Qn, ξ = 0 on parabolic
boundary of Qn, ξ = 1 in Qn+1 and

|Dξ| ≤ 2n and |∂τξ| ≤ 2n+2
(

2s∗

k0

)q+1−p

.

We then write the energy estimates (3.1) for v, over Qn, with k = kn

ess sup
Ti

0<τ<Ti
0+
(

k0
2s∗

)q+1−p

∫
KRn{τ}

g−(v, kn)ξ
p +

∫∫
Qn

|D(v− kn)−|pξ p

≤ C(p, q)
∫∫

Qn

{
(v− kn)

p
−|Dξ|p + g−(v, kn) |∂t (ξ

p)|
}

≤ C(p, q) 2np kp
n |An|,
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where |An| = |Qn ∩ [v < kn]. The last inequality was obtained recalling estimate (2.4). To
estimate from below the integral term presenting g−(v, kn), we use again (2.4) and the fact
that k0

2s∗+1 < kn ≤ k0
2s∗ to arrive at

∫
KRn{τ}

g−(v, kn)ξ
p ≥ 1

γ(q)

(
k0

2s∗

)q−1 ∫
KRn{τ}

(v− kn)
2
−ξ p.

The previous estimate together with the energy estimates, Hölder’s inequality and the
Sobolev embedding (2.2), with m = 2, allows us to get

(kn − kn+1)|An+1| ≤
∫∫

Qn+1

(v− kn)− ≤
∫∫

Qn

(v− kn)−ξ

≤
{∫∫

Qn

((v− kn)−ξ)p N+2
N

} N
p(N+2)

|An|1−
N

p(N+2)

≤ C(N, p, q) 2
N+p
(N+2) n k

N+p
N+2
n

(
2s∗

k0

) q−1
N+2

|An|1+
1

N+2

and from here, by considering Yn =
|An|
|Qn|

, we deduce the algebraic estimate

Yn+1 ≤ C(N, p, q) bn Y
1+ 1

N+2
n , for b = 2

2N+p+2
N+2 > 1.

The algebraic convergence Lemma 2.3 says that

if Y0 ≤ C(N.p, q)−(N+2)b−(N+2)2
, then Yn → 0, as n→ +∞;

so we just need to choose s∗ such that

γ(N, p, q)
α δp

1

s
p

p−1
∗

= C(N, p, q)−(N+2)b−(N+2)2
.

Remark 4.2. Observe that with this choice, s∗ only depends on N, p, q and α (since δ is already
determined and depends on these parameters as well).

The length of the cylinder Qi is exactly the one needed so that, when arguing in a DeGiorgi
fashion, given by Lemma 3.2, there is an independence of ν0 on the levels M̃ and the cylinder’s
length λ. In fact, in our case M̃ = k0

2s∗ and λ =
( k0

2s∗

)q+1−p.

We thereby obtain the lower bound

v ≥ k0

2s∗+1 a.e. in K4 ×
(

Ti
0 +

1
2

(
k0

2s∗

)q+1−p

, Ti
0 +

(
k0

2s∗

)q+1−p
]

;

in particular

v(, τ1) ≥
k0

2s∗+1 a.e. in K4,

for

τ0 + kq+1−p
0 < Ti

0 +
1
2

(
k0

2s∗

)q+1−p

< τ1 ≤ Ti
0 +

(
k0

2s∗

)q+1−p

< τ0 + 2kq+1−p
0 .

Returning to the original coordinates and function, we may conclude that

u(, t1) ≥ e−
τ1

q+1−p
k0

2s∗+1 M =
ε

2s∗+1 e
τ0−τ1
q+1−p M a.e. in K4ρ(y)
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where t1 is defined by

−e−τ1 =
t1 − (s + δMq+1−pρp)

δMq+1−pρp ⇐⇒ t1 = s + (1− e−τ1)δMq+1−pρp.

We are two steps away to conclude the expansion of positivity. First, by considering M̃ =
ε

2s∗+1 e
τ0−τ1
q+1−p M and choosing λ = ν0M̃q+1−p, where ν0 = ν0(N, p, q), the assumptions of the

variant DeGiorgi-type Lemma 3.3 are verified and we may conclude

u ≥ M̃
2

=
ε

2s∗+2 e
τ0−τ1
q+1−p M a.e. in K2ρ(y)

for all times

t1 ≤ t ≤ t1 + λ(2ρ)p.

Finally, we choose τ0 such that

t1 + λ(2ρ)p = s + δMq+1−pρp,

that is, keeping in mind the expressions of t1 and of λ,

eτ0 = δCN+22(N+2)2−p
(

2s∗+1

ε

)q+1−p

and from the range of τ1 we have

t1 < s +
(

1− e−τ0 − 2εq+1−peτ0
)

δMq+1−pρp ≤ s +
δ

2
Mq+1−pρp.

Gathering these last estimates, we get

u(·, t) ≥ ε

2s∗+2 e−
2kq+1−p

0
q+1−p M a.e. in K2ρ(y),

for all

t ∈
(

s + (1− λ)δMq+1−pρp, s + δMq+1−pρp
]

.

We have proved

Proposition 4.3. Let u is a nonnegative, local, weak supersolution to (1.1) in ΩT. Assume that, for
some (y, s) ∈ ΩT and some ρ > 0,∣∣Kρ(y) ∩ [u(·, s) ≥ M]

∣∣ ≥ α
∣∣Kρ(y)

∣∣ ,

for some M > 0 and some α ∈ (0, 1). Then there exist δ, λ, η ∈ (0, 1), depending on N, p, q and α,
such that

u(·, t) ≥ ηM a.e. in K2ρ(y)

and for all t ∈
(
s + (1− λ)δMq+1−pρp, s + δMq+1−pρp] .
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Expansion of positivity when q + 1 − p < 0

Consider a point (y, s) ∈ ΩT and let ρ > 0 be such that

K8ρ(y)×
(

s, s + δ
bp−(q+1)

(ηM)p−(q+1)
ρp

]
⊂ ΩT,

where M is a given positive number and δ, η, b are positive numbers to be determined.

Proposition 4.4. Let u is a nonnegative, local, weak supersolution to (1.1) in ΩT. Assume that (4.1)
holds, for some (y, s) ∈ ΩT, ρ > 0 and α ∈ (0, 1). Then there exist δ, η, b ∈ (0, 1), depending on
N, p, q and α, such that

u(·, t) ≥ ηM a.e. in K2ρ(y)

and for all t ∈ (s + δ
2

bp−(q+1)

(ηM)p−(q+1) ρp, s + δ bp−(q+1)

(ηM)p−(q+1) ρp].

Proof. Assume that (4.1) is verified. Then, for all 0 < σ0 ≤ 1, one also has∣∣Kρ(y) ∩ [u(·, s) > σ0M]
∣∣ ≥ α

∣∣Kρ(y)
∣∣ .

Consider the energy estimates written over

Kρ(y)× (s, s + δ(σ0M)q+1−pρp]

for the levels k = σ0M. By proceeding as in the proof of Lemma 4.1, we obtain the same
parameters ε and δ, depending on N, p, q and α, for which∣∣Kρ(y) ∩ [u(·, t) > ε σ0M]

∣∣ ≥ α

2

∣∣Kρ(y)
∣∣ , (4.6)

for all t ∈ (s, s + δ (σ0M)q+1−pρp].
For τ ≥ 0, consider the number

στ = e−
τ

p−(q+1) ≤ 1.

Since (4.6) holds for all 0 < σ0 ≤ 1, it also holds for στ∣∣Kρ(y) ∩ [u(·, t) > ε στ M]
∣∣ ≥ α

2

∣∣Kρ(y)
∣∣ , ∀t ∈ (s, s + δ (στ M)q+1−pρp]

and, in particular,∣∣∣Kρ(y) ∩ [u(·, s + δ (στ M)q+1−pρp) > ε στ M]
∣∣∣ ≥ α

2

∣∣Kρ(y)
∣∣ .

Introduce the change of variable

eτ = (t− s)
Mp−(q+1)

δρp

and the define the new function

v(x, τ) =
e

τ
p−(q+1)

M
(δρp)

1
p−(q+1) u(x, t).
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In this new setting, v is a solution to

∂τ (vq)− div
(
|Dv|p−2Dv

)
=

q
p− (q + 1)

vq ≥ 0

and the measure theoretical information on u is translated into the following measure theo-
retical information on v∣∣∣Kρ(y) ∩

[
v(·, τ) > ε (δρp)

1
p−(q+1)

]∣∣∣ ≥ α

2

∣∣Kρ(y)
∣∣ , τ ≥ 0.

Therefore one gets, for all τ ≥ 0∣∣K4ρ(y) ∩ [v(·, τ) > k0]
∣∣ ≥ α

2 4N

∣∣K4ρ(y)
∣∣ ,

for
k0 = ε (δρp)

1
p−(q+1) (completely determined).

Consider the smaller levels

k j =
k0

2j , for j = 0, 1, . . . s∗ (s∗ to be chosen),

take the stretching factor θ as

θ =

(
k0

2s∗

)q+1−p

≥ kq+1−p
j , for all j = 0, 1, . . . , s∗, (4.7)

construct the cylinders

Q = (y, 0) + Q+
8ρ(θ) and Q̃ = K4ρ(y)× (θ(4ρ)p, θ(8ρ)p], Q̃ ⊂ Q

and take ϕ = (v− k)−ξ p as a test function, where ξ ∈ [0, 1] is a smooth cutoff function defined
in Q, vanishing on its parabolic boundary and verifying

ξ = 1 in Q̃, |Dξ| ≤ 1
4ρ

and |∂τξ| ≤ 1
θ(4ρ)p .

For these choices the arrive at∫∫
Q̃
|D(v− k j)−|p ≤

∫∫
Q
|D(v− k j)−|pξ p

≤ C(p)
kp

j

(4ρ)p

1 +
kq+1−p

j

θ

 |Aj| ≤ C(p)
kp

j

(4ρ)p |Aj|

due to the definition of θ and taking |Aj| = |Q ∩ [v < k j]|. We then proceed in a similar way
as in the case q + 1− p > 0, to find out that∣∣∣∣Q̃ ∩ [v <

k0

2s∗

]∣∣∣∣ ≤ C(N, p, q)
α

1

(s∗)
p−1

p

∣∣Q̃∣∣ .

This estimate on the measure of the set where v is below the level k0
2s∗ will be the starting point

to argument in a DeGiorgi fashion in a backward cylinder, like in Lemma 3.2. Along the way,
the length θ of the cylinder will be determined. More precisely, consider the cylinder

(y, τ∗) + Q−4ρ(θ) = K4ρ(y)× (τ∗ − θ(4ρ)p, τ∗] ⊂ Q̃ for τ∗ = θ(8ρ)p
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and the sequences of numbers

2ρ < ρn = 2ρ

(
1 +

1
2n

)
≤ 4ρ,

k0

2s∗+1 < kn =
k0

2s∗+1

(
1 +

1
2n

)
≤ k0

2s∗

and of nested and shrinking cylinders

Q−n = (y, τ∗) + Q−ρn
(θ),

for n = 0, 1, . . . Take a cutoff function 0 ≤ ξ ≤ 1 defined in Q−n and such that: ξ = 0 on the
parabolic boundary of Q−n , ξ = 1 in Q−n+1 and

|Dξ| ≤ 2n+1

ρ
and |∂τξ| ≤ C

2np

θρp

and write the energy estimates (3.1) for v, over Q−n , with k = kn. Recalling the estimates (2.4)
on g−(v, kn) and the definition (4.7) of θ, we obtain

ess sup
τ∗−θ(ρn)p<τ<τ∗

∫
Kρn×{τ}

g−(v, kn)ξ
p +

∫∫
Q−n
|D(v− kn)−|pξ p

≤ C(p, q)
∫∫

Q−n

{
(v− kn)

p
−|Dξ|p + g−(v, kn) |∂τ (ξ

p)|
}

≤ C(p, q) 2np kp
n

ρp

{
1 +

kq+1−p
n

θ

}
|An| ≤ C(p, q) 2np kp

n

ρp |An|,

where, as usually, |An| = |Q−n ∩ [v < kn]|. Observe that, on the one hand∫∫
Q−n

(v− kn)−ξ ≥
∫∫

Q−n+1

(v− kn)− ≥ (kn − kn+1)|An+1| =
k0

2s∗
1

2n+2 |An+1|

and, on the other hand, by applying Hölder’s inequality with exponent p N+2
N , together with

Sobolev’s embedding, we get

∫∫
Q−n

(v− kn)−ξ ≤ C(N, p, q)
(

2n

ρ

) N+p
N+2

k
N+p+1−q

N+2
n |An|1+

1
N+2 .

Consider the numbers Yn = |An|
|Q−n |

. From the previous estimates we deduce

Yn+1 ≤ C(N, p, q) bn Y
1+ 1

N+2
n , for b = 2

2N+p+2
N+2 > 1

and we may conclude that Yn goes to zero as n→ +∞ once we have∣∣∣(y, τ∗) + Q−4ρ(θ) ∩
[
v < k0

2s∗

]∣∣∣∣∣∣(y, τ∗) + Q−4ρ(θ)
∣∣∣ = Y0 ≤ C(N, p, q)−(N+2)2−(2N+p+2)(N+2).

Recall that, under our hypothesis, we have (y, τ∗) + Q−4ρ(θ) ⊂ Q̃ and∣∣∣∣Q̃ ∩ [v <
k0

2s∗

]∣∣∣∣ ≤ C(N, p, q)
α

1

(s∗)
p−1

p

∣∣Q̃∣∣
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and thereby

Y0 ≤

∣∣∣Q̃ ∩ [v < k0
2s∗

]∣∣∣∣∣Q̃∣∣
∣∣Q̃∣∣∣∣∣(y, τ∗) + Q−4ρ(θ)

∣∣∣ ≤ γ(N, p, q)
α

1

(s∗)
p−1

p

.

We determine the parameter s∗, and therefore the length of the cylinder, so that

γ(N, p, q)
α

1

(s∗)
p−1

p

= C(N, p, q)−(N+2)2−(2N+p+2)(N+2).

This implies

v(·, τ) ≥ k0

2s∗ + 1
a.e. in K2ρ

for all τ ∈ (τ∗ − θ(2ρ)p, τ∗] .
Returning to the original time variable t and function u(x, t) we get

u(x, t) ≥ η M a.e. in K2ρ(y)

for all t ∈ (s + δ
2

bp−(q+1)

(ηM)p−(q+1) ρp, s + δ bp−(q+1)

(ηM)p−(q+1) ρp], where

η =
ε

2s∗+1 e−
(

ε

2s∗+1

)q+1−p
8p

δ (p−q−1) .

This time interval was obtained from the previous range of τ and realizing that, on such a
range,

b1 = e−
(

ε

2s∗+1

)q+1−p
8p

δ (p−q−1) ≤ e−
τ

p−q−1 < e−
(

ε

2s∗+1

)q+1−p
6p

δ (p−q−1) = b2

and taking

b =
ε

2s∗+1 .
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