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theorem.

Keywords: uniqueness implies existence, nonlinear interpolation, ordinary differential
equations, three point boundary value problems.

2020 Mathematics Subject Classification: 34B15, 34B10.

1 Introduction

Let n ≥ 2 denote an integer and let a < T1 < T2 < T3 < b. Let ai ∈ R, i = 1, . . . , n. We shall
consider the ordinary differential equation

y(n)(t) = f (t, y(t), . . . , y(n−1)(t)), t ∈ [T1, T3], (1.1)

where f : (a, b)×Rn → R, or the ordinary differential equation

y(n)(t) = f (t, y(t)), t ∈ [T1, T3], (1.2)

where f : (a, b)×R → R. We shall consider three point boundary value problems for either
(1.1) or (1.2) with the boundary conditions, for j ∈ {1, 2},

y(i−1)(T1) = ai, i = 1, . . . , n− 2, y(T2) = an−1, y(j−1)(T3) = an, (1.3)

and we shall have need to consider two point boundary value problems for either (1.1) or (1.2)
with the boundary conditions, for j ∈ {1, 2},

y(i−1)(T1) = ai, i = 1, . . . , n− 1, y(j−1)(T2) = an. (1.4)

With respect to (1.1), common assumptions for the types of results that we consider are:
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(A) f (t, y1, . . . , yn) : (a, b)×Rn → R is continuous;

(B) Solutions of initial value problems for (1.1) are unique and extend to (a, b);

(C) For j ∈ {1, 2}, solutions of the two-point boundary value problems (1.1), (1.3) are unique
if they exist;

(D) For j ∈ {1, 2}, solutions of the two-point boundary value problems (1.1), (1.4) are unique
if they exist.

With respect to (1.2), the assumptions (A, (B), (C) and (D) are replaced, respectively, by

(A′) f (t, y) : (a, b)×R→ R is continuous;

(B′) Solutions of initial value problems for (1.2) are unique and extend to (a, b).

(C′) For j ∈ {1, 2}, solutions of the two-point boundary value problems (1.2), (1.3) are unique
if they exist.

(D′) For j ∈ {1, 2}, solutions of the two-point boundary value problems (1.2), (1.4) are unique
if they exist.

In [3, Theorem 3.6], the authors claimed to have proved the following theorem.

Theorem 1.1. Assume that with respect to (1.1), Conditions (A), (B), (C) and (D) are satisfied. Then
for each a < T1 < T2 < T3 < b, ai ∈ R, i = 1, . . . , n, and for j = 1, the three point boundary value
problem (1.1), (1.3) has a solution.

The proof that is offered in [3] is incorrect and so, the alleged theorem remains a conjecture.
In this erratum, we state and prove a correct theorem. With the statement and proof of this
correct theorem, the remainder of the results produced in [3] are correct.

Theorem 1.2. Assume that with respect to (1.2), Conditions (A′), (B′), (C′) and (D′) are satisfied.
Then for each a < T1 < T2 < T3 < b, ai ∈ R, i = 1, . . . , n, and for j = 1, the three point boundary
value problem (1.2), (1.3) has a solution.

Before proving Theorem 1.2, we state several results to which we refer in the proof. The
first two are results about the continuous dependence of solutions of (1.1), (1.4) or (1.2), (1.4)
on boundary conditions. The third is a known generalized mean value theorem.

Theorem 1.3. Assume that with respect to (1.1), Conditions (A), (B), and (D) are satisfied. Let
j ∈ {1, 2}.

(i) Given any a < T1 < T2 < T3 < b, and any solution y of (1.1), there exists ε > 0 such that if
|T11 − T1| < ε, |y(i−1)(T1)− yi1| < ε, i = 1, . . . , n− 2, |T21 − T2| < ε, and |T31 − T3| < ε,
|y(T2) − y(n−1)1| < ε, |y(T3) − yn1| < ε, then there exists a solution z of (1.1) such that
z(i−1)(T11) = yl1, i = 1, . . . , n− 2, z(T21) = y(n−1)1, and z(j−1)(T31) = yn1.

(ii) If T1k → T1, T2k → T2, T3k → T3, yik → yi, i = 1, . . . , n and zk is a sequence of solutions of
(1.1) satisfying z(i−1)

k (T1k) = yik, i = 1, . . . , n− 2, zk(T2k) = y(n−1)k, z(j−1)
k (T3k) = ynk, then

for each i ∈ {1, . . . , n}, z(i−1)
k converges uniformly to y(i−1) on compact subintervals of (a, b).

Theorem 1.3 was proved in [3] with a standard application of the Brouwer invariance of
domain theorem; technically we shall apply the following theorem for which the proof is
completely analogous to the proof of Theorem 1.3.



Three point boundary value problems 3

Theorem 1.4. Assume that with respect to (1.2), Conditions (A′), (B′), and (D′) are satisfied. Let
j ∈ {1, 2}.

(i) Given any a < T1 < T2 < T3 < b, and any solution y of (1.1), there exists ε > 0 such that if
|T11 − T1| < ε, |y(i−1)(T1)− yi1| < ε, i = 1, . . . , n− 2, |T21 − T2| < ε, and |T31 − T3| < ε,
|y(T2) − y(n−1)1| < ε, |y(T3) − yn1| < ε, then there exists a solution z of (1.1) such that
z(i−1)(T11) = yl1, i = 1, . . . , n− 2, z(T21) = y(n−1)1, and z(j−1)(T31) = yn1.

(ii) If T1k → T1, T2k → T2, T3k → T3, yik → yi, i = 1, . . . , n and zk is a sequence of solutions of
(1.1) satisfying z(i−1)

k (T1k) = yik, i = 1, . . . , n− 2, zk(T2k) = y(n−1)k, z(j−1)
k (T3k) = ynk, then

for each i ∈ {1, . . . , n}, z(i−1)
k converges uniformly to y(i−1) on compact subintervals of (a, b).

For a proof of a generalized mean value theorem, we refer the reader to the text by Conte
and de Boor [1, Theorem 2.2]. Let t0, . . . , ti denote i+ 1 distinct real numbers and let z : R→ R.
Define z[tl ] = z(tl), l = 0, . . . , i and if tl , . . . , tk+1 denote k− l + 2 distinct points, define

z[tl , . . . , tk+1] =
z[tl+1, . . . , tk+1]− z[tl , . . . , tk]

tk+1 − tl
.

Theorem 1.5. Assume z(t) is a real-valued function, defined on [a, b] and i times differentiable in
(a, b). If t0, . . . , ti are i + 1 distinct points in [a, b], then there exists

c ∈ (min{t0, . . . , ti}, max{t0, . . . , ti})

such that

z[t0, . . . , ti] =
z(i)(c)

i!
.

For our purposes, we shall set h > 0 and choose t0 = T1, t1 = T1 + h, . . . , ti = T1 + ih to be
equally spaced. In this setting

z[T1, T1 + h, . . . , T1 + ih] =
∑i

l=0(−1)i−l(i
l)z(T1 + lh)

i!hi ,

and, in general there exists c ∈ (T1, T1 + ih) such that

∑i
l=0(−1)i−l(i

l)z(T + ih)
hi = z(i)(c). (1.5)

We now proceed to the proof of Theorem 1.2.

Proof. Let a < T1 < T2 < T3 < b, and ai ∈ R, i = 1, . . . , n. Let m ∈ R and denote by y(t; m) the
solution of the initial value problem (1.2), with initial conditions

y(i−1)(T1; m) = ai, i = 1, . . . , n− 1, y(n−2)(T1; m) = m, y(T2) = an−1.

Let
Ω = {p ∈ R : there exists m ∈ R with y(T3; m) = p}.

The theorem is proved by showing Ω = R. It follows by Conditions (A′), (B′) and (D′) (see
[2]), Ω 6= ∅; thus, the theorem is proved by showing Ω is open and closed. That Ω is open
follows from Theorem 1.4.
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To show Ω is closed, let p0 denote a limit point of Ω and without loss of generality let pk
denote a strictly increasing sequence of reals in Ω converging to p0. Assume y(T3; mk) = pk
for each k ∈N1. It follows by the uniqueness of solutions, Condition (C′), that

y(j−1)(t; mk1) 6= y(j−1)(t; mk2), t ∈ (T2, b), (1.6)

for each j ∈ {1, 2}, if k1 < k2, and in particular,

y(t; m1) < y(t; mk) t ∈ (T2, b), (1.7)

for each k.
Either y′(T3; mk) ≤ 0 infinitely often or y′(T3; mk) ≥ 0 infinitely often. Relabel if necessary

and assume y′(T3; mk) ≤ 0 or y′(T3; mk) ≥ 0 for each k.
We first assume the case y′(T3; mk) ≤ 0 for each k. We now consider two subcases. For

the first subcase, assume y′(T3; mk) < y′(T3; m1) ≤ 0 infinitely often. Relabeling if necessary,
assume y′(T3; mk) < y′(T3; m1) < 0 for each k. Find T3 < T4 < b such that y′(t; m1) ≤ 0, for
t ∈ [T3, T4]. Then y(t; m1) is decreasing on [T3, T4]. Set L = y(T4; m1); then, for t ∈ [T3, T4],

L = y(T4; m1) ≤ y(t; m1) ≤ y(T3; m1) ≤ p0.

Since y′(T2; mk) < y′(T2; m1), then analogous to (1.7), it follows that

y′(t; mk) < y′(t; m1), t ∈ (T2, b),

and y(t; mk) is decreasing on [T3, T4]. Then for t ∈ [T3, T4],

L = y(T4; m1) ≤ y(t; m1) ≤ y(t; mk) ≤ y(T3; mk) ≤ p0. (1.8)

In particular,

{(t, y(t; mk) : t ∈ [T3, T4], k ∈N1} ⊂ [T3, T4]× [L, p0]. (1.9)

Since f : (a, b)×R→ R is continuous, there exists M > 0 such that

max
t∈[T3,T4],k∈N1

|y(n)(t; mk)| ≤ M. (1.10)

We now proceed to adapt an observation made by Lasota and Opial [4] and apply the
adapted observation to higher order derivatives. Lasota and Opial essentially observed that

0 >
y(T4; mk)− y(T3; mk)

T4 − T3
≥ L− p0

T4 − T3
= −K1, (1.11)

which implies
{t ∈ [T3, T4] : −K1 ≤ y′(t; mk) < 0} 6= ∅.

For our purposes, define

Sk1 = {t ∈ [T3, T4] : |y′(t; mk)| ≤ K1},

and Sk1 6= ∅.
To proceed to higher order derivatives, employ Theorem 1.5. For example, set

h =
T4 − T3

2
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and consider
y(T3; mk)− 2y(T3 + h; mk) + y(T3 + 2h; mk)

h2 .

Employing (1.8), it follows that∣∣∣y(T3; mk)− 2y(T3 + h; mk) + y(T3 + 2h; mk)

h2

∣∣∣ ≤ 2(p0 − L)
h2

=
23(p0 − L)
(T4 − T3)2 = K2.

Thus,
Sk2 = {t ∈ [T3, T4] : |y′′(t; mk)| ≤ K2} 6= ∅.

So, in general, let i ∈ {1, . . . n− 1}. Set h = T4−T3
i . Then,

∣∣∣∑i
l=0(−1)i−l(i

l)y(T3 + lh; mk)

hi

∣∣∣ ≤ (i)i2i−1(p0 − L)
(T4 − T3)i = Ki.

Apply (1.5) and the set,

Ski = {t ∈ [T3, T4] : |y(i)(t; mk)| ≤ Ki} 6= ∅.

Let cn−1 ∈ Sk(n−1). Then for t ∈ [T3, T4],

y(n−1)(t; mk) = y(n−1)(cn−1; mk) +
∫ t

cn−1

y(n)(s; mk)ds

which implies
max

t∈[T3,T4]
|y(n−1)(t; mk)| ≤ Kn−1 + M(T4 − T3) = Mn−1.

Since Sk(n−2) 6= ∅, the same argument implies that

max
t∈[T3,T4]

|y(n−2)(t; mk)| ≤ Kn−2 + Mn−1(T4 − T3) = Mn−2.

Continuing with the same argument, define for i ∈ {n− 2, . . . , 1},

Mi = Ki + Mi+1(T4 − T3).

Then
max

t∈[T3,T4]
|y(i)(t; mk)| ≤ Mi, i = 1, . . . , n− 1.

For each k, choose tk ∈ [T3, T4]. Then

(tk, y(tk; mk), y′(tk; mk), . . . , y(n−1)(tk; mk)) ∈ [T3, T4]× [L, p0]×Πn−1
i=1 [−Mi, Mi]. (1.12)

The set on the righthand side of (1.12) is a compact subset of Rn+1 and independent of k.
Thus, there exists a convergent subsequence (relabeling if necessary)

{(tk, y(tk; mk), y′(tk; mk), . . . , y(n−1)(tk; mk))} → (t0, c1, . . . , cn)

where t0 ∈ [T3, T4]. Since t0 ∈ (a, b), by the continuous dependence of solutions of initial value
problems, y(t; mk) converges in Cn−1[T1, T3] to a solution, say z(t), of the initial value problem
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(1.2), with initial conditions, y(i−1)(t0) = ci, i = 1, . . . , n. Thus, p0 = z(T3) which implies
p0 ∈ Ω and Ω is closed. This completes the proof if, for each k,

y′(T3; mk) < y′(T3; m1) ≤ 0.

Moving to the second subcase, assume y′(T3; m1) < y′(T3; mk) ≤ 0 infinitely often. Relabel-
ing if necessary, assume y′(T3; m1) < y′(T3; mk) ≤ 0 for each k. For this case, we work on an in-
terval to the left of T3. Find T2 < T4 < T3 such that y′(t; m1) ≤ 0 and y(T3; m1) ≤ y(t; m1) ≤ p0

for t ∈ [T4, T3]. The inequality (1.7) remains valid and

y′(t; m1) < y′(t; mk), t ∈ (T2, b).

So, for t ∈ [T4, T3],
y(T3; m1) ≤ y(t; m1) < y(t; mk)

and there exists ck ∈ (t, T3) such that

y(t; mk) = y(T3; mk) + y′(ck; mk)(t− T3) ≤ y(T3; mk) + y′(ck; m1)(t− T3)

≤ p0 + max
t∈[T4,T3]

|y′(t; m1)|(T3 − T4).

Set L = y(T3; m1) and P0 = p0 + maxt∈[T4,T3] |y
′(t; m1)|(T3 − T4) and analogous to (1.8) we

have for t ∈ [T4, T3], k ∈N1,
L ≤ y(t; mk) ≤ P0.

The proof of the second subcase now proceeds precisely as the proof of the first case.
For these two subcases we have assumed y′(T3; mk) ≤ 0 for each k. If y′(T3; mk) > 0

for each k, one again considers two subcases, y′(T3; mk) > y′(T3; m1) > 0 for each k, or
y′(T3; m1) > y′(T3; mk) ≥ 0 for each k. If y′(T3; mk) > y′(T3; m1) > 0 for each k, produce an
analogue to the preceding first subcase on an interval [T4, T3] where T2 < T4 < T3 and define
L = y(T4; m1). If y′(T3; m1) > y′(T4; mk) ≥ 0 for each k, produce an analogue to the preceding
second subcase on an interval [T3, T4] where T3 < T4 < b. The proof is complete.

Remark 1.6. In [3], the authors claim to have constructed a sequence of solutions of (1.1),
(1.3) for j = 1 and a compact set analogous to (1.12). The calculations to obtain an interval
analogous to [T3, T4] of positive length are incorrect which in turn implies the calculations to
obtain a priori bounds on higher order derivatives are incorrect. Thus, the conjecture, stated
as Theorem 3.6 in [3] is unproven.
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