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1 Introduction

Equations of the following type

∂u
∂t

= −∂6u
∂x6 + A

∂4u
∂x4 − B

∂2u
∂x2 + Cu− λh(t, x, u(t, x)) (1.1)

arise when an interface between two phases is examined because they help to reveal a more
detailed structure of the interface and a description of the behaviour of phase fronts in mate-
rials that are undergoing a transition between the liquid and solid state [1, 7, 13]. Here we are
concerned in periodic stationary solutions of (1.1). More precisely, we will give some multiple
results for the following problem{

−u(vi) + Au(iv) − Bu′′ + Cu = λ f (x, u), x ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0,
(Pλ)
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where f : [0, 1]×R→ R is a continuous function, A, B and C are given real constants, while
λ > 0.

In [13], starting from the interest for the stationary solutions of a class of fourth-order equa-
tions, the so-called extended Fisher–Kolmogorov equation, a variational approach is proposed
for obtaining existence and non existence of stationary periodic solutions, observing that the
same arguments apply also to sixth-order equations. In [6, 16], taking advantage from a min-
imization theorem as well as Clark’s theorem, the existence and the multiplicity of periodic
solutions is investigated for a problem similar to (P1), provided that A, B and C satisfy some
suitable relations and the nonlinear term is a polynomial with a kind of symmetry. Again the
variational methods have been exploited in [9] where two Brezis–Nirenberg linking theorems
represent the main tool for assuring the existence of at least two or three periodic solutions
for a sixth-order equation with super-quadratic nonlinearities, namely

lim
t→+∞

F(x, t)
t2 = +∞, lim

t→0

F(x, t)
t2 = 0

uniformly with respect to x, where F(x, t) =
∫ t

0 f (x, s) ds for every x ∈ [0, 1]. We also cite [11,
21], where under suitable assumptions, in particular on the coefficients A, B, C, the existence
of one or two positive solutions for problem (Pλ) is established by applying the theory of fixed
point index in cones. Further nice results on higher-order differential equations are contained
in [8, 17–20], where non-local conditions have also been considered.

In this note we look at the existence of infinitely many solutions to problem (Pλ). In
particular, under different assumptions on the parameters A, B and C and requiring a suitable
oscillation on f (x, ·) at infinity (see assumption ii) of Theorem 3.2), an unbounded sequence
of classical solutions of (Pλ) is assured provided that λ belongs to a well determined interval.
We explicitly stress that no symmetry conditions on the reaction term are involved. The
variational structure of the problem is exploited and the solutions are obtained as local minima
of the energy functional related to (Pλ). For this reason a crucial tool is a local minimum
theorem proved in [2], see Theorem 2.8.

A further investigation is devoted to constant sign solutions of (Pλ). Whenever f is non-
negative the classical solutions are assured to be positive provided that suitable conditions
on the coefficients are assumed (see Remark 3.3) owing to a strong maximum principle for
sixth-order differential equations pointed out in Remark 3.4.

As example, here is a consequence of our main results.

Theorem 1.1. Let g : R→ R be a nonnegative continuous function such that

lim inf
t→+∞

G(t)
t2 = 0, lim sup

t→+∞

G(t)
t2 = +∞,

where G(t) =
∫ t

0 g(s) ds for every t ∈ R, and fix D ≥ 0.
Then, the problem{

−u(vi) + 3Du(iv) − 3D2u
′′
+ D3u = g(u), x ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0
(P)

admits an unbounded sequence of positive classical solutions.

Finally, when the oscillating behaviour is required at zero, instead that at infinity, a se-
quence of classical solutions that strong converges at zero is obtained (see Theorem 3.11).
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In Section 2 we recall some useful preliminaries and detail the variational set pointing
out the general strategy for obtaining classical solutions. The main results as well as their
consequences and examples are contained in Section 3.

2 Basic notations and auxiliary results

Throughout the paper X denote the following Sobolev subspace of H3(0, 1) ∩ H1
0(0, 1)

X = {u ∈ H3(0, 1) ∩ H1
0(0, 1) : u′′(0) = u′′(1) = 0}

considered with the norm

‖u‖ =
(
‖u′′′‖2

2 + ‖u′′‖2
2 + ‖u′‖2

2 + ‖u‖2
2
)1/2

, ∀ u ∈ X, (2.1)

where ‖ · ‖2 denotes the usual norm in L2(0, 1). It is well known that ‖ · ‖ is induced by the
inner product

〈u, v〉 =
∫ 1

0
(u′′′(x)v′′′(x) + u′′(x)v′′(x) + u′(x)v′(x) + u(x)v(x)) dx, ∀ u, v ∈ X.

Now, arguing as in [13], we point out some useful Poincaré type inequalities.

Proposition 2.1. For every u ∈ X, if k = 1/π2, one has

‖u(i)‖2
2 ≤ kj−i‖u(j)‖2

2, i = 0, 1, 2, j = 1, 2, 3 with i < j. (2.2)

Proof. Let us consider all the possible situations.

j = 1. In this case only i = 0 occurs and (2.2) reduces to the well known Poincaré inequality.

j = 2. The case i = 1 can be obtained observing that
∫ 1

0 (u
′)2 = −

∫ 1
0 uu′′. Hence, putting

together the Hölder and the Poincaré inequalities one has

‖u′‖2
2 ≤ ‖u‖2‖u′′‖2 ≤ k1/2‖u′‖2‖u′′‖2

from which directly follows (2.2).

For i = 0 condition (2.2) is derived putting together the Poincaré inequality with the
case i = 1.

j = 3. The case i = 2 is directly the Poincaré inequality applied to u′′ ∈ H1
0(0, 1).

For i = 1, arguing as above one has

‖u′‖2
2 ≤ ‖u‖2‖u′′‖2 ≤ k1/2‖u′‖2k1/2‖u′′′‖2 = k‖u′‖2‖u′′′‖2,

where (2.2) for i = 2 has been also exploited. Hence, (2.2) is verified for i = 1.

Finally, for i = 0 the conclusion is achieved putting together the Poincaré inequality
and using the case i = 1, indeed

‖u‖2
2 ≤ k‖u′‖2

2 ≤ k3‖u′′′‖2
2.



4 G. Bonanno and R. Livrea

Remark 2.2. The constants in (2.2) are the best ones as one can verify considering the function
sin πx that realizes the equalities. Moreover, it is worth noting as follows. Indeed, we recall
that, in general, one has

‖v‖2
2 ≤ 4k‖v′‖2

2 (2.3)

for all v ∈ H1([0, 1]) for which there is c ∈ [0, 1] such that v(c) = 0, and the equality for
appropriate functions v also holds (see for instance [10, page 182]). So, if we apply the classical
Poincaré inequality (2.3) to v = u′, then we obtain

‖u′‖2
2 ≤ 4k‖u′′‖2

2,

that, as shows (2.2), does not realize the best constant, on the contrary of (2.3). Clearly, this is
due because in our case we have a greater regularity of u′ (since u ∈ X).

We will introduce a convenient norm, equivalent to ‖ · ‖, that still makes X a Hilbert space.
For this reason, for A, B, C ∈ R let us define the function N : X → R by putting

N(u) = ‖u′′′‖2
2 + A‖u′′‖2

2 + B‖u′‖2
2 + C‖u‖2

2

for every u ∈ X.

Now consider the following set of conditions according to the signs of the constants A, B
and C:

(H)1 A ≥ 0, B ≥ 0, C ≥ 0;

(H)2 A ≥ 0, B ≥ 0, C < 0 and −Ak− Bk2 − Ck3 < 1;

(H)3 A ≥ 0, B < 0, C ≥ 0 and −Ak− Bk2 < 1;

(H)4 A ≥ 0, B < 0, C < 0 and −Ak− Bk2 − Ck3 < 1;

(H)5 A < 0, B ≥ 0, C ≥ 0 and −Ak < 1;

(H)6 A < 0, B ≥ 0, C < 0 and max{−Ak, −Ak− Bk2 − Ck3} < 1;

(H)7 A < 0, B < 0, C ≥ 0 and −Ak− Bk2 < 1;

(H)8 A < 0, B < 0, C < 0 and −Ak− Bk2 − Ck3 < 1.

Moreover, fix A, B, C ∈ R and consider the following condition:

(H) max{−Ak, −Ak− Bk2, −Ak− Bk2 − Ck3} < 1.

We have the following result.

Proposition 2.3. Condition (H) holds if and only if one of conditions (H)1–(H)8 holds.

Proof. Assume (H). Clearly, according to the signs of the constants A, B, C, one of conditions
(H)1–(H)8 is immediately verified. On the contrary, assuming one of conditions (H)1–(H)8,
then a direct computation shows that (H) is verified. As an example, assume at first (H)5 and
next (H)8. In the first of such cases, since B ≥ 0 and C ≥ 0, one has −Ak− Bk2 ≤ −Ak and
−Ak − Bk2 − Ck3 ≤ −Ak, for which max{−Ak, −Ak − Bk2, −Ak − Bk2 − Ck3} ≤ Ak < 1,
that is, (H) holds. In the other case, we have that the sum of three positive addends is less
than 1, that is, 0 < −Ak− Bk2 − Ck3 < 1. If, arguing by a contradiction, either −Ak ≥ 1 or
−Ak− Bk2 ≥ 1, then −Ak− Bk2 − Ck3 ≥ 1 and this is absurd. So, −Ak < 1, −Ak− Bk2 < 1
and −Ak− Bk2 − Ck3 < 1, for which (H) is satisfied.
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Proposition 2.4. Assume (H). Then, there exits m > 0 such that

N(u) ≥ m‖u‖2, ∀ u ∈ X. (2.4)

Proof. Fix u ∈ X and distinguish the different cases, taking Proposition 2.3 into account.

Assume (H)1.
Then, in view of (2.2) one has

N(u) ≥ ‖u′′′‖2
2 ≥

1
4

(
‖u′′′‖2

2 +
1
k
‖u′′‖2

2 +
1
k2 ‖u

′‖2
2 +

1
k3 ‖u‖

2
2

)
≥ 1

4
‖u‖2 (2.5)

and (2.4) holds with m = 1
4 .

Assume (H)2.
Then, in view of (2.2)

N(u) ≥ ‖u′′′‖2
2 + A‖u′′‖2

2 + (B + Ck) ‖u′‖2
2.

Hence, if B + Ck ≥ 0 we can argue as in (2.5) and (2.4) holds with m = 1
4 . Otherwise, again

from (2.2)
N(u) ≥ ‖u′′′‖2

2 + (A + Bk + Ck2)‖u′′‖2
2.

So, if A + Bk + Ck2 ≥ 0 we can argue as in (2.5) and conclude that (2.4) holds with m = 1
4 .

Conversely, always from (2.2) one obtains

N(u) ≥ (1 + Ak + Bk2 + Ck3)‖u′′′‖2
2

and assumption (H)2, combined with the same above arguments, leads to (2.4) with m =
1+Ak+Bk2+Ck3

4 . Summarizing, (2.4) holds with m = min
{ 1

4 , 1+Ak+Bk2+Ck3

4

}
.

Assume (H)3.
Then, in view of (2.2) one has

N(u) ≥ ‖u′′′‖2
2 + (A + Bk)‖u′′‖2

2.

If A + Bk ≥ 0, following the reasoning as in (2.5) we conclude that (2.4) holds with m = 1
4 .

Otherwise, (2.2) implies
N(u) ≥ (1 + Ak + Bk2)‖u′′′‖2

2.

and assumption (H)3 implies that (2.4) holds with m = 1+Ak+Bk2

4 .
Summarizing, (2.4) holds with m = min

{ 1
4 , 1+Ak+Bk2

4

}
.

Assume (H)4.
Then, from (2.2) one has

N(u) ≥ ‖u′′′‖2
2 + (A + Bk + Ck2)‖u′′‖2

2.

If A + Bk + Ck2 ≥ 0 we conclude choosing m = 1
4 . Otherwise, with the same technique,

N(u) ≥ (1 + Ak + Bk2 + Ck3)‖u′′′‖2
2

and we can complete also this case, pointing out that m = min
{ 1

4 , 1+Ak+Bk2+Ck3

4

}
.

Assume (H)5.
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Then, from (2.2) one has
N(u) ≥ (1 + Ak)‖u′′′‖2

2

and (2.4) holds with m = 1+Ak
4 .

Assume (H)6.
Then, from (2.2) one has

N(u) ≥ (1 + Ak)‖u′′′‖+ (B + Ck)‖u′‖2.

If B + Ck ≥ 0 then assumption (H)6 implies (2.4) with m = 1+Ak
4 . Otherwise,

N(u) ≥ (1 + Ak + Bk2 + Ck3)‖u′′′‖2
2

we can conclude again but with m = 1+Ak+Bk2+Ck3

4 . Summarizing, in this case one has m =

min
{ 1+Ak

4 , 1+Ak+Bk2+Ck3

4

}
.

Assume (H)7.
Then, from (2.2) one has

N(u) ≥ (1 + Ak + Bk2)‖u′′′‖2
2

and (2.4) holds with m = 1+Ak+Bk2

4 .

Assume (H)8.
Then, from (2.2) one has

N(u) ≥ (1 + Ak + Bk2 + Ck3)‖u′′′‖2
2

and (2.4) holds with m = 1+Ak+Bk2+Ck3

4 .

From the above considerations one can derive the following

Proposition 2.5. Assume that (H) holds and put

‖u‖X =
√

N(u), ∀ u ∈ X. (2.6)

Then, ‖ · ‖X is a norm equivalent to the usual one defined in (2.1) and (X, ‖ · ‖X) is a Hilbert space.

Proof. The definition of N and Proposition 2.4 assure that ‖ · ‖X is the norm induced by the
inner product

〈·, ·〉X =
∫ 1

0
(u′′′(x)v′′′(x) + Au′′(x)v′′(x) + Bu′(x)v′(x) + Cu(x)v(x)) dx, ∀ u, v ∈ X.

It is simple to observe that there exists M > 0 such that

‖u‖2
X ≤ M‖u‖2 (2.7)

for every u ∈ X. Hence, the equivalence is an immediate consequence of (2.4) and (2.7) and
the proof is complete.
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Clearly (X, ‖ · ‖X) ↪→ (C0(0, 1), ‖ · ‖∞) and the embedding is compact. For a qualitative
estimate of the constant of this embedding it is useful to introduce the following number

δ =



1, if (H)1 holds,

min{1, 1 + Ak + Bk2 + Ck3}, if (H)2 or (H)4 holds,

min{1, 1 + Ak + Bk2}, if (H)3 holds,

1 + Ak, if (H)5 holds,

min{1 + Ak, 1 + Ak + Bk2}, if (H)6 holds,

1 + Ak + Bk2, if (H)7 holds,

1 + Ak + Bk2 + Ck3, if (H)8 holds.

(2.8)

We explicitly observe that the proof of Proposition 2.4 shows in addition that

‖u‖2
X ≥ δ‖u′′′‖2

2 (2.9)

for every u ∈ X, and δ = 4m, where m is the number assured from the same Proposition 2.4.

Proposition 2.6. Assume that (H) holds. One has

‖u‖∞ ≤
k

2
√

δ
‖u‖X (2.10)

for every u ∈ X, where δ is given in (2.8).

Proof. It is well known that H1
0(0, 1) ↪→ C0(0, 1) and ‖u‖∞ ≤ 1

2‖u′‖2, thus, taking in mind
(2.2),

‖u‖∞ ≤
k
2
‖u′′′‖2. (2.11)

Moreover, from (2.9) one has

‖u′′′‖2 ≤
1√
δ
‖u‖X

and (2.10) holds, in view of (2.11).

In order to clarify the variational structure of problem (Pλ), we introduce the functionals
Φ, Ψ : X → R defined by putting

Φ(u) =
1
2
‖u‖2

X, Ψ(u) =
∫ 1

0
F(x, u(x)) dx, ∀ u ∈ X, (2.12)

where F(x, t) =
∫ t

0 f (x, s) ds for every (x, t) ∈ [0, 1]×R.
With standard arguments one can verify that Φ and Ψ are continuously Gâteaux differen-

tiable, being in particular

Φ′(u)(v) =
∫ 1

0

(
u′′′(x)v′′′(x) + Au′′(x)v′′(x) + Bu′(x)v′(x) + Cu(x)v(x)

)
dx

and

Ψ′(u)(v) =
∫ 1

0
f (x, u(x))v(x) dx

for every u, v ∈ X.
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Recall that a weak solution of problem (Pλ) is any u ∈ X such that

∫ 1

0

(
u′′′(x)v′′′(x) + Au′′(x)v′′(x) + Bu′(x)v′(x) + Cu(x)v(x)

)
dx

= λ
∫ 1

0
f (x, u(x))v(x) dx, ∀v ∈ X. (2.13)

Hence, the weak solutions of (Pλ) are exactly the critical points of the functional Φ− λΨ.

Proposition 2.7. Every weak solution of (Pλ) is also a classical solution.

Proof. Let u ∈ X be a weak solution of (Pλ). Then, since

A
∫ 1

0
u′′(x)v′′(x) dx = −A

∫ 1

0
u′(x)v′′′(x) dx

and

B
∫ 1

0
u′(x)v′(x) dx = −B

∫ 1

0
u′′(x)v(x) dx,

one can observe that∫ 1

0

(
u′′′(x)− Au′(x)

)
v′′′(x) dx =

∫ 1

0

(
Bu′′(x)− Cu(x) + λ f (x, u(x))

)
v(x) dx

for every v ∈ X. Hence, u′′′ − Au′ ∈ H3(0, 1) and(
u′′′ − Au′

)′′′
= −Bu′′ + Cu− λ f (x, u). (2.14)

The continuity of f and the embedding X ↪→ C2(0, 1) imply that u′′′ − Au′ ∈ C3(0, 1). Thus,
since

u′′′ = u′′′ − Au′ + Au′ (2.15)

it is clear that u ∈ C4(0, 1), namely u′ ∈ C3(0, 1) and (2.15) leads to u ∈ C6(0, 1). From (2.14)
one obtains

− u(vi) + Au(iv) − Bu′′ + Cu = λ f (x, u). (2.16)

At this point, integrating by parts (2.13) and exploiting (2.16) one has[
−u(iv)(x)v′(x)

]1

0
= 0

for every v ∈ X, thus u(iv)(0) = u(iv)(1) = 0 and the proof is complete.

The main tool in our approach is the following critical point theorem (see [2, Theorem 7.4])

Theorem 2.8. Let X be a real Banach space and let Φ, Ψ : X → R be two continuously Gâteaux
differentiable functions with Φ bounded from below. Put

γ = lim inf
r→+∞

ϕ(r), χ = lim inf
r→(infX Φ)+

ϕ(r),

where

ϕ(r) = inf
Φ(v)<r

supΦ(u)<r Ψ(u)−Ψ(v)

r−Φ(v)

(
r > inf

X
Φ
)

.
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(a) If γ < +∞ and for each λ ∈
]
0, 1

γ

[
the function Iλ = Φ− λΨ satisfies (PS)[r]-condition for all

r ∈ R then, for each λ ∈
]
0, 1

γ

[
, the following alternative holds:

either

(a1) Iλ possesses a global minimum,

or

(a2) there is a sequence {un} of critical points (local minima) of Iλ such that limn→∞ Φ(un) =

+∞.

(b) If χ < +∞ and for each λ ∈
]
0, 1

χ

[
the function Iλ = Φ− λΨ satisfies (PS)[r]-condition for

some r > infX Φ then, for each λ ∈
]
0, 1

χ

[
, the following alternative holds:

either

(b1) there is a global minimum of Φ which is a local minimum of Iλ,

or

(b2) there is a sequence {un} of pairwise distinct critical points (local minima) of Iλ such that
limn→∞ Φ(un) = infX Φ.

For the sake of completeness, we recall that for r ∈ R, Iλ = Φ− λΨ is said to satisfy the
(PS)[r]-condition if any sequence {un} such that

(α1) {Iλ(un)} is bounded,

(α2) ‖I′λ(un)‖X∗ → 0 as n→ ∞,

(α3) Φ(un) < r ∀ n ∈N

has a convergent subsequence.

3 Main results

In this section we are going to present the announced multiplicity result. The following
technical constant will be useful

τ = 4δπ4

(
96
(

12
5

)5

+ 4A
(

12
5

)4

+ B
1248
175

+ C
493
756

)−1

(3.1)

where A, B and C are the real numbers involved in problem (Pλ) and such that (H) holds,
while δ has been introduced in (2.8).

Remark 3.1. We wish to stress a useful estimate for τ. If we consider the function

w(x) =


v(x), if x ∈ [0, 5/12[,

1, if x ∈ [5/12, 7/12],

v(1− x), if x ∈ ]7/12, 1],

(3.2)
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where v(x) =
( 12

5

)4 x4− 2
( 12

5

)3 x3 + 24
5 x for every x ∈ [0, 5/12], a straightforward computation

shows that w ∈ X = H3(0, 1) ∩ H1
0(0, 1) and, in particular

‖w‖2
X =

4δπ4

τ
.

Recalling that (H) holds, the positivity of τ follows from the positivity of δ as seen in the
arguments presented in the previous section (see also Proposition 2.4). Moreover, from (2.10),
since ‖w‖∞ = 1, one can even conclude that

0 < τ ≤ 1.

Here is the first main result.

Theorem 3.2. Assume that

i) F(x, t) ≥ 0 for every (x, t) ∈ ([0, 5/12] ∪ [7/12, 1])×R,

ii) lim inf
t→+∞

∫ 1
0 max|s|≤t F(x, s) dx

t2 < τ lim sup
t→+∞

∫ 7/12
5/12 F(x, t) dx

t2 .

Then, for every

λ ∈ Λ =

2δπ4

τ

1

lim supt→+∞

∫ 7/12
5/12 F(x,t) dx

t2

,
2δπ4

lim inft→+∞

∫ 1
0 max|s|≤t F(x,s) dx

t2


the problem (Pλ) admits an unbounded sequence of classical solutions.

Proof. We wish to apply Theorem 2.8, case (a), with X = H3(0, 1)∩H1
0(0, 1) endowed with the

norm ‖ · ‖X defined in (2.6), Φ and Ψ as in (2.12).
In the previous section we have already pointed out that Φ, Ψ ∈ C1(X). It is simple

to verify that Φ is bounded from below, coercive and its derivative is a homeomorphism.
Moreover, the compactness of the embedding X ↪→ C0(0, 1) assures that Ψ′ is a compact
operator. Hence, we can conclude that, for every λ > 0 (indeed for every λ ∈ R) the functional
Iλ = Φ− λΨ satisfies the (PS)[r]-condition for every r ∈ R (see [2, Remark 2.1]). Our aim is
now to verify that γ < +∞. Let us begin by observing that, in view of (2.10) one has

{v ∈ X : Φ(v) < r} ⊂
{

v ∈ C0(0, 1) : ‖v‖∞ ≤
k√
δ

√
r
2

}
for all r > 0. Let {tn} be in R+ such that tn → +∞ and

lim
n→∞

∫ 1
0 max|s|≤tn F(x, s) dx

t2
n

= lim inf
t→+∞

∫ 1
0 max|s|≤t F(x, s) dx

t2 .

Put rn = 2δπ4t2
n for every n ∈N. Hence, one has

ϕ(rn) = inf
Φ(v)<rn

supΦ(u)<rn
Ψ(u)−Ψ(v)

r−Φ(v)

≤
supΦ(u)<rn

Ψ(u)

rn

≤ 1
2δπ4

∫ 1
0 max|s|≤tn F(x, s) dx

t2
n

.
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Passing to the lim inf in the previous inequality one obtains

γ ≤ lim inf
n→∞

ϕ(rn) ≤
1

2δπ4 lim inf
t→+∞

∫ 1
0 max|s|≤t F(x, s) dx

t2 < +∞.

In particular, we have also verified that

Λ ⊂
]

0,
1
γ

[
.

Fix now λ ∈ Λ and let us check that Iλ is unbounded from below. We can explicitly observe
that

1
2δπ4 lim inf

t→+∞

∫ 1
0 max|s|≤t F(x, s) dx

t2 <
1
λ
<

τ

2δπ4 lim sup
t→+∞

∫ 7/12
5/12 F(x, t) dx

t2 .

Pick η > 0 such that

1
λ
< η <

τ

2δπ4 lim sup
t→+∞

∫ 7/12
5/12 F(x, t) dx

t2

and consider a sequence {dn} in R+ such that dn → +∞ and∫ 7/12
5/12 F(x, dn)

d2
n

> η
2δπ4

τ

for every n ∈N. If, for every n ∈N we define

wn(x) = dnw(x),

where w has been defined in (3.2), it is clear that 0 ≤ wn(x) ≤ dn for every x ∈ [0, 1], wn ∈ X
and, in particular

‖wn‖2
X =

4δπ4

τ
d2

n.

Thus, also in view of i),

Iλ(wn) = Φ(wn)− λΨ(wn)

=
2δπ4

τ
d2

n − λ
∫ 1

0
F(x, wn(x)) dx

<
2δπ4

τ
(1− λη)d2

n.

Namely, passing to the limit and taking in mind that 1 − λη < 0 one achieves that Iλ is
unbounded from below.

We are now in the position to apply Theorem 2.8, case (a), and obtain a sequence {un}
in X of critical points (local minima) of Iλ such that ‖un‖X → +∞. Taking in mind that the
critical points of Iλ are classical solutions of (Pλ), see Proposition 2.7, we have completed the
proof.

The following remark will be useful in order to obtain a sign condition on the solutions
of (Pλ).
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Remark 3.3. Recall that if µ ≥ 0 and w ∈ H2(0, T) is such that{
−w′′ + µw ≥ 0, x ∈ [0, 1],

w(0) = w(1) = 0,

then w(x) ≥ 0 for every x ∈ [0, 1] (see also [4, Théorème VIII.17]).

Remark 3.4. We wish to point out that if u ∈ C6(0, 1) is a nonnegative and nontrivial function
such that {

−u(vi) + Au(iv) − Bu′′ + Cu ≥ 0, x ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0,

and there exist three nonnegative numbers X, Y and Z such that
X + Y + Z = A,

XY + XZ + YZ = B,

XYZ = C,

(3.3)

then u(x) > 0 for every x ∈ (0, 1). To justify this, we can observe that for the following linear
differential operators

L1(w) = −w′′ + Xw, L2(w) = −w′′ + Yw, L3(w) = −w′′ + Zw

is possible to apply the strong maximum principle (see [14]). Hence, in particular, since in
view of (3.3)

L1(L2(L3(u))) = −u(vi) + (X + Y + Z)u(iv) − (XY + XZ + YZ)u′′ + XYZu

= −u(vi) + Au(iv) − Bu′′ + Cu,

one has, using several times Remark 3.3,

L1(L2(L3(u))) ≥ 0 ⇒ L2(L3(u)) ≥ 0 ⇒ L3(u) ≥ 0 ⇒ u ≥ 0 in [0, 1].

Finally, from [14, Theorem 3] one can conclude that u(x) > 0 for every x ∈ (0, 1).
We refer to [12] for further considerations on maximum principle for high-order differen-

tial equations.

Example 3.5. If u ∈ C6(0, 1) is such that{
−u(vi) + 3u(iv) − 3u′′ + u ≥ 0, x ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0,

then u > 0 in (0, 1). It suffices to take X = Y = Z = 1 in (3.3), so that A = B = 3 and C = 1.

Example 3.6. If C = 0 and A, B ≥ 0 are such that A2 − 4B ≥ 0 then every nonnegative and
nontrivial u ∈ C6(0, 1) such that{

−u(vi) + Au(iv) − Bu′′ ≥ 0, x ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = uiv(0) = uiv(1) = 0,

is positive in (0, 1). Indeed, we can recall Remark 3.4, in (3.3) consider X = A+
√

A2−4B
2 ,

Y = A−
√

A2−4B
2 , Z = 0 and conclude that u > 0 in (0, 1).
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In the following we say that A, B, C satisfy the (H+) condition if

(H+) there exist nonnegative numbers X, Y and Z such that (3.3) holds.

The existence of constant sign solutions can be pointed out, provided

f (x, t) ≥ 0, ∀(x, t) ∈ [0, 1]× [0,+∞[. (3.4)

In particular the following result holds.

Theorem 3.7. Assume that assumption (3.4) and (H+) hold and

ii’) lim inf
t→+∞

∫ 1
0 F(x, t) dx

t2 < τ lim sup
t→+∞

∫ 7/12
5/12 F(x, t) dx

t2 .

Then, for every

λ ∈ Λ̃ =

2δπ4

τ

1

lim supt→+∞

∫ 7/12
5/12 F(x,t) dx

t2

,
2δπ4

lim inft→+∞

∫ 1
0 F(x,t) dx

t2


the problem (Pλ) admits an unbounded sequence of positive classical solutions.

Proof. Put

f+(x, t) =


f (x, t), if (x, t) ∈ [0, 1]× [0,+∞[ ,

f (x, 0), if (x, t) ∈ [0, 1]×]−∞, 0[ ,

and F+(x, t) =
∫ t

0 f+(x, s) ds. Clearly f+|[0,1]×[0,+∞[
= f|[0,1]×[0,+∞[ as well as F+

|[0,1]×[0,+∞[
=

F|[0,1]×[0,+∞[. Hence, in view of ii’),

lim inf
t→+∞

∫ 1
0 max|s|≤t F+(x, s) dx

t2 = lim inf
t→+∞

∫ 1
0 max0≤s≤t F(x, s) dx

t2

= lim inf
t→+∞

∫ 1
0 F(x, t) dx

t2

< τ lim sup
t→+∞

∫ 7/12
5/12 F(x, t) dx

t2

= τ lim sup
t→+∞

∫ 7/12
5/12 F+(x, t) dx

t2 .

Thus, we can apply Theorem 3.2 to f+ and F+ and assure that for every λ ∈ Λ̃, the problem{
−u(vi) + Au(iv) − Bu′′ + Cu = λ f+(x, u), x ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0
(3.5)

admits an unbounded sequence of classical solutions.
We claim that

Every solution of (3.5) is a nonnegative solution of (Pλ).
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Indeed, if u solves (3.5), since f+(x, t) ≥ 0 for every (x, t) ∈ [0, 1]×R, we can recall Remark 3.4
and deduce that u is positive. Hence, f+(x, u(x)) = f (x, u(x)) for every x ∈ [0, 1] and u solves
(Pλ). The claim is now verified and the proof is completed.

We now present an autonomous version of the previous result.

Theorem 3.8. Suppose (H+) holds and assume that g is a nonnegative continuous function such that

lim inf
t→+∞

G(t)
t2 <

τ

6
lim sup

t→+∞

G(t)
t2 , (3.6)

where G(t) =
∫ t

0 g(s) ds for every t ∈ R.

Then, for every λ ∈
]

12δπ4

τ
1

lim supt→+∞
G(t)

t2
, 2δπ4

lim inft→+∞
G(t)

t2

[
the problem

{
−u(vi) + Au(iv) − Bu′′ + Cu = λg(u), x ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0
(P̃λ)

admits an unbounded sequence of classical positive solutions.

Proof. Apply Theorem 3.7 to f (x, t) = g(t) for all (x, t) ∈ [0, 1]×R and observe that

F(x, t) = G(t),
∫ 7/12

5/12
F(x, t) dx =

1
6

G(t).

Example 3.9. Fix A, B and C (as usual such that (H+) holds) let τ be the number defined in
(3.1), pick ρ > 6−τ

τ and consider the continuous function g : R→ R defined by putting

g(t) =

2t
[
1 + ρ sin2(ln(ρ2 + ln2 t)) + sin(2 ln(ρ2 + ln2 t)) ρ ln t

ρ2+ln2 t

]
, if t > 0,

0, if t ≤ 0.

Then, for every λ ∈
] 12δπ4

τ(1+ρ)
, 2δπ4[ the problem

{
−u(vi) + Au(iv) − Bu′′ + Cu = λg(u), x ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0

admits an unbounded sequence of classical positive solutions.
Indeed, a direct computation shows that 0 < τ ≤ 1 (see Remark 3.1). Hence, ρ > 0 and

exploiting the boundedness of the function t→ sin(2 ln(ρ2 + ln2 t)) ρ ln t
ρ2+ln2 t

one has

g(t) ≥ 2t
[

1
2
+ ρ sin2(ln(ρ2 + ln2 t))

]
> 0

for every t > 0. Moreover,

G(t) =

{
t2(1 + ρ sin2(ln(ρ2 + ln2 t))), if t > 0,

0, if t ≤ 0.
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Hence, if we put an = e
√

enπ−ρ2 and bn = e
√

e(2n+1)π/2−ρ2 for every n ∈ N with n > (2/π) ln ρ,
one has

lim inf
t→+∞

G(t)
t2 ≤ lim

n→+∞

G(an)

a2
n

= 1

<
τ

6
(1 + ρ)

=
τ

6
lim

n→+∞

G(bn)

b2
n

≤ τ

6
lim sup

t→+∞

G(t)
t2 .

At this point we can apply Theorem 3.8 observing that]
12δπ4

τ(1 + ρ)
, 2δπ4

[
⊆
]

12δπ4

τ

1

lim supt→+∞
G(t)

t2

,
2δπ4

lim inft→+∞
G(t)

t2

[
.

We can directly derive the proof of Theorem 1.1 from Theorem 3.8.

Proof of Theorem 1.1. Apply Theorem 3.8, with A = 3D; B = 3D2; C = D3, and exploit Re-
mark 3.4, by choosing X = Y = Z = D.

Remark 3.10. Clearly, if (H) holds and (H+) is not satisfied, the assumptions of Theorems 3.7
and 3.8 ensure the existence of infinitely many classical solutions.

We conclude the present note pointing out that, adapting the previous arguments, one can
exploit case (b) of Theorem 2.8 in order to prove the existence of arbitrary small solutions of
problem (Pλ).

Theorem 3.11. Assume that

j) there exists r > 0 such that F(x, t) ≥ 0 for every (x, t) ∈ ([0, 5/12] ∪ [7/12, 1])× [0, r],

jj) lim inf
t→0+

∫ 1
0 max|s|≤t F(x, s) dx

t2 < τ lim sup
t→0+

∫ 7/12
5/12 F(x, t) dx

t2 .

Then, for every

λ ∈ Γ =

2δπ4

τ

1

lim supt→0+

∫ 7/12
5/12 F(x,t) dx

t2

,
2δπ4

lim inft→0+

∫ 1
0 max|s|≤t F(x,s) dx

t2


the problem (Pλ) admits a sequence of pairwise distinct nontrivial classical solutions, which strongly
converges to 0 in X.

Clearly, starting from Theorem 3.11 and arguing as above, further results dealing with the
existence of arbitrary small (positive) classical solutions could be furnished.
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