New oscillation criteria for third-order differential equations with bounded and unbounded neutral coefficients

Ercan Tunç ${ }^{1}$, Serpil Şahin ${ }^{2}$, John R. Graef ${ }^{\boxtimes 3}$ and Sandra Pinelas ${ }^{4}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences, Tokat Gaziosmanpasa University, 60240, Tokat, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Arts and Sciences, Amasya University, 05000, Amasya, Turkey
${ }^{3}$ Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
${ }^{4}$ RUDN 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Received 23 April 2021, appeared 10 July 2021
Communicated by Zuzana Došlá

Abstract

This paper examines the oscillatory behavior of solutions to a class of thirdorder differential equations with bounded and unbounded neutral coefficients. Sufficient conditions for all solutions to be oscillatory are given. Some examples are considered to illustrate the main results and suggestions for future research are also included.

Keywords: oscillation, third-order, neutral differential equation.
2020 Mathematics Subject Classification: 34C10, 34K11, 34K40.

1 Introduction

In this paper, we wish to obtain some new criteria for the oscillation of all solutions of the third-order differential equations with bounded and unbounded neutral coefficients of the form

$$
\begin{equation*}
(x(t)+p(t) x(\tau(t)))^{\prime \prime \prime}+q(t) x^{\beta}(\sigma(t))=0, \tag{1.1}
\end{equation*}
$$

where $t \geq t_{0}>0$, and β is the ratio of odd positive integers with $0<\beta \leq 1$. Throughout the paper, we will always assume that:
(C1) $p, q:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ are continuous functions with $p(t) \geq 1, p(t) \not \equiv 1$ for large $t, q(t) \geq 0$, and $q(t)$ not identically zero for large t;
(C2) $\tau, \sigma:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ are continuous functions such that $\tau(t) \leq t, \tau$ is strictly increasing, σ is nondecreasing, and $\lim _{t \rightarrow \infty} \tau(t)=\lim _{t \rightarrow \infty} \sigma(t)=\infty ;$

[^0](C3) there exist a constant $\theta \in(0,1)$ and $t_{\theta} \geq t_{0}$ such that
\[

$$
\begin{equation*}
\left(\frac{t}{\tau(t)}\right)^{2 / \theta} \frac{1}{p(t)} \leq 1, \quad t \geq t_{\theta} . \tag{1.2}
\end{equation*}
$$

\]

By a solution of equation (1.1), we mean a function $x \in C\left(\left[t_{x}, \infty\right), \mathbb{R}\right)$ for some $t_{x} \geq t_{0}$ such that $x(t)+p(t) x(\tau(t)) \in C^{3}\left(\left[t_{x}, \infty\right), \mathbb{R}\right)$ and x satisfies (1.1) on $\left[t_{x}, \infty\right)$. We only consider those solutions of (1.1) that exist on some half-line $\left[t_{x}, \infty\right)$ and satisfy the condition

$$
\sup \left\{|x(t)|: T_{1} \leq t<\infty\right\}>0 \text { for any } T_{1} \geq t_{x}
$$

we tacitly assume that (1.1) possesses such solutions. Such a solution $x(t)$ of equation (1.1) is said to be oscillatory if it has arbitrarily large zeros, and it is called nonoscillatory otherwise. Equation (1.1) is termed oscillatory if all its solutions are oscillatory.

Neutral differential equations are differential equations in which the highest order derivative of the unknown function appears both with and without deviating arguments. As stated in many sources, besides their theoretical interest, equations of this type have numerous applications in the natural sciences and technology. For example, they appear in networks containing lossless transmission lines (as in high-speed computers where the lossless transmission lines are used to interconnect switching circuits), in the study of vibrating masses attached to an elastic bar, and as the Euler equation in some variational problems; we refer the reader to the monograph by Hale [14] for these and other applications.

Oscillatory and asymptotic behavior of solutions to various classes of third and higher odd-order neutral differential equations have been attracting attention of researchers during the last few decades, and we mention the papers $[1,3-13,15,18-26]$ and the references cited therein for examples of some recent contributions in this area. However, except for the papers [3,4,12,23,26], all the above cited papers were concerned with the case where $p(t)$ is bounded, i.e., the cases where $0 \leq p(t) \leq p_{0}<1,-1<p_{0} \leq p(t) \leq 0$, and $0 \leq p(t) \leq p_{0}<\infty$ were considered, and so the results established in these papers cannot be applied to the case $p(t) \rightarrow \infty$ as $t \rightarrow \infty$. Based on this observation, the aim of this paper is to establish some new oscillation criteria that can be applied not only to the case where $p(t) \rightarrow \infty$ as $t \rightarrow \infty$ but also to the case where $p(t)$ is a bounded function. We would like to point out that the results established here are motivated by oscillation results of Koplatadze et all. [17], where a nth order linear differential equation with a deviating argument was considered. Since our equation considered here is fairly simple, it would be possible to extend our results to the more general equations studied in the papers cited above and to the others types that include equation (1.1) as a special case. For these reasons, it is our hope that the present paper will stimulate additional interest in research on third and higher odd-order neutral differential equations in general, and those with unbounded neutral coefficients in particular.

In the sequel, all functional inequalities are supposed to hold for all t large enough. Without loss of generality, we deal only with positive solutions of (1.1); since if $x(t)$ is a solution of (1.1), then $-x(t)$ is also a solution.

2 Main results

For the reader's convenience, we define:

$$
z(t):=x(t)+p(t) x(\tau(t)),
$$

$$
\begin{aligned}
h(t) & :=\tau^{-1}(\sigma(t)), \quad g(t):=\tau^{-1}(\eta(t)), \quad \eta \in C^{1}\left(\left[t_{0}, \infty\right)\right), \\
\pi_{1}(t) & :=\frac{1}{p\left(\tau^{-1}(t)\right)}\left[1-\left(\frac{\tau^{-1}\left(\tau^{-1}(t)\right)}{\tau^{-1}(t)}\right)^{2 / \theta} \frac{1}{p\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right)}\right]
\end{aligned}
$$

and

$$
\pi_{2}(t):=\frac{1}{p\left(\tau^{-1}(t)\right)}\left[1-\frac{1}{p\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right)}\right],
$$

where τ^{-1} is the inverse function of τ (if τ is invertible) and $\theta \in(0,1)$. It is also important to notice that condition (1.2) in (C3) ensures the nonnegativity of the functions $\pi_{1}(t)$.
Lemma 2.1 (See [2, Lemma 1]). Suppose that the function h satisfies $h^{(i)}(t)>0, i=0,1,2, \ldots, m$, and $h^{(m+1)}(t) \leq 0$ on $[T, \infty)$ and $h^{(m+1)}(t)$ is not identically zero on any interval of the form $\left[T^{\prime}, \infty\right)$, $T^{\prime} \geq T$. Then for every $\theta \in(0,1)$,

$$
\frac{h(t)}{h^{\prime}(t)} \geq \theta \frac{t}{m^{\prime}}
$$

eventually.
Lemma 2.2. Assume that x is an eventually positive solution of (1.1), say for $t_{1} \geq t_{0}$. Then there exists a $t_{2} \geq t_{1}$ such that the corresponding function z satisfies one of the following two cases:
(I) $z(t)>0, z^{\prime}(t)>0, z^{\prime \prime}(t)>0, z^{\prime \prime \prime}(t) \leq 0$,
(II) $z(t)>0, z^{\prime}(t)<0, z^{\prime \prime}(t)>0, z^{\prime \prime \prime}(t) \leq 0$
for $t \geq t_{2}$.
Proof. This result follows immediately from Kiguradze's lemma [16], so we omit its proof.
Lemma 2.3. Let $x(t)$ be an eventually positive solution of (1.1) with $z(t)$ satisfying case (I) of Lemma 2.2 for $t \geq t_{2}$ for some $t_{2} \geq t_{1}$. Then for every $\theta \in(0,1)$ there exists a $t_{\theta} \geq t_{2}$ such that

$$
\begin{equation*}
\left(\frac{z(t)}{t^{2 / \theta}}\right)^{\prime} \leq 0 \text { for } t \geq t_{\theta} . \tag{2.1}
\end{equation*}
$$

Proof. Since z satisfies case (I) of Lemma 2.2 for $t \geq t_{2}$ for some $t_{2} \geq t_{1}$, by Lemma 2.1, there exists a $t_{\theta} \geq t_{2}$ for every $\theta \in(0,1)$ such that

$$
\begin{equation*}
z(t) \geq \frac{\theta}{2} t z^{\prime}(t) \text { for } t \geq t_{\theta} . \tag{2.2}
\end{equation*}
$$

It follows from (2.2) that

$$
\left(\frac{z(t)}{t^{2 / \theta}}\right)^{\prime}=\frac{\theta t z^{\prime}(t)-2 z(t)}{\theta t^{2 / \theta+1}} \leq 0 \text { for } t \geq t_{\theta} .
$$

This completes the proof of the lemma.
Lemma 2.4. Let $x(t)$ be an eventually positive solution of (1.1) with $z(t)$ satisfying case (I) of Lemma 2.2. Assume that

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \int_{u}^{\infty} q(s) \pi_{1}^{\beta}(\sigma(s)) h^{\beta}(s) d s d u=\infty . \tag{2.3}
\end{equation*}
$$

Then:
(i) z satisfies the inequality

$$
\begin{equation*}
z^{\prime \prime \prime}(t)+q(t) \pi_{1}^{\beta}(\sigma(t)) z^{\beta}(h(t)) \leq 0 \tag{2.4}
\end{equation*}
$$

for large t;
(ii) $z^{\prime}(t) \rightarrow \infty$ as $t \rightarrow \infty$;
(iii) $z(t) / t$ is increasing.

Proof. Let $x(t)$ be an eventually positive solution of (1.1) such that $x(t)>0, x(\tau(t))>0$, and $x(\sigma(t))>0$ for $t \geq t_{1}$ for some $t_{1} \geq t_{0}$. From the definition of z, we have

$$
\begin{align*}
x(t) & =\frac{1}{p\left(\tau^{-1}(t)\right)}\left[z\left(\tau^{-1}(t)\right)-x\left(\tau^{-1}(t)\right)\right] \\
& \geq \frac{z\left(\tau^{-1}(t)\right)}{p\left(\tau^{-1}(t)\right)}-\frac{1}{p\left(\tau^{-1}(t)\right) p\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right)} z\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right) . \tag{2.5}
\end{align*}
$$

Now $\tau(t) \leq t$ and τ is strictly increasing, so τ^{-1} is increasing and $t \leq \tau^{-1}(t)$. Thus,

$$
\begin{equation*}
\tau^{-1}(t) \leq \tau^{-1}\left(\tau^{-1}(t)\right) \tag{2.6}
\end{equation*}
$$

Since $z(t)$ satisfies case (I) for $t \geq t_{2}$, by Lemma 2.3, there exists a $t_{\theta} \geq t_{2}$ such that (2.1) holds for $t \geq t_{\theta}$. From (2.1) and (2.6), we observe that

$$
\begin{equation*}
z\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right) \leq \frac{\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right)^{2 / \theta} z\left(\tau^{-1}(t)\right)}{\left(\tau^{-1}(t)\right)^{2 / \theta}} \tag{2.7}
\end{equation*}
$$

Using (2.7) in (2.5) yields

$$
\begin{equation*}
x(t) \geq \pi_{1}(t) z\left(\tau^{-1}(t)\right) \quad \text { for } t \geq t_{\theta} . \tag{2.8}
\end{equation*}
$$

Since $\lim _{t \rightarrow \infty} \sigma(t)=\infty$, we can choose $t_{3} \geq t_{\theta}$ such that $\sigma(t) \geq t_{\theta}$ for all $t \geq t_{3}$. Thus, it follows from (2.8) that

$$
\begin{equation*}
x(\sigma(t)) \geq \pi_{1}(\sigma(t)) z\left(\tau^{-1}(\sigma(t))\right) \quad \text { for } t \geq t_{3} . \tag{2.9}
\end{equation*}
$$

Using (2.9) in (1.1) gives

$$
\begin{equation*}
z^{\prime \prime \prime}(t)+q(t) \pi_{1}^{\beta}(\sigma(t)) z^{\beta}(h(t)) \leq 0 \text { for } t \geq t_{3} \tag{2.10}
\end{equation*}
$$

i.e., (2.4) holds.

Next, we claim that condition (2.3) implies $z^{\prime}(t) \rightarrow \infty$ as $t \rightarrow \infty$. If this is not the case, then there exists a constant $k>0$ such that $\lim _{t \rightarrow \infty} z^{\prime}(t)=k$, and so $z^{\prime}(t) \leq k$. Since $z^{\prime}(t)$ is positive and increasing on $\left[t_{2}, \infty\right)$, there exist a $t_{3} \geq t_{2}$ and a constant $c>0$ such that

$$
z^{\prime}(t) \geq c \quad \text { for } t \geq t_{3}
$$

which implies

$$
z(t) \geq d t
$$

for $t \geq t_{4}$, for some $t_{4} \geq t_{3}$ and some $d>0$. Since $\lim _{t \rightarrow \infty} h(t)=\infty$, we can choose $t_{5} \geq t_{4}$ such that $h(t) \geq t_{4}$ for all $t \geq t_{5}$, so

$$
z(h(t)) \geq d h(t) .
$$

Using this in (2.10) gives

$$
z^{\prime \prime \prime}(t)+d^{\beta} q(t) \pi_{1}^{\beta}(\sigma(t)) h^{\beta}(t) \leq 0 \text { for } t \geq t_{5} .
$$

Integrating this inequality from t to ∞, we obtain

$$
z^{\prime \prime}(t) \geq d^{\beta} \int_{t}^{\infty} q(s) \pi_{1}^{\beta}(\sigma(s)) h^{\beta}(s) d s .
$$

Now integrating from t_{5} to t yields

$$
k \geq z^{\prime}(t) \geq d^{\beta} \int_{t_{5}}^{t} \int_{u}^{\infty} q(s) \pi_{1}^{\beta}(\sigma(s)) h^{\beta}(s) d s d u
$$

which contradicts (2.3) and proves the claim.
Finally, from the fact that $z^{\prime}(t) \rightarrow \infty$ as $t \rightarrow \infty$, we see that

$$
z(t)=z\left(t_{2}\right)+\int_{t_{2}}^{t} z^{\prime}(s) d s \leq z\left(t_{2}\right)+\left(t-t_{2}\right) z^{\prime}(t) \leq t z^{\prime}(t)
$$

which implies

$$
\left(\frac{z(t)}{t}\right)^{\prime}=\frac{t z^{\prime}(t)-z(t)}{t^{2}} \geq 0
$$

i.e., (iii) holds. The proof of the lemma is now complete.

Lemma 2.5. Let $x(t)$ be an eventually positive solution of (1.1) with $z(t)$ satisfying case (I) of Lemma 2.2. If

$$
\begin{equation*}
\int_{t_{0}}^{\infty} q(s) \pi_{1}^{\beta}(\sigma(s)) h^{2 \beta / \theta}(s) d s=\infty, \tag{2.11}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{z(t)}{t^{2 / \theta}}=0 \tag{2.12}
\end{equation*}
$$

Proof. Since $z(t)$ satisfies case (I) for $t \geq t_{2}$ for some $t_{2} \geq t_{1}$, by Lemma 2.3, there exists a $t_{\theta} \geq t_{2}$ such that (2.1) holds for $t \geq t_{\theta}$, i.e., $z(t) / t^{2 / \theta}$ is decreasing for $t \geq t_{\theta}$. We now claim that (2.11) implies

$$
\lim _{t \rightarrow \infty} \frac{z(t)}{t^{2 / \theta}}=0 .
$$

If this is not the case, then there exist a constant $b>0$ and a $t_{3} \geq t_{\theta}$ such that

$$
\begin{equation*}
z(t) \geq b t^{2 / \theta} \text { for } t \geq t_{3} \tag{2.13}
\end{equation*}
$$

Since case (I) holds, we again arrive at (2.10) for $t \geq t_{3}$. Using (2.13) in (2.10) gives

$$
\begin{equation*}
z^{\prime \prime \prime}(t)+b^{\beta} q(t) \pi_{1}^{\beta}(\sigma(t)) h^{2 \beta / \theta}(t) \leq 0 \tag{2.14}
\end{equation*}
$$

for $t \geq t_{4}$ for some $t_{4} \geq t_{3}$. Integrating (2.14) from t_{4} to t yields

$$
\int_{t_{4}}^{t} q(s) \pi_{1}^{\beta}(\sigma(s)) h^{2 \beta / \theta}(s) d s \leq \frac{z^{\prime \prime}\left(t_{4}\right)}{b^{\beta}}
$$

which contradicts (2.11) and completes the proof.

Lemma 2.6. Let $x(t)$ be an eventually positive solution of (1.1) with $z(t)$ satisfying case (II) of Lemma 2.2. Suppose also that there exists a nondecreasing function $\eta \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ such that $\sigma(t) \leq \eta(t)<\tau(t)$ for $t \geq t_{0}$. If

$$
\begin{equation*}
\int_{t_{0}}^{\infty} q(s) \pi_{2}(\sigma(s))(g(s)-h(s))^{2 \beta} d s=\infty \tag{2.15}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} z^{\prime \prime}(t)=0 . \tag{2.16}
\end{equation*}
$$

Proof. Let $x(t)$ be an eventually positive solution of (1.1) such that $x(t)>0, x(\tau(t))>0$, and $x(\sigma(t))>0$ for $t \geq t_{1}$ for some $t_{1} \geq t_{0}$. As in Lemma 2.4, we again see that (2.5) and (2.6) hold. Since $z^{\prime}(t)<0$, it follows from (2.6) that

$$
z\left(\tau^{-1}(t)\right) \geq z\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right)
$$

so inequality (2.5) takes the form

$$
\begin{equation*}
x(t) \geq \pi_{2}(t) z\left(\tau^{-1}(t)\right) \tag{2.17}
\end{equation*}
$$

Using (2.17) in (1.1) gives

$$
\begin{equation*}
z^{\prime \prime \prime}(t)+q(t) \pi_{2}^{\beta}(\sigma(t)) z^{\beta}(h(t)) \leq 0 \tag{2.18}
\end{equation*}
$$

for $t \geq t_{3}$ for some $t_{3} \geq t_{2}$. Since $(-1)^{k} z^{(k)}(t)>0$ for $k=0,1,2$ and $z^{\prime \prime \prime}(t) \leq 0$, for $t_{3} \leq u \leq v$, it is easy to see that

$$
\begin{equation*}
z(u) \geq \frac{(v-u)^{2}}{2} z^{\prime \prime}(v) \tag{2.19}
\end{equation*}
$$

Since $\sigma(t) \leq \eta(t)$ and τ is increasing, we conclude that $\tau^{-1}(\sigma(t)) \leq \tau^{-1}(\eta(t))$, i.e, $h(t) \leq g(t)$. Letting $u=h(t)$ and $v=g(t)$ in (2.19), we obtain

$$
z(h(t)) \geq \frac{(g(t)-h(t))^{2}}{2} z^{\prime \prime}(g(t))
$$

Using the latter inequality in (2.18) gives

$$
\begin{equation*}
z^{\prime \prime \prime}(t)+\frac{1}{2^{\beta}} q(t) \pi_{2}^{\beta}(\sigma(t))(g(t)-h(t))^{2 \beta}\left(z^{\prime \prime}(g(t))\right)^{\beta} \leq 0 . \tag{2.20}
\end{equation*}
$$

Since $\pi_{2}(t)<1$, we have $\pi_{2}^{\beta}(t) \geq \pi_{2}(t)$. So, inequality (2.20) takes the form

$$
\begin{equation*}
z^{\prime \prime \prime}(t)+\frac{1}{2^{\beta}} q(t) \pi_{2}(\sigma(t))(g(t)-h(t))^{2 \beta}\left(z^{\prime \prime}(g(t))\right)^{\beta} \leq 0 \tag{2.21}
\end{equation*}
$$

Now, we claim that (2.15) implies $z^{\prime \prime}(t) \rightarrow 0$ as $t \rightarrow \infty$. Suppose to the contrary that

$$
\lim _{t \rightarrow \infty} z^{\prime \prime}(t)=\ell>0 .
$$

Then, $z^{\prime \prime}(t) \geq \ell$ for $t \geq t_{3}$ for some $t_{3} \geq t_{2}$. Since $\lim _{t \rightarrow \infty} g(t)=\infty$, we can choose $t_{4} \geq t_{3}$ such that $g(t) \geq t_{3}$ for all $t \geq t_{4}$. Hence, $z^{\prime \prime}(g(t)) \geq \ell$ for $t \geq t_{4}$. Using this in (2.21) gives

$$
\begin{equation*}
z^{\prime \prime \prime}(t)+\frac{\ell^{\beta}}{2^{\beta}} q(t) \pi_{2}(\sigma(t))(g(t)-h(t))^{2 \beta} \leq 0 \quad \text { for } t \geq t_{4} \tag{2.22}
\end{equation*}
$$

Integrating (2.22) from t_{4} to t yields

$$
\int_{t_{4}}^{t} q(s) \pi_{2}(\sigma(s))(g(s)-h(s))^{2 \beta} d s \leq\left(\frac{2}{\ell}\right)^{\beta} z^{\prime \prime}\left(t_{4}\right)
$$

which contradicts (2.15) and completes the proof.

Now, we are ready to present our main results. Our first result is concerned with equation (1.1) in the case where $\beta=1$, i.e., equation (1.1) is linear.

Theorem 2.7. Let (2.3) hold and assume that there exists a nondecreasing function $\eta \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ such that $\sigma(t) \leq \eta(t)<\tau(t)$ for $t \geq t_{0}$. If there exist constants $\alpha, \theta \in(0,1)$ such that

$$
\begin{align*}
& \limsup _{t \rightarrow \infty}\left(\frac{\alpha \theta h^{1-\frac{2}{\theta}}(t)}{2} \int_{t_{0}}^{h(t)} s q(s) \pi_{1}(\sigma(s))(h(s))^{2 / \theta} d s\right. \\
& +\frac{\alpha \theta h^{2-\frac{2}{\theta}}(t)}{2} \int_{h(t)}^{t} q(s) \pi_{1}(\sigma(s))(h(s))^{2 / \theta} d s \\
& \left.+\frac{\alpha \theta h(t)}{2} \int_{t}^{\infty} q(s) \pi_{1}(\sigma(s)) h(s) d s\right)>1, \tag{2.23}
\end{align*}
$$

and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{g(t)}^{t} \frac{1}{2} q(s) \pi_{2}(\sigma(s))(g(s)-h(s))^{2} d s>1 \tag{2.24}
\end{equation*}
$$

then equation (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say $x(t)>0, x(\tau(t))>0$, and $x(\sigma(t))>0$ for $t \geq t_{1}$ for some $t_{1} \geq t_{0}$. Then, from Lemma 2.2, the corresponding function z satisfies either case (I) or case (II) for $t \geq t_{2}$ for some $t_{2} \geq t_{1}$.

First, we consider case (I). By Lemma 2.4, we again arrive at (2.10) for $t \geq t_{3}$, which, for $\beta=1$, takes the form

$$
\begin{equation*}
z^{\prime \prime \prime}(t)+q(t) \pi_{1}(\sigma(t)) z(h(t)) \leq 0 \text { for } t \geq t_{3} \tag{2.25}
\end{equation*}
$$

Integrating (2.25) from t to ∞ yields

$$
\begin{equation*}
z^{\prime \prime}(t) \geq \int_{t}^{\infty} q(s) \pi_{1}(\sigma(s)) z(h(s)) d s \tag{2.26}
\end{equation*}
$$

and integrating again from t_{3} to t yields

$$
\begin{aligned}
z^{\prime}(t) & \geq \int_{t_{3}}^{t} \int_{u}^{\infty} q(s) \pi_{1}(\sigma(s)) z(h(s)) d s d u \\
& =\int_{t_{3}}^{t} \int_{u}^{t} q(s) \pi_{1}(\sigma(s)) z(h(s)) d s d u+\int_{t_{3}}^{t} \int_{t}^{\infty} q(s) \pi_{1}(\sigma(s)) z(h(s)) d s d u \\
& =\int_{t_{3}}^{t}\left(s-t_{3}\right) q(s) \pi_{1}(\sigma(s)) z(h(s)) d s+\left(t-t_{3}\right) \int_{t}^{\infty} q(s) \pi_{1}(\sigma(s)) z(h(s)) d s
\end{aligned}
$$

For any $\alpha \in(0,1)$ there exists $t_{4} \geq t_{3}$ such that $s-t_{3} \geq \alpha$ s and $t-t_{3} \geq \alpha t$ for $t \geq s \geq t_{4}$. Thus, from the last inequality we see that

$$
\begin{equation*}
z^{\prime}(t) \geq \alpha \int_{t_{4}}^{t} s q(s) \pi_{1}(\sigma(s)) z(h(s)) d s+\alpha t \int_{t}^{\infty} q(s) \pi_{1}(\sigma(s)) z(h(s)) d s \tag{2.27}
\end{equation*}
$$

In view of (2.2), it follows that

$$
\begin{equation*}
\frac{2 z(t)}{\theta t} \geq \alpha \int_{t_{4}}^{t} s q(s) \pi_{1}(\sigma(s)) z(h(s)) d s+\alpha t \int_{t}^{\infty} q(s) \pi_{1}(\sigma(s)) z(h(s)) d s \tag{2.28}
\end{equation*}
$$

From (2.28), we see that

$$
\begin{align*}
& \frac{2 z(h(t))}{\theta h(t)} \geq \alpha \int_{t_{4}}^{h(t)} s q(s) \pi_{1}(\sigma(s)) z(h(s)) d s \\
& \\
& \quad+\alpha h(t) \int_{h(t)}^{t} q(s) \pi_{1}(\sigma(s)) z(h(s)) d s \tag{2.29}\\
& \quad+\alpha h(t) \int_{t}^{\infty} q(s) \pi_{1}(\sigma(s)) z(h(s)) d s .
\end{align*}
$$

Also, for $t \leq s$, we have $h(t) \leq h(s)$. Since $z(t) / t$ is increasing (see Lemma 2.4 (iii)),

$$
\begin{equation*}
z(h(s)) \geq \frac{h(s) z(h(t))}{h(t)} . \tag{2.30}
\end{equation*}
$$

For $h(t) \leq s \leq t$, we have $h(h(t)) \leq h(s) \leq h(t)$. Since $z(t) / t^{2 / \theta}$ is decreasing (see (2.1)),

$$
\begin{equation*}
z(h(s)) \geq h^{2 / \theta}(s) \frac{z(h(t))}{h^{2 / \theta}(t)} . \tag{2.31}
\end{equation*}
$$

For $t_{4} \leq s \leq h(t)$ and $h(t) \leq t$, we have $h(s) \leq h(h(t)) \leq h(t)$. Since $z(t) / t^{2 / \theta}$ is decreasing, we again obtain (2.31). Using (2.30) and (2.31) in (2.29) gives

$$
\begin{align*}
& \frac{2 z(h(t))}{\theta h(t)} \geq\left(\alpha \int_{t_{4}}^{h(t)} s q(s) \pi_{1}(\sigma(s))(h(s))^{2 / \theta} d s\right) \frac{z(h(t))}{(h(t))^{\frac{2}{\theta}}} \\
& +\left(\alpha h(t) \int_{h(t)}^{t} q(s) \pi_{1}(\sigma(s))(h(s))^{2 / \theta} d s\right) \frac{z(h(t))}{(h(t))^{\frac{2}{\theta}}} \\
& \quad+\left(\alpha h(t) \int_{t}^{\infty} q(s) \pi_{1}(\sigma(s)) h(s) d s\right) \frac{z(h(t))}{h(t)} . \tag{2.32}
\end{align*}
$$

From (2.32), we see that

$$
\begin{aligned}
& \frac{\alpha \theta h^{1-\frac{2}{\theta}}(t)}{2} \int_{t_{4}}^{h(t)} s q(s) \pi_{1}(\sigma(s))(h(s))^{2 / \theta} d s \\
& \quad+\frac{\alpha \theta h^{2-\frac{2}{\theta}}(t)}{2} \int_{h(t)}^{t} q(s) \pi_{1}(\sigma(s))(h(s))^{2 / \theta} d s+\frac{\alpha \theta h(t)}{2} \int_{t}^{\infty} q(s) \pi_{1}(\sigma(s)) h(s) d s \leq 1 .
\end{aligned}
$$

Taking the limsup the on both sides of the above inequality, we obtain a contradiction to condition (2.23),

Next, we consider case (II). As in Lemma 2.6, we again arrive at (2.20), which, for $\beta=1$, takes the form

$$
\begin{equation*}
z^{\prime \prime \prime}(t)+\frac{1}{2} q(t) \pi_{2}(\sigma(t))(g(t)-h(t))^{2} z^{\prime \prime}(g(t)) \leq 0 . \tag{2.33}
\end{equation*}
$$

Integrating (2.33) from $g(t)$ to t yields

$$
z^{\prime \prime}(t)+\left[\int_{g(t)}^{t} \frac{1}{2} q(s) \pi_{2}(\sigma(s))(g(s)-h(s))^{2} d s-1\right] z^{\prime \prime}(g(t)) \leq 0,
$$

which, by (2.24), leads to a contradiction. This completes the proof of the theorem.
Our next results is for equation (1.1) in the case where $\beta<1$, i.e., equation (1.1) is sublinear.

Theorem 2.8. Let (2.3) and (2.11) hold. Assume that there exists a nondecreasing function $\eta \in$ $C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ such that $\sigma(t) \leq \eta(t)<\tau(t)$ for $t \geq t_{0}$. If there exists $\theta \in(0,1)$ such that

$$
\begin{align*}
& \quad \limsup _{t \rightarrow \infty}\left(h^{1-\frac{2}{\theta}}(t) \int_{t_{0}}^{h(t)} s q(s) \pi_{1}^{\beta}(\sigma(s))(h(s))^{2 \beta / \theta} d s\right. \\
& \quad+h^{2-\frac{2}{\theta}}(t) \int_{h(t)}^{t} q(s) \pi_{1}^{\beta}(\sigma(s))(h(s))^{2 \beta / \theta} d s \\
& \tag{2.34}\\
& \left.\quad+\frac{h^{2-\beta}(t)}{h^{2(1-\beta) / \theta}(t)} \int_{t}^{\infty} q(s) \pi_{1}^{\beta}(\sigma(s)) h^{\beta}(s) d s\right)>0
\end{align*}
$$

and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{g(t)}^{t} q(s) \pi_{2}(\sigma(s))(g(s)-h(s))^{2 \beta} d s>0 \tag{2.35}
\end{equation*}
$$

then equation (1.1) is oscillatory.
Proof. Let $x(t)$ be a nonoscillatory solution of equation (1.1), say $x(t)>0, x(\tau(t))>0$, and $x(\sigma(t))>0$ for $t \geq t_{1}$ for some $t_{1} \geq t_{0}$. Then, by Lemma 2.2, the corresponding function z satisfies either case (I) or case (II) for $t \geq t_{2}$ for some $t_{2} \geq t_{1}$.

First, we consider case (I). By Lemma 2.4, we again arrive at (2.10) for $t \geq t_{3}$. Integrating (2.10) from t to ∞ gives

$$
\begin{equation*}
z^{\prime \prime}(t) \geq \int_{t}^{\infty} q(s) \pi_{1}^{\beta}(\sigma(s)) z^{\beta}(h(s)) d s \tag{2.36}
\end{equation*}
$$

Integrating (2.36) from t_{3} to t yields

$$
\begin{aligned}
z^{\prime}(t) & \geq \int_{t_{3}}^{t} \int_{u}^{\infty} q(s) \pi_{1}^{\beta}(\sigma(s)) z^{\beta}(h(s)) d s d u \\
& =\int_{t_{3}}^{t} \int_{u}^{t} q(s) \pi_{1}^{\beta}(\sigma(s)) z^{\beta}(h(s)) d s d u+\int_{t_{3}}^{t} \int_{t}^{\infty} q(s) \pi_{1}^{\beta}(\sigma(s)) z^{\beta}(h(s)) d s d u \\
& =\int_{t_{3}}^{t}\left(s-t_{3}\right) q(s) \pi_{1}^{\beta}(\sigma(s)) z^{\beta}(h(s)) d s+\left(t-t_{3}\right) \int_{t}^{\infty} q(s) \pi_{1}^{\beta}(\sigma(s)) z^{\beta}(h(s)) d s .
\end{aligned}
$$

For any $\alpha \in(0,1)$ there exists $t_{4} \geq t_{3}$ such that $s-t_{3} \geq \alpha s$ and $t-t_{3} \geq \alpha t$ for $t \geq s \geq t_{4}$. Thus,

$$
\begin{equation*}
z^{\prime}(t) \geq \alpha \int_{t_{4}}^{t} s q(s) \pi_{1}^{\beta}(\sigma(s)) z^{\beta}(h(s)) d s+\alpha t \int_{t}^{\infty} q(s) \pi_{1}^{\beta}(\sigma(s)) z^{\beta}(h(s)) d s . \tag{2.37}
\end{equation*}
$$

By (2.2) and (2.37), we observe that

$$
\begin{equation*}
\frac{2 z(t)}{\theta t} \geq \alpha \int_{t_{4}}^{t} s q(s) \pi_{1}^{\beta}(\sigma(s)) z^{\beta}(h(s)) d s+\alpha t \int_{t}^{\infty} q(s) \pi_{1}^{\beta}(\sigma(s)) z^{\beta}(h(s)) d s . \tag{2.38}
\end{equation*}
$$

It follows from (2.38) that

$$
\begin{align*}
& \frac{2 z(h(t))}{\theta h(t)} \geq \alpha \int_{t_{4}}^{h(t)} s q(s) \pi_{1}^{\beta}(\sigma(s)) z^{\beta}(h(s)) d s \\
& \\
& \qquad \begin{aligned}
& \\
& \quad \alpha h(t) \int_{h(t)}^{t} q(s) \pi_{1}^{\beta}(\sigma(s)) z^{\beta}(h(s)) d s \\
& \quad \alpha h(t) \int_{t}^{\infty} q(s) \pi_{1}^{\beta}(\sigma(s)) z^{\beta}(h(s)) d s .
\end{aligned} \tag{2.39}
\end{align*}
$$

Using (2.30) and (2.31) in (2.39) gives

$$
\begin{align*}
& \frac{2 z(h(t))}{\theta h(t)} \geq\left(\alpha \int_{t_{4}}^{h(t)} s q(s) \pi_{1}^{\beta}(\sigma(s))(h(s))^{2 \beta / \theta} d s\right) \frac{z^{\beta}(h(t))}{h^{2 \beta / \theta}(t)} \\
& \quad+\left(\alpha h(t) \int_{h(t)}^{t} q(s) \pi_{1}^{\beta}(\sigma(s))(h(s))^{2 \beta / \theta} d s\right) \frac{z^{\beta}(h(t))}{h^{2 \beta / \theta}(t)} \\
& \quad+\left(\alpha h(t) \int_{t}^{\infty} q(s) \pi_{1}^{\beta}(\sigma(s)) h^{\beta}(s) d s\right) \frac{z^{\beta}(h(t))}{h^{\beta}(t)} . \tag{2.40}
\end{align*}
$$

Letting

$$
w(t)=\frac{z(h(t))}{(h(t))^{2 / \theta}},
$$

it follows from (2.40) that

$$
\begin{align*}
& \frac{2}{\alpha \theta} w^{1-\beta}(t) \geq h^{1-\frac{2}{\theta}}(t)\left(\int_{t_{4}}^{h(t)} s q(s) \pi_{1}^{\beta}(\sigma(s))(h(s))^{2 \beta / \theta} d s\right) \\
& \quad+h^{2-\frac{2}{\theta}}(t)\left(\int_{h(t)}^{t} q(s) \pi_{1}^{\beta}(\sigma(s))(h(s))^{2 \beta / \theta} d s\right) \\
& \quad+\frac{h^{2-\beta}(t)}{h^{2(1-\beta) / \theta}}\left(\int_{t}^{\infty} q(s) \pi_{1}^{\beta}(\sigma(s)) h^{\beta}(s) d s\right) . \tag{2.41}
\end{align*}
$$

Taking the lim sup ${ }_{t \rightarrow \infty}$ on both sides of the above inequality and using (2.12), we obtain a contradiction to condition (2.34).

Next, we consider case (II). As in the proof of Lemma 2.6, we again arrive at (2.21). Integrating (2.21) from $g(t)$ to t yields

$$
\int_{g(t)}^{t} q(s) \pi_{2}(\sigma(s))(g(s)-h(s))^{2 \beta} d s \leq 2^{\beta}\left(z^{\prime \prime}(g(t))\right)^{1-\beta}
$$

Noting that (2.35) implies (2.15), we see that (2.16) holds. Taking the $\lim _{\sup }^{t \rightarrow \infty}$ on both sides of the above inequality and using (2.16), we obtain a contradiction to condition (2.35), and this proves the theorem.

We conclude this paper with the following examples and remarks to illustrate the above results. Our first example is concerned with an equation with bounded neutral coefficients in the case where p is a constant function; the second example is for an equation with unbounded neutral coefficients in the case where $p(t) \rightarrow \infty$ as $t \rightarrow \infty$.

Example 2.9. Consider the third-order differential equation of Euler type

$$
\begin{equation*}
\left(x(t)+16 x\left(\frac{t}{2}\right)\right)^{\prime \prime \prime}+\frac{q_{0}}{t^{3}} x\left(\frac{t}{4}\right)=0, \quad t \geq 1 . \tag{2.42}
\end{equation*}
$$

Here $p(t)=16, q(t)=q_{0} / t^{3}, \beta=1, \tau(t)=t / 2$, and $\sigma(t)=t / 4$. Then, it is easy to see that conditions (C1)-(C2) hold, and

$$
\tau^{-1}(t)=2 t, \tau^{-1}\left(\tau^{-1}(t)\right)=4 t, h(t)=t / 2, \text { and } g(t)=2 t / 3 \text { with } \eta(t)=t / 3 \text {. }
$$

Choosing $\theta=2 / 3$, we see that

$$
\left(\frac{t}{\tau(t)}\right)^{2 / \theta} \frac{1}{p(t)}=\frac{1}{2}
$$

i.e., condition (C3) holds, $\pi_{1}(t)=1 / 32$ and $\pi_{2}(t)=15 / 256$. Letting $\alpha=\theta=2 / 3$, by Theorem 2.7 , Eq. (2.42) is oscillatory for

$$
q_{0}>\frac{3 \times 2^{11}}{5 \ln \frac{3}{2}}
$$

Example 2.10. Consider the sublinear equation

$$
\begin{equation*}
\left(x(t)+t x\left(\frac{t}{2}\right)\right)^{\prime \prime \prime}+\frac{q_{0}}{t^{6 / 5}} x^{3 / 5}\left(\frac{t}{10}\right)=0, \quad t \geq 16 \tag{2.43}
\end{equation*}
$$

Here $p(t)=t, q(t)=q_{0} / t^{6 / 5}, \beta=3 / 5, \tau(t)=t / 2$, and $\sigma(t)=t / 10$. Then, it is easy to see that conditions (C1)-(C2) hold, and

$$
\tau^{-1}(t)=2 t, \tau^{-1}\left(\tau^{-1}(t)\right)=4 t, h(t)=t / 5, \text { and } g(t)=t / 4 \text { with } \eta(t)=t / 8
$$

Choosing $\theta=2 / 3$, we see that

$$
\left(\frac{t}{\tau(t)}\right)^{2 / \theta} \frac{1}{p(t)}=\frac{8}{t} \leq \frac{1}{2}
$$

i.e., condition (C3) holds. Since $\pi_{1}(t) \geq 7 / 16 t$ and $\pi_{2}(t) \geq 63 / 128 t$, by Theorem 2.8, Eq. (2.43) is oscillatory for all $q_{0}>0$.

Remark 2.11. The results of this paper can be extended to the odd-order equation

$$
\left(r(t)\left(z^{(n-1)}(t)\right)^{\gamma}\right)^{\prime}+q(t) x^{\beta}(\sigma(t))=0, \quad t \geq t_{0}>0
$$

under either of the conditions

$$
\int_{t_{0}}^{\infty} r^{-1 / \gamma}(t) d t=\infty
$$

or

$$
\int_{t_{0}}^{\infty} r^{-1 / \gamma}(t) d t<\infty
$$

where $n \geq 3$ is an odd natural number, $r \in C\left(\left[t_{0}, \infty\right),(0, \infty)\right), \gamma$ is the ratio of odd positive integers, and the other functions in the equation are defined as in this paper.

Remark 2.12. It would be of interest to study the oscillatory behavior of all solutions of (1.1) for $p(t) \leq-1$ with $p(t) \not \equiv-1$ for large t.

Acknowledgments

This paper has been supported by the RUDN University Strategic Academic Leadership Program.

References

[1] B. Baculíková, J. Džurina, Oscillation of third-order neutral differential equations, Math. Comput. Model. 52(2010), 215-226. https://doi.org/10.1016/j.mcm.2010.02.011
[2] B. Baculíková, J. Džurina, On certain inequalities and their applications in the oscillation theory, Adv. Differ. Equ. 2013, Article ID 165, 1-8. https://doi.org/10.1186/ 1687-1847-2013-165
[3] G. E. Chatzarakis, J. Džurina, I. Jadlovská, Oscillatory properties of third-order neutral delay differential equations with noncanonical operators, Mathematics 7(2019), No. 12, 1-12.
[4] G. E. Chatzarakis, S. R. Grace, I. Jadlovská, T. Li, E. Tunç, Oscillation criteria for third-order Emden-Fowler differential equations with unbounded neutral coefficients, Complexity 2019, Article ID 5691758, 1-7.
[5] D.-X. Chen, J.-C. Liu, Asymptotic behavior and oscillation of solutions of third-order nonlinear neutral delay dynamic equations on time scales, Can. Appl. Math. Q. 16(2008), 19-43. MR2508451
[6] P. Das, Oscillation criteria for odd order neutral equations, J. Math. Anal. Appl. 188(1994), 245-257. https://doi.org/10.1006/jmaa.1994.1425
[7] J. Džurina, S. R. Grace, I. Jadlovská, On nonexistence of Kneser solutions of thirdorder neutral delay differential equations, Appl. Math. Lett. 88(2019), 193-200. https: //doi.org/10.1016/j.aml.2018.08.016
[8] Z. Došlé P. Lıška, Comparison theorems for third-order neutral differential equations, Electron. J. Differential Equations 2016, No. 38, 1-13. MR3466509
[9] S. R. Grace, J. Alzabut, A. Özbekler, New criteria on oscillatory and asymptotic behavior of third-order nonlinear dynamic equations with nonlinear neutral terms, Entropy 23(2021), 1-11. https://doi. org/10.3390/e23020227
[10] S. R. Grace, J. R. Graef, E. Tunç, Oscillatory behavior of third order nonlinear differential equations with a nonlinear nonpositive neutral term, J. Taibah Univ. Sci. 13(2019), 704-710.
[11] J. R. Graef, R. Savithri, E. Thandapani, Oscillatory properties of third order neutral delay differential equations, Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, May 24-27, 2002, Wilmington, NC, USA, 342-350. MR2018134
[12] J. R. Graef, E. Tunç, S. R. Grace, Oscillatory and asymptotic behavior of a third-order nonlinear neutral differential equation, Opuscula Math. 37(2017), 839-852. https://doi. org/10.7494/OpMath.2017.37.6.839
[13] J. R. Graef, P. W. Spikes, M. K. Grammatikopoulos, Asymptotic behavior of nonoscillatory solutions of neutral delay differential equations of arbitrary order, Nonlinear Anal. 21(1993), 23-42. https://doi.org/10.1016/0362-546X (93) 90175-R
[14] J. K. Hale, Theory of functional differential equations, Springer-Verlag, New York, 1977. MR0508721
[15] Y. Jiang, C. Jiang, T. Li, Oscillatory behavior of third-order nonlinear neutral delay differential equations, Adv. Differ. Equ. 2016, Article ID 171, 1-12.
[16] I. T. Kiguradze, On the oscillatory character of solutions of the equation $d^{m} u / d t^{m}+$ $a(t)|u|^{n} \operatorname{sign} u=0$, Mat. Sb. (N.S.) 65(1964), 172-187. MR0173060,
[17] R. Koplatadze, G. Kvinikadze, I. P. Stavroulakis, Properties A and B of nth order linear differential equations with deviating argument, Georgian Math. J. 6(1999), 553-566. https://doi.org/10.1023/A:1022962129926
[18] T. Li, Yu. V. Rogovchenko, Asymptotic behavior of higher-order quasilinear neutral differential equations, Abstr. Appl. Anal. 2014, Article ID 395368, 1-11. https://doi. org/10. 1155/2014/395368
[19] B. Mihalíková, E. Kostiкová, Boundedness and oscillation of third order neutral differential equations, Tatra Mt. Math. Publ. 43(2009), 137-144. https://doi.org/10.2478/ v10127-009-0033-6; MR2588884
[20] O. Moaaz, J. Awrejcewicz, A. Muhib, Establishing new criteria for oscillation of oddorder nonlinear differential equations, Mathematics 8(2020), No. 6, Article No. 937, 15 pp. https://doi.org/10.3390/math8060937
[21] S. H. Saker, J. R. Graef, Oscillation of third-order nonlinear neutral functional dynamic equations on time scales, Dynam. Syst. Appl. 21(2012), 583-606. MR3026094
[22] Y. Sun, T. S. Hassan, Comparison criteria for odd order forced nonlinear functional neutral dynamic equations, Appl. Math. Comput. 251(2015), 387-395. https://doi.org/ 10.1016/j.amc.2014.11.095
[23] Y. Sun, Y. Zhao, Oscillatory behavior of third-order neutral delay differential equations with distributed deviating arguments, J. Inequal. Appl. 2019, Article ID 207, 1-16. https : //doi.org/10.1186/s13661-019-01301-7
[24] E. Thandapani, T. Li, On the oscillation of third-order quasi-linear neutral functional differential equations, Arch. Math. (Brno) 47(2011), 181-199. MR2852380
[25] E. Thandapani, S. Padmavathy, S. Pinelas, Oscillation criteria for odd-order nonlinear differential equations with advanced and delayed arguments, Electron. J. Differential Equations 2014, No. 174, 1-13. MR3262045
[26] E. Tunç, Oscillatory and asymptotic behavior of third-order neutral differential equations with distributed deviating arguments, Electron. J. Differential Equations 2017, No. 16, 1-12. MR3609144

[^0]: ${ }^{\boxtimes}$ Corresponding author. Email: John-Graef@utc.edu

