
Electronic Journal of Qualitative Theory of Differential Equations

2011, No. 55, 1-18; http://www.math.u-szeged.hu/ejqtde/

Periodic solutions to a p-Laplacian neutral Duffing

equation with variable parameter

Bo Du

dubo7307@163.com

Department of Mathematics, Huaiyin Normal University

Huaiyin Jiangsu, 223300, P. R. China

Bo Sun

School of Applied Mathematics,Central University of Finance and Economics,

Beijing 100081, P. R. China

Abstract. We study a type of p-Laplacian neutral Duffing functional differential equation

with variable parameter to establish new results on the existence of T -periodic solutions. The

proof is based on a famous continuation theorem for coincidence degree theory. Our research

enriches the contents of neutral equations and generalizes known results. An example is given

to illustrate the effectiveness of our results.

Keywords: variable parameter, neutral, coincidence degree theory

MSC 2000: 34B15, 34B24, 34B20

Supported by The Science Foundation of Educaion Department of Guangxi Province(No. 201012MS025),

Youth PhD Development Fund of Central University of Finance and Economics 121 Talent Cultivation Project

(NO.QBJZH201004) and Discipline Construction Fund of Central University of Finance and Economics.

EJQTDE, 2011 No. 55, p. 1



1 Introduction

Neutral functional differential equations (in short NFDEs) are more wider and complicated

than retarded equations. Such equations depend on past as well as present values but which

involve derivatives with delays as well as the function itself. J. Hale [1] studied the following

NFDE( D, f):

d

dt
D(t, xt) = f(t, xt),

where D is a difference operator for NFDE( D, f). In order to guarantee continuation of the

solution operator T (t, σ, ϕ), Hale gave an important concept: Suppose D : C → R
n is linear and

atomic at 0 and let CD = {φ ∈ C : Dφ = 0}. The operator D is said to to be stable if the zero

solution of the homogeneous “difference” equation

Dyt = 0, t ≥ 0, y0 = ψ ∈ CD

is uniformly asymptotically stable. Thus one can study NFDEs by using the similar methods

belonging to retarded equations under the condition of D is stable, see [2]-[6]. But when the

operator D is not stable, how can we study existence and stability of solutions to NFDEs, which

is very important for theory and applications. To best our knowledge, when the operator D is

not stable, there are few results on the existence of solutions to NFDEs. In 1995, under the non-

resonance condition, we can only find that Zhang [7] studied a kind of neutral differential system

and relieved the stability restriction. Zhang gave some properties for the difference operator A

and obtained the following results: Define the operator A on CT

A : CT → CT , [Ax](t) = x(t) − cx(t− τ),∀t ∈ R,

where CT = {x : x ∈ C(R,R), x(t + T ) ≡ x(t)}, c is a constant. when |c| 6= 1, then A has a

unique continuous bounded inverse A−1 satisfying

[A−1f ](t) =





∑
j≥0

cjf(t− jτ), if |c| < 1, ∀f ∈ CT ,

−
∑
j≥1

c−jf(t+ jτ), if |c| > 1, ∀f ∈ CT .
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After that, Based on [7], Lu [8] gave some inequalities for A:

(1) ||A−1|| ≤ 1
|1−|k|| ;

(2)
∫ T

0 |[A−1f ](t)|dt ≤ 1
|1−|k||

∫ T

0 |f(t)|dt,∀f ∈ CT ;

(3)
∫ T

0 |[A−1f ](t)|2dt ≤ 1
|1−|k||

∫ T

0 |f(t)|2dt,∀f ∈ CT .

On the basis of work of Zhang and Lu, many authors obtained existence results of periodic

solutions to different kinds of NFDEs. For example, in [9], the authors investigated a second-

order neutral equation with multiple deviating arguments:

d2

dt2
(x(t) − kx(t− τ)) = f(x(t))x′(t) + α(t)g(x(t)) +

n∑

j=1

βj(t)g(x(t − γj(t))) + p(t)

Liu and Huang [10] studied the following NFDE:

(u(t) +Bu(t− τ))′ = g1(t, u(t)) − g2(t, u(t− τ1)) + p(t).

But, when c is a variable c(t), there are no corresponding results for A. In 2009, when c is

a variable c(t), we obtained the properties of the neutral operator A : CT → CT , [Ax](t) =

x(t)− c(t)x(t− τ) in [11]. Using the results of [11], we have obtained some existence results for

first-order and second-order neutral equations with variable parameter. At present, we note that

p−Laplacian neutral equations have attracted much attention from researchers. In [12]-[13], Zhu

and Lu studied the following p-Laplacian NFDEs:

(
ϕp[(x(t) − cx(t− σ))′]

)′
+ g(t, x(t − τ(t))) = e(t)

and

(
ϕp[(x(t) − cx(t− σ))′]

)′
= f(x(t))x′(t) + Σn

j=1βj(t)g(x(t− γj(t))) + p(t).

However, there have been few results for the existence of periodic solutions to p-Laplacian neutral

equations for the cases of a variable c(t). The reasons for it lie in the following three aspects.

The first is that the differential operator ϕp(u) = |u|p−2u, p 6= 2 is no longer linear, so the theory

of coincidence degree can not been used directly and verifying L−compact is difficult; the second
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is that an a priori bound of solutions is not easy to estimate; finally, the second condition of

Mawhin’s continuation theorem is not easy to verify. So in this paper we will overcome these

difficulties and obtain the existence of periodic solutions to equation (1.1) by constructing proper

projections P, Q and some skills of inequalities.

In this paper, we consider the p-Laplacian neutral Duffing functional differential equation

with variable parameter of the form:

(ϕp((x(t) − c(t)x(t− τ))′))′ + g(x(t − γ(t))) = e(t), (1.1)

where ϕp : R → R, ϕp(u) = |u|p−2u, p > 1; g ∈ C(R,R); c, γ, e are continuous T−periodic

functions defined on R; τ is a given constant.

2 Main Lemmas

In this section, we give some notations and lemmas which will be used in this paper. Let

c0 = max
t∈[0,T ]

|c(t)|, σ = min
t∈[0,T ]

|c(t)|, c1 = max
t∈[0,T ]

|c′(t)|,

CT = {x|x ∈ C(R,R), x(t+ T ) ≡ x(t), ∀t ∈ R}

with the norm

|ϕ|0 = max
t∈[0,T ]

|ϕ(t)|, ∀ϕ ∈ CT

and

C1
T = {x|x ∈ C1(R,R), x(t+ T ) ≡ x(t), ∀t ∈ R}

with the norm

||ϕ|| = max
t∈[0,T ]

{|ϕ|0, |ϕ
′|0}, ∀ϕ ∈ C1

T .

Clearly, CT and C1
T are Banach spaces. Define linear operators:

A : CT → CT , [Ax](t) = x(t) − c(t)x(t− τ), ∀t ∈ R.
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Lemma 2.1. [11] If |c(t)| 6= 1, then operator A has continuous inverse A−1 on CT , satisfying

(1)

[A−1f ](t) =





f(t) +
∞∑

j=1

j∏
i=1

c(t− (i− 1)τ)f(t− jτ), c0 < 1, ∀f ∈ CT ,

− f(t+τ)
c(t+τ) −

∞∑
j=1

j+1∏
i=1

1
c(t+iτ)f(t+ jτ + τ), σ > 1, ∀f ∈ CT .

(2)

∫ T

0
|[A−1f ](t)|dt ≤





1
1−c0

∫ T

0 |f(t)|dt, c0 < 1, ∀f ∈ CT ,

1
σ−1

∫ T

0 |f(t)|dt, σ > 1, ∀f ∈ CT .

Let X and Y be real Banach spaces and let L : D(L) ⊂ X → Y be a Fredholm operator

with index zero, here D(L) denotes the domain of L. This means that ImL is closed in Y and

dimKerL = codimImL < +∞. If L is a Fredholm operator with index zero, then there exist

continuous projectors P : X → X, Q : Y → Y such that ImP = KerL, ImL = KerQ =

Im(I − Q). It follows that LD(L)∩KerP : (I − P )X → ImL is invertible. Denote by Kp the

inverse of LP .

Let Ω be an open bounded subset of X, a map N : Ω̄ → Y is said to be L-compact in Ω̄

if QN(Ω̄) is bounded and the operator Kp(I −Q)N(Ω̄) is relatively compact. Because ImQ is

isomorphic to KerL, there exists an isomorphism J : ImQ→ KerL. We first recall the famous

Mawhin’s continuation theorem.

Lemma 2.2. [14] Suppose that X and Y are two Banach spaces, and L : D(L) ⊂ X → Y, is a

Fredholm operator with index zero. Furthermore, Ω ⊂ X is an open bounded set and N : Ω̄ → Y

is L-compact on Ω̄. if all the following conditions hold:

(1) Lx 6= λNx,∀x ∈ ∂Ω ∩D(L),∀λ ∈ (0, 1),

(2) Nx /∈ ImL,∀x ∈ ∂Ω ∩KerL,

(3) deg{JQN,Ω ∩KerL, 0} 6= 0,
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where J : ImQ → KerL is an isomorphism. Then equation Lx = Nx has a solution on

Ω̄ ∩D(L).

In order to use Mawhin’s continuation theorem to obtain the existence of T -periodic solutions

of the equation (1.1), we rewrite the equation (1.1) in the form of the two-dimensional differential

system 



(Ax1)
′(t) = ϕq(x2(t)),

x′2(t) = −g(x1(t− γ(t))) + e(t),

(2.1)

where q > 1 is a constant with 1
p

+ 1
q

= 1. Obviously if x(t) = (x1(t), x2(t))
T is a T -periodic

solution to system (2.1), then x1(t) must be a T -periodic solution to equation (1.1). Thus, in

order to prove that equation (1.1) has a T -periodic solution, it suffices to show that system (2.1)

has a T -periodic solution. Now we set

X = {x = (x1(·), x2(·))
T ∈ C(R,R2)| x(t+ T ) ≡ x(t)}

with the norm ||x|| = max{|x1|0, |x2|0}. Equipped with the above norm || · ||, X is Banach space.

Meanwhile, let

L : D(L) ⊂ X → X, Lx =




(Ax1)
′

x′2


 , (2.2)

N : X −→ X, (Nx)(t) =




ϕq(x2(t))

−g(x1(t− γ(t))) + e(t)


 , (2.3)

where D(L) = {x : x ∈ C1(R,R2)| x(t+ T ) = x(t)}. We get

ImL =




y|y ∈ X,

∫ T

0
y(s)ds =




0

0







.

Since for all x ∈ KerL, (x1(t) − c(t)x1(t− τ))′ = 0, then

x1(t) − c(t)x1(t− τ) = 1. (2.4)
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Let φ(t) be the unique T−periodic solution of (2.4), then φ(t) 6= 0 and

KerL =








aφ(t)

a


 , a ∈ R




.

Obviously, ImL is a closed in X and dimKerL = codimImL = 1. Hence L is a Fredholm

operator with index zero. Define continuous projectors P, Q

P : X → KerL, (Px)(t) =




R T

0
x1(t)φ(t)dt

R T

0
φ2(t)dt

φ(t)

1
T

∫ T

0 x2(t)dt




and

Q : X → X/ImL, Qy =




1
T

∫ T

0 y1(t)dt

1
T

∫ T

0 y2(t)dt


 .

Hence

ImP = KerL, KerQ = ImL.

Let

LP = L|D(L)∩KerP : D(L) ∩ KerP → ImL,

then

L−1
P = Kp : ImL→ D(L) ∩ KerP.

Since ImL ⊂ CT and D(L) ∩ KerP ⊂ C1
T , so Kp is an embedding operator. Hence Kp is a

completely operator in ImL. By the definitions of Q and N , it knows that QN(Ω̄) is bounded

on Ω̄, here Ω is a bounded open set on X. Hence nonlinear operator N is L-compact on Ω.

3 Main results

For the sake of convenience, we list the following conditions.

(H1) There is a constant D > 0 such that




g(x) < −|e|0 for x > D,

g(x) > |e|0 for x < −D.

EJQTDE, 2011 No. 55, p. 7



(H2) There is a constant r such that

lim sup
x→−∞

|g(x)|

|x|p−1
≤ r ∈ [0,∞).

Theorem 3.1. Suppose that
∫ T

0 φ2(t)dt 6= 0,
∫ T

0 e(t)dt = 0, |c(t)| 6= 1 and assumptions

(H1), (H2) are all satisfied, then equation (1.1) has at least one T -periodic solution, if

max{ c1T
1−c0

, 2(1+c0)rT p

(1−c0−c1T )p } < 1 for c0 <
1
2 ,

max{ c1T
σ−1 ,

2(1+c0)rT p

(σ−1−c1T )p } < 1 for σ > 1.

Proof. Consider the following operator equation:

Lx = λNx, λ ∈ (0, 1),

where L and N are are defined by (2.2) and (2.3), respectively. Let

Ω1 = {x|x ∈ D(L), Lx = λNx, λ ∈ (0, 1)}.

If x =




x1

x2


 ∈ Ω1, then x must satisfy





(Ax1)
′(t) = λϕq(x2(t)),

x′2(t) = −λg(x1(t− γ(t))) + λe(t).

(3.1)

From the first equation of (3.1), we get x2(t) = ϕp(
1
λ
(Ax1)

′(t)), combining with the second

equation of (3.1) yields

(ϕp((Ax1)
′(t)))′ + λpg(x1(t− γ(t))) = λpe(t). (3.2)

Let t0 be the point, where Ax1 achieves its maximum on [0, T ], i.e.,

(Ax1)(t0) = max
t∈[0,T ]

(Ax1)(t).

Then (Ax1)
′(t0) = 0 and x2(t0) = ϕp(

1
λ
(Ax1)

′(t0)) = 0,∀λ ∈ (0, 1). We claim

x′2(t0) ≤ 0. (3.3)
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In fact, if x′2(t0) > 0, then there exists a constant δ > 0 such that x′2(t) > 0 for t ∈ [t0, t0 + δ],

then x2(t) > x2(t0) = 0, for t ∈ [t0, t0 + δ]. So (Ax1)
′(t) = λϕq(x2(t)) > 0 for t ∈ [t0, t0 + δ] and

thus (Ax1)(t) > (Ax1)(t0), which contradicts the assumption of t0. This proves (3.3). From the

second equation of (3.1), we have

−λg(x1(t0 − γ(t0))) + λe(t0) ≤ 0,

then

g(x1(t0 − γ(t0))) ≥ −|e|0.

By assumption (H1),

x1(t0 − γ(t0)) ≤ D. (3.4)

Integrating both sides of (3.2) over [0,T], we get

∫ T

0
g(x1(t− γ(t)))dt = 0. (3.5)

From integral mean value theorem and (3.5), we know that there exists a constant t1 ∈ [0, T ]

such that

g(x1(t1 − γ(t1))) = 0.

Assumption (H1) implies

x1(t1 − γ(t1)) ≥ −D. (3.6)

From (3.4) and (3.6), it is easy to prove that there exists a constant ξ ∈ [0, T ] such that

|x1(ξ)| ≤ D. (3.7)

In fact, by (3.4) we know x1(t0 − γ(t0)) ∈ [−D,D], or x1(t0 − γ(t0)) < −D.

(1) If x1(t0 − γ(t0)) ∈ [−D,D]. Let t0 − γ(t0) = kT + ξ, k ∈ Z, ξ ∈ [0, T ]. This proves (3.7).

(2) If x1(t0 − γ(t0)) < −D, from (3.6) and the fact that the x1(t) is continuous on R, there is a
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point t2 between t0−γ(t0) and t1−γ(t1) such that |x1(t2)| ≤ D. Let t2 = kT+ξ, k ∈ Z, ξ ∈ [0, T ].

This also proves (3.7). Hence we get

|x1|0 = max
t∈[0,T ]

|x1(ξ) +

∫ t

ξ

x′1(s)ds| ≤ |x1(ξ)| +

∫ T

0
|x′1(s)|ds ≤ D +

∫ T

0
|x′1(s)|ds. (3.8)

Let

E1 = {t ∈ [0, T ] : x1(t− γ(t)) < −ρ}, E2 = {t ∈ [0, T ] : |x1(t− γ(t))| ≤ ρ},

E3 = {t ∈ [0, T ] : x1(t− γ(t)) > ρ},

where ρ > D > 0 is a given constant. Integrating the two sides of (3.2) on [0, T ], we get

∫ T

0
g(x1(t− γ(t)))dt = 0.

Therefore, using (H1) and (H2), we obtain

∫

E3

|g(x1(t− γ(t)))|dt = −

∫

E3

g(x1(t− γ(t)))dt

=

∫

E1∪E2

g(x1(t− γ(t)))dt

≤

∫

E1∪E2

|g(x1(t− γ(t)))|dt.

(3.9)

Since 2(1+c0)rT p

(1−c0−c1T )p < 1, there exists a constant ε > 0 such that

2(1 + c0)(r + ε)T p

(1 − c0 − c1T )p
< 1. (3.10)

For such ε, by assumption (H2), there exists a constant ρ > 0 such that

|g(u)| ≤ (r + ε)|u|p−1 for u < −ρ. (3.11)

From (3.9) and (3.11), we get

∫ T

0
|g(x1(t− γ(t)))|dt =

∫

E1∪E2∪E3

|g(x1(t− γ(t)))|dt

≤ 2

∫

E1∪E2

|g(x1(t− γ(t)))|dt

≤ 2(r + ε)T |x1|
p−1
0 + 2Tgρ,

(3.12)
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where gρ = maxt∈E2
|g(x1(t− γ(t)))|. On the other hand, multiplying the two sides of equation

(3.2) by (Ax1)(t) and integrating them over [0, T ], combining with (3.12), then

∫ T

0
|(Ax1)

′(t)|pdt ≤ (1 + c0)|x1|0

(∫ T

0
|(g(x1(t− γ(t)))|dt + T |e|0

)

≤ (1 + c0)|x1|0

∫ T

0
|g(x1(t− γ(t)))|dt + (1 + c0)|x1|0T |e|0

≤ 2(1 + c0)(r + ε)T |x1|
p
0 + (1 + c0)(2gρT + T |e|0)|x1|0.

(3.13)

For simplicity, let k1 = 2(1 + c0)(r + ε)T, k2 = (1 + c0)(2gρT + T |e|0). From (3.8) and (3.13),

we have ∫ T

0
|(Ax1)

′(t)|pdt ≤ k1|x1|
p
0 + k2|x1|0

≤ k1

(
D +

∫ T

0
|x′1(t)|dt

)p

+ k2

∫ T

0
|x′1(t)|dt +Dk2.

(3.14)

From [Ax1](t) = x1(t) − c(t)x1(t− τ), ∀x1 ∈ C1
T , we have

(Ax′1)(t) = (Ax1)
′(t) + c′(t)x1(t− τ),

then from Lemma 2.1 and (3.8), if c0 <
1
2 we have

∫ T

0 |x′1(t)|dt =
∫ T

0 |(A−1Ax′1)(t)|dt

≤
∫ T

0
|(Ax′

1
)(t)|

1−c0
dt

=
∫ T

0
|(Ax1)′(t)+c′(t)x1(t−τ)|

1−c0
dt

≤
∫ T

0
|(Ax1)′(t)|

1−c0
dt+ c1T

1−c0

(
D +

∫ T

0 |x′1(t)|dt
)
.

In view of c1T
1−c0

< 1, we have

∫ T

0 |x′1(t)|dt ≤
∫ T

0
|(Ax1)′(t)|
1−c0−c1T

dt+ c1TD
1−c0−c1T

≤ T
1
q

1−c0−c1T

(∫ T

0 |(Ax1)
′(t)|pdt

) 1

p
+ c1TD

1−c0−c1T

(3.15)

Case 1. If
∫ T

0 |(Ax1)
′(t)|dt = 0, then

∫ T

0 |x′1(t)|dt ≤
c1TD

1−c0−c1T
, by (3.8),

|x1|0 ≤ D +
c1TD

1 − c0 − c1T
. (3.16)

Case 2. If
∫ T

0 |(Ax1)
′(t)|dt > 0. By (3.14) and (3.15), we have
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∫ T

0 |(Ax1)
′(t)|pdt ≤ k1

(
D +

∫ T

0 |x′1(t)|dt
)p

+ k2

∫ T

0 |x′1(t)|dt +Dk2

≤ k1

(
D +

∫ T

0
|(Ax1)′(t)|
1−c0−c1T

dt + c1TD
1−c0−c1T

)p

+k2

∫ T

0
|(Ax1)′(t)|
1−c0−c1T

dt+ k2c1TD
1−c0−c1T

+Dk2

= k1

(
D−Dc0

1−c0−c1T
+
∫ T

0
|(Ax1)′(t)|
1−c0−c1T

dt
)p

+k2

∫ T

0
|(Ax1)′(t)|
1−c0−c1T

dt+ k2c1TD
1−c0−c1T

+Dk2.

(3.17)

Clearly, (
D−Dc0

1−c0−c1T
+

R T

0
|(Ax1)′(t)|dt

1−c0−c1T

)p

= 1
(1−c0−c1T )p

(∫ T

0 |(Ax1)
′(t)|dt

)p
(

1 + D−Dc0
R T

0
|(Ax1)′(t)|dt

)p

.

(3.18)

By classical elementary inequalities, there is a constant h(p) > 0 which is dependent on p only,

such that

(1 + u)p < 1 + (1 + p)u,∀u ∈ (0, h(p)]. (3.19)

If D−Dc0
R T

0
|(Ax1)′(t)|dt

> h, then
∫ T

0 |(Ax1)
′(t)|dt < D−Dc0

h
. By (3.8) and (3.15),

|x1|0 < D +
∫ T

0 |x′1(t)|dt

≤
∫ T

0
|(Ax1)′(t)|
1−c0−c1T

dt + c1TD
1−c0−c1T

+D

< D−Dc0
h(1−c0−c1T ) + D−Dc0

1−c0−c1T

= (h+1)(D−Dc0)
h(1−c0−c1T ) .

(3.20)

If D−Dc0
R T

0
|(Ax1)′(t)|dt

≤ h. By (3.18) and (3.19), then

(
D −Dc0

1 − c0 − c1T
+

∫ T

0 |(Ax1)
′(t)|dt

1 − c0 − c1T

)p

≤
1

(1 − c0 − c1T )p

(∫ T

0
|(Ax1)

′(t)|dt

)p
(

1 +
(p+ 1)(D −Dc0)∫ T

0 |(Ax1)′(t)|dt

)

≤

(∫ T

0 |(Ax1)
′(t)|dt

)p

(1 − c0 − c1T )p
+

(p + 1)(D −Dc0)

(1 − c0 − c1T )p

(∫ T

0
|(Ax1)

′(t)|dt

)p−1

.

(3.21)
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By (3.17) and (3.21),

∫ T

0
|(Ax1)

′(t)|pdt ≤
k1

(1 − c0 − c1T )p

(∫ T

0
|(Ax1)

′(t)|dt

)p

+
k1(p+ 1)(D −Dc0)

(1 − c0 − c1T )p

(∫ T

0
|(Ax1)

′(t)|dt

)p−1

+ k2

∫ T

0

|(Ax1)
′(t)|

1 − c0 − c1T
dt+

k2c1TD

1 − c0 − c1T
+Dk2

≤
k1

(1 − c0 − c1T )p
T

p

q

∫ T

0
|(Ax1)

′(t)|pdt

+
k1(p+ 1)(D −Dc0)

(1 − c0 − c1T )p
T

p−1

q

(∫ T

0
|(Ax1)

′(t)|pdt

) p−1

p

+
k2T

1

q

1 − c0 − c1T

(∫ T

0
|(Ax1)

′(t)|pdt

) 1

p

+
k2c1TD

1 − c0 − c1T
+Dk2.

(3.22)

In view of the definition the number k1, from (3.10), (3.22), p−1
p

< 1 and 1
p
< 1, there is a

constant M1 > 0 such that
∫ T

0 |(Ax1)
′(t)|pdt ≤M1. It follows from (3.15) that

∫ T

0
|x′1(t)|dt ≤

T
1

qM
1

p

1

1 − c0 − c1T
+

c1TD

1 − c0 − c1T
:= M2.

By (3.8) we get

|x1|0 ≤ D +M2. (3.23)

Consequently, from (3.16), (3.20) and (3.23), we have

|x1|0 ≤ max{D +
c1TD

1 − c0 − c1T
,
(h+ 1)(D −Dc0)

h(1 − c0 − c1T )
,D +M2} := M3.

If σ > 1, from the conditions of Theorem 3.1, similar to the above proof, we also obtain that

there exists a constant M4 > 0 such that

|x1|0 ≤M4.

Then we have

|x1|0 < max{M3, M4} + 1 := M̄.

In view of the first equation of (3.1) we have
∫ T

0 |x2(t)|
q−2x2(t)dt = 0. From integral mean

value theorem, there exists a constant η ∈ [0, T ] such that x2(η) = 0. Hence |x2|0 ≤
∫ T

0 |x′2(t)|dt.
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By the second equation of (3.1) we get

∫ T

0
|x′2(t)|dt ≤

∫ T

0
|g(x1(t− γ(t)))|dt +

∫ T

0
|e(t)|dt

≤ TgM̄ + T |e|0,

where gM̄ = max|u|<M̄ |g(u)|. So we obtain

|x2|0 ≤ gM̄ + T |e|0 := M̃.

We have proved that if x = (x1, x2)
T ∈ D(L), Lx = λNx, λ ∈ (0, 1), then |x1|0 ≤ M̄ and

|x2|0 ≤ M̃. Let M = max{M̄ , M̃} and Ω = {x = (x1, x2)
T ∈ X : |x1|0 ≤ M, |x2|0 ≤ M}.

Then M > D and it is clear that the condition (1) of Lemma 2.2 is satisfied. Moreover, for any

x = (x1, x2)
T ∈ X, we have

QNx =




1
T

∫ T

0 ϕq(x2(t))dt

− 1
T

∫ T

0 g(x1(t− γ(t)))dt


 .

Since KerL = (aφ(t), a)T , where a ∈ R and ImL = KerQ, if QNx = 0 for some x = (x1, x2)
T ∈

∂Ω ∩KerL, then x2 ≡ 0, x1 = aφ(t), and

∫ T

0
g(aφ(t))dt = 0. (3.24)

When c0 <
1
2 , we have

φ(t) = A−1(1) = 1 +
∞∑

j=1

j∏
i=1

c(t− (i− 1)τ)

≥ 1 −
∞∑

j=1

j∏
i=1

c0

= 1 − c0
1−c0

= 1−2c0
1−c0

:= δ1 > 0.

Then we have

a ≤
D

δ1
.

Otherwise, ∀t ∈ [0, T ], aφ(t) > D, from assumption (H1), we have

∫ T

0
g(aφ(t))dt < 0
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which is contradiction to (3.24). When σ > 1, we have

φ(t) = A−1(1) = − 1
c(t+τ) −

∞∑
j=1

j+1∏
i=1

1
c(t+iτ)

≤ − 1
σ
−

∞∑
j=1

j+1∏
i=1

1
σ

= − 1
σ−1 := δ2 < 0.

Then we have

a ≤ −
D

δ2
.

Otherwise, ∀t ∈ [0, T ], aφ(t) < −D, from assumption (H1), we have

∫ T

0
g(aφ(t))dt > 0

which is contradiction to (3.24). One has |x1|0 = max{D
δ1
,−D

δ2
}|φ|0 = M ≤ D, which is a

contradiction. So QNx 6= 0 for all x ∈ ∂Ω ∩KerL and thus the condition (2) of Lemma 2.2 is

satisfied. It remains to verify the condition (3) of Lemma 2.2. In order to prove it, let

J : ImQ→ KerL, J(x1, x2)
T = (x2, x1)

T ,

and H(x, µ) = µx+ (1 − µ)JQNx for (x, µ) ∈ X × [0, 1]. Then we have

H(x, µ) =




µx1 −
(1−µ)

T

∫ T

0 g(x1(t− γ(t)))dt

µx2 + (1−µ)
T

∫ T

0 ϕq(x2(t))dt


 .

It is not difficult to verify that, using (H1), for any x ∈ ∂Ω ∩ KerL and µ ∈ [0, 1], we have

H(x, µ) 6= 0. Therefore,

deg{JQN,Ω ∩KerL, 0} = deg{H(·, 0),Ω ∩KerL, 0}

= deg{H(·, 1),Ω ∩KerL, 0}

= deg{I,Ω ∩KerL, 0}

6= 0.

Therefore, by using Lemma 2.2, we see that the equation Lx = Nx has a solution x = (x1, x2)
T

in Ω̄, i. e., the equation (1.1) has a T−periodic solution x1.
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Remark 3.1. When 1
2 ≤ c0 < 1, we can not obtain the existence results of periodic solutions

for equation (1.1). This is an interesting problem for further research.

As an application, we consider the following NFDE:

(ϕ3((x(t) − 0.1(2 − cos t)x(t− τ))′))′ + g(x(t− 1/2 sin t)) = sin t, (3.25)

where

g(u) =





− 1
108u

2, u > 10000,

− 1
104u, u ∈ [−10000, 10000],

1
108u

2, u < −10000.

Clearly, the Eq. (3.25) is a particular case of (1.1) in which

p = 3, c(t) = 0.1(2 − cos t), γ(t) =
1

2
sin t, e(t) = sin t.

Then we have c0 = 0.3 < 1
2 , c1 = 0.1, T = 2π and r = 1

108 , and thus

c1T

1 − c0
=

0.2π

0.7
≈ 0.897 < 1

and

2(1 + c0)rT
p

(1 − c0 − c1T )p
=

2.6 × (2π)3

(0.7 − 0.2π)3 × 108
≈ 0.0187 < 1.

Here assumptions (H1) and (H2) are satisfied. By using Theorem 3.1, we know that equation

(3.25) has at least one 2π−periodic solution.
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