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Abstract. In this paper, we investigate even-order linear difference equations and their
criticality. However, we restrict our attention only to several special cases of the general
Sturm–Liouville equation. We wish to investigate on such cases a possible converse of
a known theorem. This theorem holds for second-order equations as an equivalence;
however, only one implication is known for even-order equations. First, we show the
converse in a sense for one term equations. Later, we show an upper bound on criticality
for equations with nonnegative coefficients as well. Finally, we extend the criticality of
the second-order linear self-adjoint equation for the class of equations with interlacing
indices. In this way, we can obtain concrete examples aiding us with our investigation.
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1 Introduction

The concept of criticality for second-order equations was developed in [15] and for equations
of general even-order in [8]. It is established for continuous case as well which the reader
can find for example in [14, 16, 27, 32, 36–38] and in other references. This work was intended
as an attempt to investigate a converse of the main result obtained in [8] through observing
subclasses of the Sturm–Liouville difference equation. We obtain several new properties of
said subclasses and concrete examples whose behaviour motivates further research.

Section 2 contains a summary of necessary definitions and theorems together with some
minor improvements. Nevertheless, it is worth pointing out that critical linear equations
create a subclass of disconjugated equations. When we work with second-order equations
we have only two options, that a disconjugated equation is either critical or subcritical. For
higher-order equations of order 2k we have to separate this approach into subsequent cases,
that equations can be p-critical for 0 ≤ p ≤ k, p ∈ Z and when it is 0-critical we say that the
equation is subcritical.

In Section 3 we work with the one term linear equation

(−4)k
(

rn4kyn−k

)
= 0, rn > 0, n ∈ Z. (1.1)
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Eq. (1.1) gives a subclass of the general Sturm–Liouville equation where only one of the co-
efficients is non-zero. Our main result of Section 3 considers a situation where we make one
of the zero coefficients of Eq. (1.1) arbitrarily smaller. When this change leads to the situation
where Eq. (1.1) loses disconjugacy, then the original Eq. (1.1) is at least p-critical where the as-
sumptions give the number p. Later, we extend this approach for equations with more terms,
where we use mainly equations with nonnegative coefficients. We will introduce an upper
bound on the number p in the p-criticality of such equations. Our approach also partially
covers two term equations used in [7, 39].

Section 4 focuses on the following class of linear difference equations with interlacing
indices

anyn+2 + bnyn + an−2yn−2 = 0, n ∈ Z. (1.2)

The equations with interlacing indices from time to time appear in the literature (see, e.g.,
[19, 40–42]). They, among others, can be used in getting some counterexamples. Here we
describe a space of recessive solutions of Eq. (1.2) at ±∞ and link the criticality of the second-
order self-adjoint equation to the criticality of Eq. (1.2). The important fact to note here is that
for even-order equations, we cannot use several tools which are available for second-order
equations. Hence, we work with equations with interlacing indices to apply these tools at
least on a subclass of the Sturm–Liouville equation. By this, we obtain concrete examples
where the possible behaviour of the converse shows clearly.

Overall, we develop a background for further research even though no attempt has been
made to postulate the form of the possible converse. Additionally, our results show that there
are still many uncharted territories in regard to the criticality of even-order linear equations.
For other examples of the recent development in this field, we refer the reader to see, for ex-
ample, [13,17,22,25,28]. The important point to note here is that the topic of critical equations
is also close to the topic of oscillation. Hence, other closely related results about the critical
case concerning non-oscillation are stated in [23, 24], see also [9].

2 Preliminaries

The article [8] works with linear even-order Sturm–Liouville equation in the form

k

∑
i=0

(−4)i
(

r[i]n 4iyn−i

)
= 0, n ∈ Z, (2.1)

and its criticality is developed. To show this, we have to link solutions of Eq. (2.1) to the
solutions of linear Hamiltonian difference system (see for example [1, 3, 8])

4xn = Axn+1 + Bnun, 4un = Cnxn+1 − ATun (2.2)

through the substitution

xn =


yn

4yn−1

. . .
4k−1yn+1−k

 , un =


∑k

i=1(−4)i−1
(

r[i]n+14iyn+1−i

)
...

−4
(

r[k]n+14kyn+1−k

)
+ r[k−1]

n+1 4k−1yn+2−k

r[k]n+14kyn+1−k

 . (2.3)
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Here A, Bn, Cn are k× k matrices Bn = diag
(

0, . . . , 0, 1
r[k]n+1

)
, Cn = diag

(
r[0]n+1, . . . , r[k−1]

n+1

)
and

A = aij =


1, i = j,

−1, i + 1 = j,

0, otherwise.

A 2k × k matrix solution
(

Xn
Un

)
of Eq. (2.2) is said to be a conjoined basis when XT

n Un is

symmetric and rank
(

Xn
Un

)
= k. A conjoined basis

(
Xn
Un

)
is said to be recessive solution at ∞

provided that for some N sufficiently large holds XnX−1
n+1A−1Bn ≥ 0, for all n ≥ N and

lim
h→∞

(
h

∑
n=N

X−1
n+1A−1Bn

(
XT

n

)−1
)−1

= 0.

If matrix solution
(

Xn
Un

)
is a recessive solution at ∞, then solutions y1

n, . . . , yk
n generating

columns of Xn form the system of recessive solutions of Eq. (2.1) at ∞. The system of reces-
sive solutions at −∞ is defined similarly. For analysis of recessive solutions of second-order
equations, see for example [4, 5, 35].

Here and subsequently, we denote the spaces of recessive solutions at ±∞ as ν±, i.e.

ν± = Lin{recessive solution of Eq. (2.1) at±∞}.

With this notation we shall call a disconjugate Eq. (2.1) as p-critical on Z when dim ν+ ∩ ν− =

p. The main result of [8] reads as follows.

Theorem 2.1. Let disconjugate Eq. (2.1) be p-critical on Z, and let H ∈ Z, ε > 0 be arbitrary.
Furthermore, let arbitrary J ⊂ {0, . . . , n− 1} satisfy |J| = k− p + 1 and consider the sequences

s[j]H =

{
r[j]H − ε, f or j ∈ J,

r[j]H , otherwise,

and s[i]n = r[i]n , for all i and n 6= H. Then the equation

k

∑
i=0

(−4)i
(

s[i]n 4iyn−i

)
= 0

is not disconjugate.

This theorem has been later extended in [26, 44] and shows that critical equations create
a borderline where appears a bifurcation with respect to disconjugacy. Nevertheless, Theo-
rem 2.1 holds for second-order equations as an equivalence. One may ask whether this is still
true if we consider a general even-order equation. Such question also serves as the primary
motivation for our work.

Final conjecture of [8] is proved in [20] and they both focus on the one term equation

(−4)k
(

rn4kyn−k

)
= 0, rn > 0, n ∈ Z, k ∈N. (2.4)

With a notation that n[p] = n · (n − 1) · (n − 2) · . . . · (n − p + 1), p ∈ N, the results state
the following.



4 J. Jekl

Theorem 2.2. Let p ∈ {1, . . . , k} and suppose that

0

∑
j=−∞

j2(k−p)

rj+k
= ∞ =

∞

∑
j=0

j2(k−p)

rj+k
.

Then Lin{1, . . . , n[p−1]} ⊂ ν+ ∩ ν− and (2.4) is at least p-critical. Moreover, if either

0

∑
j=−∞

j2(k−1)

rj+k
< ∞ or

∞

∑
j=0

j2(k−1)

rj+k
< ∞

then ν+ ∩ ν− = ∅.

The converse of Theorem 2.2 can be found in [21]. Eq. (2.4) will be the main objective of
the following section and so let us mention that when dealing with Eq. (2.4) it is useful to
utilize the fact that if 4j+1yn−j−1 = zn then

yn =
1
j!

n−1

∑
i=−∞

(n− i− 1)[j]zi+j+1. (2.5)

Another useful result of [8] is the following lemma. However, first of all, let us mention
that we follow the notation of [8] and by l2

0(Z) we denote the set of sequences

l2
0(Z) = {{un} | only for finitely many n ∈ Z is un 6= 0}.

Lemma 2.3. Suppose that Eq. (2.1) is p-critical for some p ∈ {1, . . . , k}. Then for every ε > 0 there
exists a sequence un ∈ l2

0(Z) such that

F(u) =
∞

∑
n=−∞

k

∑
i=0

r[i]n

(
4iun−i

)
< ε.

Proof of Lemma 2.3 obtains for any yn ∈ ν+ ∩ ν− such an un ∈ l2
0(Z) that yn = un on

arbitrary compact [A, B] and which satisfies that F(u) < ε, for arbitrary small ε > 0. In light
of this, we can reformulate ideas of the proof of Theorem 2.1 to obtain the following theorem.

Theorem 2.4. Let Eq. (2.1) be disconjugate and p-critical on Z, and let ε > 0 be arbitrary. For any
H ∈ Z there is J ⊂ {0, . . . , n− 1} with |J| ≥ p such that if for any j ∈ J we replace

s[i]H =

r[i]H − ε, for i = j

r[i]H , for i 6= j

and s[i]n = r[i]n for all i, n 6= H, then the equation

k

∑
i=0

(−4)i
(

s[i]n 4iyn−i

)
= 0

is not disconjugate.

Proof. The proof of Theorem 2.1 (see also [8, 10]) shows that there are p solutions y1
n, . . . , yp

n of
Eq. (2.1) with the following property. For any H ∈ Z there is J ⊂ {0, . . . , n− 1} with |J| = p
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such that there is a surjection from J to yj
n where for any j ∈ J holds 4jyj

H−j = 1. Hence, for

any ε > 0, H ∈ Z and j ∈ J we replace r[i]n by s[i]n to obtain

∞

∑
n=−∞

k

∑
i=0

s[i]n

(
4iun−i

)
= −ε

(
4juH−j

)
+

∞

∑
n=−∞

k

∑
i=0

r[i]n

(
4iun−i

)
= −ε

(
4juH−j

)
+ F(u).

However, from the proof of Lemma 2.3 we have that we can choose such un which satisfies
F(u) < ε

2 and that 4juH−j = 4jyj
H−j = 1.

The principal difference between Theorems 2.1 and 2.4 is that in Theorem 2.1 we make
k− p + 1 coefficients arbitrarily smaller, and then we lose disconjugancy. On the other hand,
in Theorem 2.4 it is enough to make only one of p coefficients smaller to obtain the same.
The problem in Theorem 2.4 is identifying the right coefficients. In contrast, because condi-
tions of Theorem 2.4 are less restrictive, we assume that we could find a converse of Theorem
2.4 in the future.

We would like to also remind the reader about the following results concerning the self-
adjoint second-order linear equation

an−1yn−1 + bnyn + anyn+1 = 0. (2.6)

In [15] it is shown, that Eq. (2.6) is disconjugate if and only if there are positive solutions u±n ,
which are recessive at ±∞. Moreover, in [35] (see also [15]) appears the following theorem.

Theorem 2.5. If Eq. (2.6) is disconjugate, then

∞

∑
n

1
(−an)u+

n u+
n+1

= ∞ = ∑
n=−∞

1
(−an)u−n u−n+1

.

Additionally, Eq. (2.6) is critical if and only if u+
n = u−n and Theorem 2.1 and 2.4 are for

Eq. (2.6) the same. They hold as an equivalence for the second-order equations and therefore
we have another way how to define criticality of Eq. (2.6). Other equivalent ways to define
critical equations can be found in [15] or [29].

3 One term even-order linear equations

Following section deals with one term difference equation

(−4)k
(

rn4kyn−k

)
= 0, rn > 0, n ∈ Z, k ∈N. (3.1)

Such equation is investigated in [20] and according to [2] Eq. (3.1) is disconjugate if and only
if

∞

∑
n=−∞

rn

(
4kun−k

)2
> 0, for all un ∈ l2

0(Z), un 6= 0.

Of course, this sum can be rewritten in different shapes and forms, as we can see for example
in [8]. Our main result is the following theorem. For simplicity of formulas, we denote in the
proof |0|k−p = 1, because otherwise, we would have to define a new sequence

χn =

{
|n|k−p, n 6= 0,

1, n = 0.
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Theorem 3.1. Assume that for any ε > 0 and H ∈ Z exists nontrivial un ∈ l2
0(Z) such that

∞

∑
n=−∞

rn

(
4kun−k

)2
< ε

(
4p−1uH−(p−1)

)2
. (3.2)

Then Eq. (3.1) is at least p-critical and Lin{1, . . . , n[p−1]} ⊂ ν+ ∩ ν−.

Proof. We first start by a series of substitution. Let us set vn = 4p−1un−p+1 and then (3.2)
transforms as

∞

∑
n=−∞

rn

(
4k−p+1vn−(k−p+1)

)2
< ε (vH)

2 .

Because un ∈ l2
0(Z) and because differencing a zero sequence gives us only a zero sequence

then also vn ∈ l2
0(Z) and additionally 4k−p+1vn−(k−p+1) ∈ l2

0(Z). Bearing that in mind con-
sider also xn = |n|k−p 1

vH
4k−p+1vn−(k−p+1) to obtain that xn ∈ l2

0(Z) as well and that

∞

∑
n=−∞

rn

n2(k−p)
x2

n < ε. (3.3)

It is clear from the sum (3.3) that limε→0 xn = 0 pointwise, for all n ∈ Z. Through (2.5) we get
via xn = |n|k−p 1

vH
4k−p+1vn−(k−p+1) that

vn =
vH

(k− p)!

n−1

∑
j=−∞

(n− j− 1)[k−p]

|j + (k− p + 1)|k−p xj+(k−p+1).

Hence, for all ε > 0 it has to hold that

1 =
1

(k− p)!

H−1

∑
j=−∞

(H − j− 1)[k−p]

|j + (k− p + 1)|k−p xj+(k−p+1) =
1

(k− p)!

H+k−p

∑
i=−∞

(H + k− p− i)[k−p]

|i|k−p xi. (3.4)

Next, we claim that we can obtain easily that

lim
i→−∞

(H + k− p− i)[k−p]

|i|k−p = 1.

Therefore, for some ω > 0 and some i0 is eventually

1−ω <
(H + k− p− i)[k−p]

|i|k−p < 1 + ω, for all i ≤ i0. (3.5)

Having disposed of the preliminary steps, we can now assume for contradiction that it
holds ∑n=−∞

n2(k−p)

rn
< ∞. However, this would mean that

lim
n→−∞

ε→0

rn

n2(k−p)
xn 6= 0.

Otherwise, we get for arbitrarily small δ > 0 some ε0, n0 such that rn
n2(k−p) xn < δ, for any n ≤ n0

and ε < ε0. It is a simple fact that because of

n0

∑
n=−∞

xn < δ
n0

∑
n=−∞

n2(k−p)

rn
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is the sum ∑n0
n=−∞ xn arbitrarily small. However, such situation cannot happen because by

(3.4) and (3.5) we get that

1 =
1

(k− p)!

H+k−p

∑
i=−∞

(H + k− p− i)[k−p]

|i|k−p xi

<
(1 + ω)δ

(k− p)!

min{n0,i0}

∑
i=−∞

i2(k−p)

ri
+

1
(k− p)!

H+k−p

∑
i=min{n0,i0}+1

(H + k− p− i)[k−p]

|i|k−p xi

ε→0−−→ (1 + ω)δ

(k− p)!

min{n0,i0}

∑
i=−∞

i2(k−p)

ri
< 1, for δ sufficiently small.

Therefore,
lim

n→−∞
ε→0

rn

n2(k−p)
xn 6= 0

and by the definition of the limit we can find a positive constant C for which there is a sequence
εk → 0 with the following property. For any given εk there is a subsequence nl → −∞ such
that

rnl

n2(k−p)
l

|xnl (εk)| > C.

Before we proceed any further, let us consider, that for εk there can also be a subsequence nl̂
for which is

rnl̂

n2(k−p)
l̂

∣∣xnl̂
(εk)

∣∣ < δ.

Altogether, we obtain the inequality

1 =
1

(k− p)!

H+k−p

∑
i=−∞

(H + k− p− i)[k−p]

|i|k−p xi

<
(1 + ω)δ

(k− p)! ∑
i∈{nl̂}

i2(k−p)

ri
+

1
(k− p)!

H+k−p

∑
i 6∈{nl̂}

(H + k− p− i)[k−p]

|i|k−p xi

≤ (1 + ω)δ

(k− p)! ∑
i∈{nl̂}

i2(k−p)

ri
+

1 + ω

(k− p)!

i0

∑
i 6∈{nl̂}

|xi|+
1

(k− p)!

H+k−p

∑
i=i0+1

(H + k− p− i)[k−p]

|i|k−p xi.

We continue in this fashion by singling out

i0

∑
i 6∈{nl̂}

|xi| >
(k− p)!
1 + ω

− δ ∑
i∈{nl̂}

i2(k−p)

ri
− 1

1 + ω

H+k−p

∑
i=i0+1

(H + k− p− i)[k−p]

|i|k−p xi

≥ (k− p)!
1 + ω

− δ
H+k−p

∑
i=−∞

i2(k−p)

ri
− 1

1 + ω

H+k−p

∑
i=i0+1

(H + k− p− i)[k−p]

|i|k−p xi.

Because xn converges pointwise to the zero sequence, then the sum

1
1 + ω

H+k−p

∑
i=i0+1

(H + k− p− i)[k−p]

|i|k−p xi
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can be arbitrarily small if we make given εk sufficiently small. Hence, by letting εk → 0 we
can find δ sufficiently small so that

i0

∑
i 6∈{nl̂}

|xi| > δ and
rn

n2(k−p) |xn(εk)| > δ, for all n 6∈ {nl̂}.

The result is that for a given εk sufficiently small we have through (3.3) that

εk >
i0

∑
j=−∞

rj

j2(k−p)
x2

j >
i0

∑
i 6∈{nl̂}

ri

i2(k−p)
|xi| · |xi| > δ

i0

∑
i 6∈{nl̂}

|xi| > δ2.

This contradicts our assumption as we have εk arbitrarily small and δ is independent from εk.
Hence, it has to be ∑n=−∞

n2(k−p)

rn
= ∞. Divergence of the other sum ∑∞ n2(k−p)

rn
= ∞ is

obtained analogously. Only this time we have to use that

vn =
vH

(k− p)!

∞

∑
j=n−1

(n− j− 1)[k−p]

|j + (k− p + 1)| xj+(k−p+1).

The rest of the proof follows from Theorem 2.2.

As an example let us consider the case of k = 2 with rn = 1
(n+1)2 . We know by Theorem 2.2

that such an equation is 2-critical. Furthermore, from Eq. (3.3) we have that for any ε > 0
there is xn ∈ l2

0(Z) such that
∞

∑
n=−∞

1
(n + 1)2 x2

n < ε.

It is verified easily that an example of such xn is the almost zero sequence where only xp = 1,
for p sufficiently large.

One question we can ask is whether Eq. (3.1) can be p-critical even when {1, . . . , n[p−1]} 6⊂
ν+ ∩ ν−. However, from Theorem 3.1 we get that this cannot happen.

Corollary 3.2. If Eq. (3.1) is p-critical, then Lin{1, . . . , n[p−1]} ⊂ ν+ ∩ ν−.

Proof. Let H ∈ Z be arbitrary. Because of Theorem 2.4 there is a set J ⊂ {0, . . . , k− 1}, |J| ≥ p
such that for any j ∈ J is

∞

∑
n=−∞

rn

(
4kun−k

)2
< ε

(
4juH−j

)2
.

However, because of Theorem 3.1 if j ∈ J, then Lin{1, . . . , n[j−1]} ⊂ ν+ ∩ ν−. This can be
satisfied only for J = {1, . . . , p− 1}.

We will formulate the following theorem to complete in a sense the equivalence with
Theorem 3.1.

Theorem 3.3. Suppose Eq. (3.1) is p-critical and Lin{1, . . . , n[p−1]} ⊂ ν+ ∩ ν−, then for any ε > 0
and H ∈ Z exists un ∈ l2

0(Z) such that

∞

∑
n=−∞

rn

(
4kun−k

)2
< ε

(
4p−1uH−p+1

)2
.
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Proof. This is a direct result of Theorem 2.4.

We see one drawback of Theorem 3.1 in that we do not know whether Eq. (3.1) is p-
critical or q-critical for some q ≥ p. We could probably deal with this issue if we formulate
Theorem 3.1 in a more precise way and with some workaround through Theorem 2.4. Note
also that in Eq. (3.3) it holds for s < p that

∞

∑
n=−∞

rn

n2(k−s)
x2

n <
∞

∑
n=−∞

rn

n2(k−p)
x2

n < ε.

3.1 Even-order equations with nonnegative coefficients

The following subsection works with Eq. (2.1) where

r[k]n > 0 and either r[i]n > 0 for all n ∈ Z, or r[i]n ≡ 0, i ∈ {0, . . . , k− 1}. (3.6)

Similar ideas as those in the proof of Theorem 3.1 lead us to the following result.

Theorem 3.4. Assume that Eq. (2.1) satisfies condition (3.6) and that for a given i is r[i]n a positive
sequence. Then Eq. (2.1) is at most i-critical.

Proof. First consider the situation where r[j]n > 0, for all j > i. Then replacing r[j]H by r[j]H − ε > 0
for j ≥ i does not lose disconjugacy. Hence, it means that Eq. (2.1) is at most i-critical by
Theorem 2.4.

Next, for contradiction assume that Eq. (2.1) is at least (i + 1)-critical. Therefore, for some
j > i and any ε > 0 there is H ∈ Z such that r[j]H = 0 and

∞

∑
n=−∞

r[i]n

(
4iun−i

)2
<

∞

∑
n=−∞

k

∑
l=0

r[l]n

(
4lun−l

)2
< ε

(
4juH−j

)2
, un ∈ l2

0(Z).

With convenient substitution vn = 4iun−i we can rewrite this inequality as

∞

∑
n=−∞

r[i]n (vn)
2 < ε

(
4j−ivH−j+i

)2
, for some vn ∈ l2

0(Z).

Another substitution (
4j−ivH−j+i

)
xn = vn, (3.7)

yields
∞

∑
n=−∞

r[i]n (xn)
2 < ε, for some xn ∈ l2

0(Z).

It is clear that letting ε → 0 gives that xn → 0 pointwise, for all n ∈ Z. On the other side, by
differentiating (3.7) with respect to n for all ε > 0 we obtain(

4j−ivH−j+i

)
4j−ixn = 4j−ivn.

Note that 4j−ivH−j+i is independent on n. And then by putting n = H − j + i we obtain that
4j−ixH−j+i = 1. However, we can rewrite (see for example [30]) the equality for all ε > 0 as

1 = 4j−ixH−j+i =
j−i

∑
q=0

(−1)q
(

j− i
q

)
xH−q.
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Taking ε→ 0 together with the fact that we have a finite sum yields

1 = lim
ε→0

j−i

∑
q=0

(−1)q
(

j− i
q

)
xH−q =

j−i

∑
q=0

(−1)q
(

j− i
q

)
lim
ε→0

xH−q =
j−i

∑
q=0

(−1)q
(

j− i
q

)
· 0 = 0.

This contradicts our assumption.

As a simple example take the equation

− 242yn +44yn−1 = 0, (3.8)

which can be by Theorem 3.4 at most 1-critical. In fact, results of [29] show that such an
equation is 1-critical. However, [29] works only with equations of fourth-order and we do not
have any results about equation

244yn −46yn−1 = 0. (3.9)

As a result, we can only say that Eq. (3.9) is at most 2-critical and everything else we would
have to work through its recessive solutions.

Corollary 3.5. Assume condition (3.6). If for a given i is r[i]n a positive sequence and Eq. (2.1) is
p-critical, then

∞

∑
n2(i−p)

r[i]n

= ∞ = ∑
−∞

n2(i−p)

r[i]n

.

Proof. First, because of Theorem 2.4 there is j ≥ p such that

∞

∑
n=−∞

r[i]n

(
4iun−i

)2
< ε

(
4j−1uH−j+1)

)2
, for some un ∈ l2

0(Z).

Then in the same way as was done in Theorem 3.1 we see that

∞

∑
n2(i−j)

r[i]n

= ∞ = ∑
−∞

n2(i−j)

r[i]n

.

However, it holds

∞ =
∞

∑
n2(i−j)

r[i]n

≤
∞

∑
n2(i−p)

r[i]n

,

∞ = ∑
−∞

n2(i−j)

r[i]n

≤ ∑
−∞

n2(i−p)

r[i]n

.

For introducing a nonhomogeneity into studied equations, we could use, for example,
results obtained in [33, 34]. Other possible ways forward may be hidden in extending the
concept of criticality for half-linear difference equations. See for example [11, 12] together
with [44]. For symplectic systems, see also [43].
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4 A class of linear equations with interlacing indices

To better understand critical equations of higher-order, we can consider other special cases. In
the next part we utilize the second-order linear equation with interlacing indices

anyn+2 + bnyn + an−2yn−2 = 0, n ∈ Z, (4.1)

where bn > 0, an < 0, for all n ∈ Z. Through the relations

r[2]n = an−2,

r[1]n = −2an−1 − 2an−2,

r[0]n = bn + an + an−2,

we directly link Eq. (2.1) and Eq. (4.1). For equations of general even-order we can find such
formulas in [31]. On top of that, Eq. (4.1) has the functional

F(u) =
∞

∑
n=−∞

anun+2un + bnu2
n + an−2unun−2 =

∞

∑
n=−∞

bnu2
n + 2an−2unun−2, for un ∈ l2

0(Z).

Eq. (4.1) consists of two equations of the second-order, where we separate Eq. (4.1) into two
cases for even and odd n, i.e.

anyn+2 + bnyn + an−2yn−2 = 0, n = 2k + 1, k ∈ Z, (4.2)

anyn+2 + bnyn + an−2yn−2 = 0, n = 2k, k ∈ Z. (4.3)

This property is useful because there are more known results about second-order equations,
and through them, we can extend some known results for higher-order equations. Moreover,
we have corresponding functionals F1(u) for Eq. (4.2) and F2(u) for Eq. (4.3). It holds that

F(u) =
∞

∑
k=−∞

b2k+1u2
2k+1 + 2a2k−1u2k+1u2k−1 +

∞

∑
k=−∞

b2ku2
2k + 2a2k−2u2ku2k−2

= F1(u1) + F2(u2),

where u1
k = u2k+1 and u2

k = u2k. It is clear that if u2k = 0, for all k ∈ Z then F(u) = F1(u1) and
vice versa for F2(u2). By these arguments, Eq. (4.1) is disconjugate if and only if Eq. (4.2) and
(4.3) are both disconjugate. See also [2] and [30].

Theorem 4.1. Assume that Eq. (4.1) is disconjugate then Eq. (4.1) is p-critical, for p ∈ {1, 2} if and
only if p of the equations (4.2), (4.3) are critical. Additionally, disconjugated Eq. (4.1) is subcritical if
and only if neither of the equations (4.2), (4.3) is critical.

Proof. Because of [15] Eq. (4.2) has a positive solutions u±n , for n = 2k + 1, k ∈ Z and Eq. (4.3)
has a positive solutions v±n , for n = 2k, k ∈ Z. Both u±n , v±n are recessive at ±∞. Let us define
two solutions of Eq. (4.1) as

α±n =

{
u±n , n = 2k + 1,

0, n = 2k,
and β±n =

{
v±n , n = 2k,

0, n = 2k + 1.
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Through substitution (2.3) we obtain for n = 2k + 1 odd a matrix solution

X±n =

(
u±n 0
u±n −v±n−1

)
,

U±n =

(
−r[2]n+1u±n+2 −

(
r[2]n+1 + 2r[2]n + r[1]n

)
u±n

(
2r[2]n+1 + r[2]n + r[1]n

)
v±n+1 + r[2]n v±n−1

−2r[2]n u±n r[2]n
(
v±n+1 + v±n−1

)
)

.

For n = 2k even, we get

X±n =

(
0 v±n

−u±n−1 v±n

)
,

U±n =

((
2r[2]n+1 + r[2]n + r[1]n

)
u±n+1 + r[2]n u±n−1 −r[2]n+1v±n+2 −

(
r[2]n+1 + 2r[2]n + r[1]n

)
v±n

r[2]n
(
u±n+1 + u±n−1

)
−2r[2]n v±n

)
.

Such matrix solution is a conjoined basis because X±n will always have rank 2 and it holds for
n odd that

(
X±n
)T Un =

 something
(

2r[2]n+1 + 2r[2]n + r[1]n

)
︸ ︷︷ ︸

=0

v±n+1u±n + 2r[2]n u±n v±n−1

2r[2]n u±n v±n−1 something

 ,

is symmetrical. For n even is the situation the same.

Subsequently, we will show that
(

X+
n

U+
n

)
is a recessive solution at ∞. If n = 2k is even, then

X+
n
(
X+

n+1

)−1 A−1Bn =

(
0 0

0 −u+
n−1

u+
n+1an−1

)
≥ 0.

By properly multiplying matrices we conclude that it holds

(
X+

n+1

)−1 A−1Bn

(
X+T

n

)−1
=

( 1
u+

n+1
0

1
v+n

−1
v+n

)(
0 1

an−1

0 1
an−1

)( 1
u+

n−1

1
v+n

−1
u+

n−1
0

)
=

( −1
an−1u+

n−1u+
n+1

0

0 0

)
.

Combining this with similar equality means for n odd we obtain that

h

∑
n=M

(
X+

n+1

)−1 A−1Bn

(
X+T

n

)−1
=

∑h
i=M,i even

−1
ai−1u+

i−1u+
i+1

0

0 ∑h
j=M,j odd

−1
aj−1v+j−1v+j+1

 .

Hence, because of Theorem 2.5 it holds that

lim
h→∞

(
h

∑
n=M

(
X+

n+1

)−1 A−1Bn

(
X+T

n

)−1
)−1

= 0

and
(

X+
n

U+
n

)
is indeed a recessive solution at ∞. Analogously we assert that

(
X−n
U−n

)
is a recessive

solution at −∞. The proof is complete by comparing definitions of criticality for Eq. (2.1) and
both Eq. (4.2) and (4.3).
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We assume that Theorem 4.1 can be extended for any tridiagonal equation of any even-
order in a similar fashion. Additionally, a system of recessive solutions of Eq. (4.1) is defined
in [18] through the relation that, if there are solutions u1

n, . . . , u4
n of Eq. (4.1) where for any

C > 0 there is K such that
uk−1

n < Cuk
n, for all n ≥ K,

then u1
n, u2

n create a system of recessive solutions. However, this does not work with α±n , β±n ,
and we work around that through the recessive solutions of Hamiltonian systems.

4.1 Final remarks and examples

Consider the following example where we set in Eq. (4.1) sequences an, bn as

an =

{
−1, n even,

−3, n odd,
bn =

{
2, n even,

6, n odd.

We know by the results of [29] and Theorem 4.1 that such an equation is 2-critical. It is simple
matter to verify that coefficients of (2.1) are r[2]n = an−2, r[1]n ≡ 8 and r[1]n ≡ 0. And therefore we
have a concrete example of 4th order Sturm–Liouville equations which is 2-critical.

Another interesting situation appears provided that Eq. (4.1) is 1-critical. Through The-
orem 4.1 we know that in such a case one of the equations (4.2) or (4.3) has to be critical.
Without loss of generality let us say that it is Eq. (4.2). Because Theorem 2.1 holds for Eq. (2.6)
as an equivalence, thus for any ε > 0 and H odd there is such un ∈ l2

0(Z) that

F(u) = F1(u1) < ε
(

u1
H

)2
= ε (4uH)

2 = ε (4uH−1)
2 .

Hence, we have seen two different behaviours of F(u) in regard to 1-critical equations. We
have seen, that 1-critical Eq. (3.1) satisfies F(u) < εu2

H for any H ∈ Z. On the other hand,
1-critical Eq. (4.1) satisfies that F(u) < εu2

H and F(u) < ε (4uH−1)
2 for all H either odd or

even. We obtain simple example of 1-critical Eq. (4.1) if we take bn ≡ 6 and

an =

{
−1, n even,

−3, n odd.

Such an equation is again 1-critical by the results of [29]. Furthermore, we can compare this
equation to Eq. (3.8) which is also 1-critical.

Possible applications of Eq. (4.1) arise when we consider the second-order self-adjoint
linear differential equation (

p(x)z′(x)
)′
+ q(x)z(x) = 0, (4.4)

where p(x) > 0. We usually link Eq. (4.4) to the self-adjoint linear difference equation by
approximating

f ′(x) ≈ f (x + h)− f (x)
h

,

for some small h. See for example [30]. However, from numerical analysis we know (see for
example [6]), that we can get better numerical results by approximating

f ′(x) ≈ f (x + h)− f (x− h)
2h

.
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Using this approximation with a bit of work in Eq. (4.4) we obtain approximation

pnyn+2 − (pn + pn−2)yn + pn−2yn−2 + 4qnyn ≈ 0. (4.5)

Furthermore, fixing 4syn = yn+1−yn−1
2 yields

4s (pn−14syn) + qnyn ≈ 0.

This way, we arrive to a second-order self-adjoint linear equation with a different definition of
4. It is a simple matter to link such an equation through (4.5) to Eq. (4.1) by bn = pn + pn−2−
4qn, an = −pn, for pn + pn−2 > 4qn.
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[4] M. Bohner, S. Stević, Trench’s perturbation theorem for dynamic equations, Dis-
crete Dyn. Nat. Soc. 2007, Art. ID 75672, 11 pp. https://doi.org/10.1155/2007/75672;
MR2375475; Zbl 1203.34151
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