

Bifurcation curves of positive solutions for the Minkowski-curvature problem with cubic nonlinearity

Shao-Yuan Huang^{⊠1} and Min-Shu Hwang²

¹Department of Mathematics and Information Education National Taipei University of Education, Taipei 106, Taiwan

²Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan

Received 25 February 2021, appeared 22 May 2021 Communicated by Paul Eloe

Abstract. In this paper, we study the shape of bifurcation curve S_L of positive solutions for the Minkowski-curvature problem

$$\begin{cases} -\left(\frac{u'(x)}{\sqrt{1-(u'(x))^2}}\right)' = \lambda \left(-\varepsilon u^3 + u^2 + u + 1\right), & -L < x < L, \\ u(-L) = u(L) = 0, \end{cases}$$

where $\lambda, \varepsilon > 0$ are bifurcation parameters and L > 0 is an evolution parameter. We prove that there exists $\varepsilon_0 > 0$ such that the bifurcation curve S_L is monotone increasing for all L > 0 if $\varepsilon \ge \varepsilon_0$, and the bifurcation curve S_L is from monotone increasing to S-shaped for varying L > 0 if $0 < \varepsilon < \varepsilon_0$.

Keywords: bifurcation curve, positive solution, Minkowski-curvature problem.

2020 Mathematics Subject Classification: 34B15, 34B18, 34C23, 74G35.

1 Introduction and main result

In this paper, we study the shapes of bifurcation curves of positive solutions $u \in C^2(-L, L) \cap C[-L, L]$ for the one-dimensional Minkowski-curvature problem

$$\begin{cases} -\left(\frac{u'(x)}{\sqrt{1-(u'(x))^2}}\right)' = \lambda f(u), & -L < x < L, \\ u(-L) = u(L) = 0, \end{cases}$$
(1.1)

where $\lambda > 0$ is a bifurcation parameter, L > 0 is an evolution parameter and the nonlinearity

$$f(u) \equiv -\varepsilon u^3 + u^2 + u + 1, \qquad \varepsilon > 0.$$
(1.2)

[™]Corresponding author. Email: syhuang@mail.ntue.edu.tw

It is well-known that studying the multiplicity of positive solutions of problem (1.1) is equivalent to studying the shape of bifurcation curve S_L of (1.1) where

 $S_L \equiv \{(\lambda, \|u_\lambda\|_{\infty}) : \lambda > 0 \text{ and } u_\lambda \text{ is a positive solution of } (1.1)\} \text{ for } L > 0.$ (1.3)

Thus this investigation is essential.

Before going into further discussions on problems (1.1), we give some terminologies in this paper for the shape of bifurcation curve S_L on the $(\lambda, ||u||_{\infty})$ -plane.

Definition 1.1. Let S_L be the bifurcation curve of (1.1) on the $(\lambda, ||u||_{\infty})$ -plane.

- (i) **S-like shaped:** The curve S_L is said to be *S-like shaped* if S_L has at least two turning points at some points $(\lambda_1, ||u_{\lambda_1}||_{\infty})$ and $(\lambda_2, ||u_{\lambda_2}||_{\infty})$ where $\lambda_1 < \lambda_2$ are two positive numbers such that:
 - (a) at $(\lambda_1, ||u_{\lambda_1}||_{\infty})$ the bifurcation curve S_L turns to the right,
 - (b) $||u_{\lambda_2}||_{\infty} < ||u_{\lambda_1}||_{\infty}$,
 - (c) at $(\lambda_2, ||u_{\lambda_2}||_{\infty})$ the bifurcation curve S_L turns to the left.
- (ii) **S-shaped:** The curve S_L is said to be *S-shaped* if S_L is S-like shaped, has exactly two turning points, and has at most three intersection points with any vertical line on the $(\lambda, ||u||_{\infty})$ -plane.
- (iii) **Monotone increasing:** The curve S_L is said to be *monotone increasing* if $\lambda_1 < \lambda_2$ for any two points $(\lambda_i, \|u_{\lambda_i}\|_{\infty})$, i = 1, 2, lying in S_L with $\|u_{\lambda_1}\|_{\infty} \le \|u_{\lambda_2}\|_{\infty}$.

Crandall and Rabinowitz [2, p. 177] first considered shape of bifurcation curve of positive solutions for the *n*-dimensional *semilinear* problem

$$\begin{cases} -\Delta u(x) = \lambda \left(-\varepsilon u^3 + u^2 + u + 1 \right) & \text{in } \Omega, \\ u(x) = 0 & \text{on } \partial \Omega, \end{cases}$$
(1.4)

where Ω is a general bounded domain in \mathbb{R}^n $(n \ge 1)$ with smooth boundary $\partial\Omega$. They applied the implicit function theorem and perturbation arguments to prove that the bifurcation curve of positive solutions of (1.4) is S-like shaped on the $(\lambda, ||u_\lambda||_{\infty})$ -plane when $\varepsilon > 0$ is sufficiently small. Shi [17, Theorem 4.1] proved that the bifurcation curve of positive solutions of (1.4) is S-shaped when $\varepsilon > 0$ is small and Ω is a ball in \mathbb{R}^n with $1 \le n \le 6$. Hung and Wang [6] consider the one-dimensional case

$$\begin{cases} -u''(x) = \lambda \left(-\varepsilon u^3 + u^2 + u + 1 \right), & -1 < x < 1, \\ u(-1) = u(1) = 0. \end{cases}$$
(1.5)

Then they provided the complete variational process of shape of bifurcation curve \bar{S} of (1.5) with varying $\varepsilon > 0$ where

$$\bar{S} \equiv \{ (\lambda, \|u_{\lambda}\|_{\infty}) : \lambda > 0 \text{ and } u_{\lambda} \text{ is a positive solution of (1.5)} \},$$
(1.6)

see Theorem 1.2.

Figure 1.1: Graphs of bifurcation curves \overline{S} of (1.4). (i) $\varepsilon \ge \varepsilon_0$ and (ii) $0 < \varepsilon < \varepsilon_0$.

Theorem 1.2 ([6, Theorem 3.1]). Consider (1.5). Then the bifurcation curve \bar{S} is continuous on the $(\lambda, ||u_{\lambda}||_{\infty})$ -plane, starts from (0,0) and goes to infinity. Furthermore, there exists a critical bifurcation value $\varepsilon_0 \in (0, 1/\sqrt{27})$ such that the bifurcation curve \bar{S} is monotone increasing if $\varepsilon \geq \varepsilon_0$, and \bar{S} is *S*-shaped if $0 < \varepsilon < \varepsilon_0$, see Figure 1.1.

To the best of my knowledge, there are no manuscripts to describe the variational process for S_L of (1.5) with varying ε , L > 0. Hence we start to concern this issue. In addition, references [7, 8, 16] provided some sufficient conditions to determine the shape of bifurcation curve or multiplicity of positive solutions of problem (1.1) with general $f(u) \in C[0, \infty)$. However, these results can not be applied in our problem (1.1) because the cubic nonlinearity f(u) defined by (1.2) is not always positive in $[0, \infty)$. So studying the problem (1.1) is worth and interesting.

By elementary analysis, we find that f(u) has unique zero β_{ε} in $[0, \infty)$. Then the main result is as follows:

Theorem 1.3 (See Figure 1.2). Consider (1.1). Let ε_0 be defined in Theorem 1.2. Then the following statements (*i*)–(*iii*) hold:

- (*i*) For L > 0, the bifurcation curve S_L is continuous on the $(\lambda, ||u_\lambda||_{\infty})$ -plane, starts from (0,0) and goes to infinity along the horizontal line $||u||_{\infty} = \rho_{L,\varepsilon}$ where $\rho_{L,\varepsilon} \equiv \min\{L, \beta_{\varepsilon}\}$.
- (ii) If $\varepsilon \geq \varepsilon_0$, then the bifurcation curve S_L is monotone increasing for all L > 0.
- (iii) If $0 < \varepsilon < \varepsilon_0$, then there exist two positive numbers $L_{\varepsilon} < \tilde{L}_{\varepsilon}$ such that
 - (a) the bifurcation curve S_L is monotone increasing for $0 < L \leq L_{\varepsilon}$.
 - (b) the bifurcation curve S_L is S-like shaped for $L_{\varepsilon} < L \leq \tilde{L}_{\varepsilon}$.
 - (c) the bifurcation curve S_L is S-shaped for $L > \tilde{L}_{\varepsilon}$.

Furthermore, L_{ε} *is a continuous function of* $\varepsilon \in (0, \varepsilon_0)$ *,* $\lim_{\varepsilon \to 0^+} L_{\varepsilon} \in (0, \infty)$ *and* $\lim_{\varepsilon \to \varepsilon_0^-} L_{\varepsilon} = \infty$.

Remark 1.4. By numerical simulations to bifurcation curves S_L of (1.1), we conjecture that the bifurcation curve S_L is also S-shaped on the $(\lambda, ||u_\lambda||_{\infty})$ -plane for $L_{\varepsilon} < L \leq \tilde{L}_{\varepsilon}$ and $0 < \varepsilon < \varepsilon_0$. Further investigations are needed. In addition, by Theorems 1.2 and 1.3, we make a list which shows the different properties for Minkowski-curvature problem (1.1) and semilinear problem (1.4), see Table 1.

Figure 1.2: Graphs of bifurcation curve S_L of (1.1) for $\varepsilon > 0$.

Bifurcation curve	<i>S</i> _{<i>L</i>} of (1.1)		\bar{S} of (1.4)	
1. Shapes ($0 < \varepsilon < \varepsilon_0$)	from monotone increasing to S-shaped with varying $arepsilon$		S-shaped	
2. Shapes ($\varepsilon \ge \varepsilon_0$)	monotone increasing		monotone increasing	
Numbers of	(1). from 0 to 2 varying $L > 0$	$\text{if } 0 < \epsilon < \epsilon_0$	(1). 2	${\rm if}\ 0<\epsilon<\epsilon_0$
^{5.} turning points	(2). 0	if $\varepsilon \geq \varepsilon_0$	(2). 0	if $\varepsilon \geq \varepsilon_0$
4. Continuity	continuous		continuous	
5. Evolution parameter(s)	arepsilon and L		ε	
6. Starting point	(0,0)		(0,0)	
7. "End point"	$(\infty, \rho_{L,\varepsilon})$		(∞,∞)	

Table 1.1: Comparison of properties of S_L and \overline{S} .

The paper is organized as follows: Section 2 contains the lemmas used for proving the main result. Section 3 contains the proof of main result (Theorem 1.3). Section 4 contains the proof of assertion (2.31).

2 Lemmas

To prove Theorem 1.3, we first introduce the time-map method used in Corsato [4, p. 127]. We define the time-map formula for (1.1) by

$$T_{\lambda}(\alpha) \equiv \int_{0}^{\alpha} \frac{\lambda \left[F(\alpha) - F(u)\right] + 1}{\sqrt{\left\{\lambda \left[F(\alpha) - F(u)\right] + 1\right\}^{2} - 1}} du \quad \text{for } 0 < \alpha < \beta_{\varepsilon} \text{ and } \lambda > 0,$$
(2.1)

where $F(u) \equiv \int_0^u f(t)dt$. Observe that positive solutions $u_\lambda \in C^2(-L,L) \cap C[-L,L]$ for (1.1) correspond to

$$||u_{\lambda}||_{\infty} = \alpha$$
 and $T_{\lambda}(\alpha) = L$

So by definition of S_L in (1.3), we have that

$$S_L = \{ (\lambda, \alpha) : T_\lambda(\alpha) = L \text{ for some } 0 < \alpha < \beta_\varepsilon \text{ and } \lambda > 0 \}.$$
(2.2)

Thus, it is important to understand fundamental properties of the time-map $T_{\lambda}(\alpha)$ on $(0, \beta_{\varepsilon})$ in order to study the shape of the bifurcation curve S_L of (1.1) for any fixed L > 0. Note that it can be proved that $T_{\lambda}(\alpha)$ is a triple differentiable function of $\varepsilon \in (0, \beta_{\varepsilon})$ for $\varepsilon, \lambda > 0$, and $T_{\lambda}(\alpha)$, $T'_{\lambda}(\alpha)$ are differentiable function of $\lambda > 0$ for $0 < \alpha < \beta_{\varepsilon}$ and a > 0. The proofs are easy but tedious and hence we omit them. Similarly, we define the time-map formula for (1.5) by

$$\bar{T}(\alpha) \equiv \frac{1}{\sqrt{2}} \int_0^\alpha \frac{1}{\sqrt{F(\alpha) - F(u)}} du \quad \text{for } \alpha > 0,$$
(2.3)

see [12, p. 779]. Then we have that $||u_{\lambda}||_{\infty} = \alpha$ and $\overline{T}(\alpha) = \sqrt{\lambda}$. So by the definition of \overline{S} in (1.6), we see that

$$\bar{S} = \left\{ (\lambda, \alpha) : \sqrt{\lambda} = \bar{T}(\alpha) \text{ for some } \alpha > 0 \right\}.$$
(2.4)

For the sake of convenience, we let

$$A = A(\alpha, u) \equiv \alpha f(\alpha) - u f(u), \qquad B = B(\alpha, u) \equiv F(\alpha) - F(u),$$
$$C = C(\alpha, u) \equiv \alpha^2 f'(\alpha) - u^2 f'(u) \quad \text{and} \quad D = D(\alpha, u) \equiv \alpha^3 f''(\alpha) - u^3 f''(u).$$

Obviously, we have

$$B(\alpha, u) = \int_{u}^{\alpha} f(t)dt > 0 \quad \text{for } 0 < u < \alpha < \beta_{\varepsilon}$$
(2.5)

because f(u) > 0 for $0 < u < \beta_{\varepsilon}$.

Lemma 2.1. Consider (1.1) with $\varepsilon > 0$. Then the following statements (i)–(iii) hold:

- (i) $\lim_{\alpha\to 0^+} T_{\lambda}(\alpha) = 0$ and $\lim_{\alpha\to \beta_c^-} T_{\lambda}(\alpha) = \infty$ for $\lambda > 0$.
- (*ii*) $\lim_{\lambda\to 0^+} \sqrt{\lambda} T_{\lambda}^{(i)}(\alpha) = \overline{T}^{(i)}(\alpha)$ and $\lim_{\lambda\to\infty} T_{\lambda}'(\alpha) = 1$ for $0 < \alpha < \beta_{\varepsilon}$ and i = 1, 2, 3.
- (iii) $\partial T_{\lambda}(\alpha)/\partial \lambda < 0$ for $0 < \alpha < \beta_{\varepsilon}$ and $\lambda > 0$.

Proof. Since

$$\lim_{u\to 0^+}\frac{F(u)}{u^2}=\infty,$$

and by [7, Lemma 3.1], we obtain that $\lim_{\alpha\to 0^+} T_{\lambda}(\alpha) = 0$. Since $f(\beta_{\varepsilon}) = 0$, there exist $b, c \in \mathbb{R}$ such that $f(u) = (\beta_{\varepsilon} - u)(\varepsilon u^2 + bu + c)$. Since f(u) > 0 on $(0, \beta_{\varepsilon})$, there exists M > 0 such that $0 < \varepsilon u^2 + bu + c < M$ for $0 < u < \beta_{\varepsilon}$. For 0 < t < 1, by the mean-value theorem, there exists $\eta_t \in (\beta_{\varepsilon}t, \beta_{\varepsilon})$ such that

$$B(\beta_{\varepsilon}, \beta_{\varepsilon}t) = \int_{\beta_{\varepsilon}t}^{\beta_{\varepsilon}} f(t)dt = f(\eta_{t})\beta_{\varepsilon}(1-t) = (\beta_{\varepsilon} - \eta_{t})\left(\varepsilon\eta_{t}^{2} + b\eta_{t} + c\right)\beta_{\varepsilon}(1-t)$$

$$< \left(\beta_{\varepsilon} - \beta_{\varepsilon}t\right)M\beta_{\varepsilon}(1-t) = M\beta_{\varepsilon}^{2}(1-t)^{2}.$$
(2.6)

Then there exists $t^* \in (0,1)$ such that $B(\beta_{\varepsilon}, \beta_{\varepsilon}t) < 1$ for $t^* < t < 1$. So by (2.5) and (2.6), we see that

$$\begin{split} \lim_{\alpha \to \beta_{\varepsilon}^{-}} T_{\lambda}(\alpha) &= \lim_{\alpha \to \beta_{\varepsilon}^{-}} \alpha \int_{0}^{1} \frac{\lambda B(\alpha, \alpha t) + 1}{\sqrt{\lambda^{2} B^{2}(\alpha, \alpha t) + 2\lambda B(\alpha, \alpha t)}} dt \\ &\geq \lim_{\alpha \to \beta_{\varepsilon}^{-}} \alpha \int_{t^{*}}^{1} \frac{1}{\sqrt{\lambda^{2} B^{2}(\alpha, \alpha t) + 2\lambda B(\alpha, \alpha t)}} dt \\ &\geq \beta_{\varepsilon} \int_{t^{*}}^{1} \frac{1}{\sqrt{(\lambda^{2} + 2\lambda) B(\beta_{\varepsilon}, \beta_{\varepsilon} t)}} dt \geq \frac{1}{\sqrt{(\lambda^{2} + 2\lambda) M}} \int_{t^{*}}^{1} \frac{1}{1 - t} dt = \infty, \end{split}$$

which implies that statement (i) holds. In addition, we compute that, for $0 < \alpha < \beta_{\varepsilon}$ and $\lambda > 0$,

$$T_{\lambda}'(\alpha) = \frac{1}{\alpha} \int_{0}^{\alpha} \frac{\lambda^{3} B^{3} + 3\lambda^{2} B^{2} + \lambda (2B - A)}{(\lambda^{2} B^{2} + 2\lambda B)^{3/2}} du,$$
(2.7)

$$T_{\lambda}^{\prime\prime}(\alpha) = \frac{1}{\alpha^2} \int_0^{\alpha} \frac{\left(3A^2B - B^2C - 2AB^2\right)\lambda^3 + \left(3A^2 - 4AB - 2BC\right)\lambda^2}{\left(\lambda^2 B^2 + 2\lambda B\right)^{5/2}} du,$$
 (2.8)

$$T_{\lambda}^{\prime\prime\prime}(\alpha) = \frac{1}{\alpha^3} \int_0^{\alpha} \frac{\lambda^3}{\left[\lambda^2 B^2 + 2\lambda B\right]^{7/2}} \Big[B^2 \left(9A^2B - 3B^2C - B^2D - 12A^3 + 9ABC\right) \lambda^2 + B(27A^2B - 12B^2C - 4B^2D - 24A^3 + 27ABC)\lambda + 18A^2B - 12B^2C - 4B^2D - 15A^3 + 18ABC \Big] du.$$
(2.9)

So we observe that, for $0 < \alpha < \beta_{\varepsilon}$,

$$\lim_{\lambda \to 0^+} \sqrt{\lambda} T'_{\lambda}(\alpha) = \frac{1}{\alpha} \int_0^{\alpha} \frac{2B - A}{(2B)^{3/2}} du = \bar{T}'(\alpha),$$
$$\lim_{\lambda \to 0^+} \sqrt{\lambda} T''_{\lambda}(\alpha) = \frac{1}{\alpha^2} \int_0^{\alpha} \frac{3A^2 - 4AB - 2BC}{(2B)^{5/2}} du = \bar{T}''(\alpha),$$
$$\lim_{\lambda \to 0^+} \sqrt{\lambda} T''_{\lambda}(\alpha) = \frac{1}{\alpha^3} \int_0^{\alpha} \frac{18A^2B - 12B^2C - 4B^2D - 15A^3 + 18ABC}{(2B)^{5/2}} du = \bar{T}'''(\alpha).$$

Furthermore, $\lim_{\lambda\to\infty} T'_{\lambda}(\alpha) = 1$. So statement (ii) holds. The statement (iii) follows immediately by [7, Lemma 4.2(ii)]. The proof is complete.

Lemma 2.2. Consider (1.1) with $\varepsilon > 0$. Then the following statements (i) and (ii) hold:

- (i) $T'_{\lambda}(\alpha) > 0$ for $0 < \alpha \le 1$ and $\lambda > 0$.
- (*ii*) $T_{\lambda}(\alpha)$ has at most one critical point, a local minimum, on $\left[\frac{5}{12\varepsilon}, \beta_{\varepsilon}\right)$.

Proof. We can see that $2B(\alpha, u) - A(\alpha, u) > 0$ for $0 < u < \alpha \le 1$ because $2B(\alpha, \alpha) - A(\alpha, \alpha) = 0$ and

$$\frac{\partial}{\partial u} \left[2B(\alpha, u) - A(\alpha, u) \right] = -2\varepsilon u^3 + \left(u^2 - 1 \right) < 0 \text{ for } 0 < u < \alpha < 1.$$

So by (2.5) and (2.7), we obtain that $T'_{\lambda}(\alpha) > 0$ for $0 < \alpha \le 1$ and $\lambda > 0$. Then statement (i) holds. By (2.5), (2.7) and (2.8), we observe that, for $0 < \alpha < \beta_{\varepsilon}$ and $\lambda > 0$,

$$\begin{split} \alpha T_{\lambda}''(\alpha) &+ 2T_{\lambda}'(\alpha) \\ &= \frac{1}{\alpha} \int_{0}^{\alpha} \frac{B^{5}\lambda^{3} + 5B^{4}\lambda^{2} + \lambda B \left(3A^{2} + 16B^{2} - 4AB - BC\right) + 3A^{2} + 8B^{2} - 8AB - 2BC}{\sqrt{\lambda} \left(\lambda B^{2} + 2B\right)^{5/2}} du \\ &> \frac{1}{\alpha} \int_{0}^{\alpha} \frac{\lambda B \left(3A^{2} + 16B^{2} - 4AB - BC\right) + 3A^{2} + 8B^{2} - 8AB - 2BC}{\sqrt{\lambda} \left(\lambda B^{2} + 2B\right)^{5/2}} du \\ &= \frac{1}{\alpha} \int_{0}^{\alpha} \frac{\lambda B \left[3 \left(A - B\right)^{2} + 5B^{2} + B \left(2A - 2B - C\right)\right] + 3 \left(A - 2B\right)^{2} + 2B \left(2A - 2B - C\right)}{\sqrt{\lambda} \left(\lambda B^{2} + 2B\right)^{5/2}} du \\ &> \frac{1}{\alpha} \int_{0}^{\alpha} \frac{\lambda B^{2} \left(2A - 2B - C\right) + 2B \left(2A - 2B - C\right)}{\sqrt{\lambda} \left(\lambda B^{2} + 2B\right)^{5/2}} du \\ &= \frac{1}{\alpha} \int_{0}^{\alpha} \frac{\left(\lambda B^{2} + 2B\right) \left(2A - 2B - C\right)}{\sqrt{\lambda} \left(\lambda B^{2} + 2B\right)^{5/2}} du = \frac{1}{\alpha} \int_{0}^{\alpha} \frac{2A - 2B - C}{\sqrt{\lambda} \left(\lambda B^{2} + 2B\right)^{3/2}} du \\ &= \frac{1}{6\alpha} \int_{0}^{\alpha} \frac{\phi(\alpha) - \phi(u)}{\sqrt{\lambda} \left(\lambda B^{2} + 2B\right)^{3/2}} du, \end{split}$$
(2.10)

where $\phi(u) \equiv u^3 (9\varepsilon u - 4)$. Clearly, $\phi'(u) = 12u^2 (3\varepsilon u - 1)$. Since

$$f\left(\frac{4}{9\varepsilon}\right) = 1 + \frac{324\varepsilon + 80}{729\varepsilon^2} > 0,$$

we see that

$$\frac{1}{3\varepsilon} < \frac{4}{9\varepsilon} < \beta_{\varepsilon}. \tag{2.11}$$

So we observe that

$$\phi(u) \begin{cases}
< 0 & \text{for } 0 < u < \frac{4}{9\varepsilon}, \\
= 0 & \text{for } u = \frac{4}{9\varepsilon}, \\
> 0 & \text{for } \frac{4}{9\varepsilon} < u < \beta_{\varepsilon},
\end{cases} \quad \text{and} \quad \phi'(u) \begin{cases}
< 0 & \text{for } 0 < u < \frac{1}{3\varepsilon}, \\
= 0 & \text{for } u = \frac{1}{3\varepsilon}, \\
> 0 & \text{for } \frac{1}{3\varepsilon} < u < \beta_{\varepsilon}.
\end{cases} (2.12)$$

Let $\alpha \in \left[\frac{5}{12\varepsilon}, \beta_{\varepsilon}\right)$ be given. Then we consider two cases.

Case 1. Assume that $\frac{4}{9\varepsilon} \le \alpha < \beta_{\varepsilon}$. Since $\phi(0) = 0$, and by (2.12), we see that $\phi(\alpha) - \phi(u) > 0$ for $0 < u < \alpha$. So by (2.10), we obtain $\alpha T_{\lambda}''(\alpha) + 2T_{\lambda}'(\alpha) > 0$ for $\lambda > 0$.

Case 2. Assume that $\frac{5}{12\varepsilon} \leq \alpha < \frac{4}{9\varepsilon}$. Since $\phi(0) = 0$, and by (2.12), there exists $\tilde{\alpha} \in (0, \frac{1}{3\varepsilon})$ such that

$$\phi(\alpha) - \phi(u) \begin{cases} < 0 & \text{for } 0 < u < \tilde{\alpha}, \\ = 0 & \text{for } u = \tilde{\alpha}, \\ > 0 & \text{for } \tilde{\alpha} < u < \alpha. \end{cases}$$

So by (2.10), we observe that, for $\lambda > 0$,

$$\begin{split} \alpha T_{\lambda}''(\alpha) &+ 2T_{\lambda}'(\alpha) \\ &> \frac{1}{6\alpha\sqrt{\lambda}} \left[\int_{0}^{\tilde{\alpha}} \frac{\phi(\alpha) - \phi(u)}{[\lambda B^{2} + 2B]^{3/2}} du + \int_{\tilde{\alpha}}^{\alpha} \frac{\phi(\alpha) - \phi(u)}{[\lambda B^{2} + 2B]^{3/2}} du \right] \\ &> \frac{1}{6\alpha\sqrt{\lambda}} \frac{1}{[\lambda B^{2}(\alpha, \tilde{\alpha}) + 2B(\alpha, \tilde{\alpha})]^{3/2}} \left\{ \int_{0}^{\tilde{\alpha}} [\phi(\alpha) - \phi(u)] \, du + \int_{\tilde{\alpha}}^{\alpha} [\phi(\alpha) - \phi(u)] \, du \right\} \\ &= \frac{1}{6\alpha\sqrt{\lambda}} \frac{1}{[\lambda B^{2}(\alpha, \tilde{\alpha}) + 2B(\alpha, \tilde{\alpha})]^{3/2}} \int_{0}^{\alpha} [\phi(\alpha) - \phi(u)] \, du \\ &= \frac{6\epsilon\alpha^{3}}{5\sqrt{\lambda}\left[\lambda B^{2}(\alpha, \tilde{\alpha}) + 2B(\alpha, \tilde{\alpha})\right]^{3/2}} \left(\alpha - \frac{5}{12\epsilon}\right) \ge 0. \end{split}$$

Thus by Cases 1–2, we have

$$\alpha T_{\lambda}^{\prime\prime}(\alpha) + 2T_{\lambda}^{\prime}(\alpha) > 0 \text{ for } \frac{5}{12\varepsilon} \le \alpha < \beta_{\varepsilon} \text{ and } \lambda > 0.$$
 (2.13)

Fixed $\lambda > 0$. If $T_{\lambda}(\alpha)$ has a critical point $\check{\alpha}$ in $[\frac{5}{12\varepsilon}, \beta_{\varepsilon})$, by (2.13), then $\check{\alpha}T_{\lambda}''(\check{\alpha}) = \check{\alpha}T_{\lambda}''(\check{\alpha}) + 2T_{\lambda}'(\check{\alpha}) > 0$. It implies that $T_{\lambda}(\alpha)$ has at most one critical point, a local minimum, on $[\frac{5}{12\varepsilon}, \beta_{\varepsilon})$ for $\lambda > 0$. Then the statement (ii) holds. The proof is complete.

Lemma 2.3. Consider (1.1) with $\varepsilon > 0$. Then

$$\frac{\partial}{\partial \lambda} \left[\sqrt{\lambda} T_{\lambda}'(\alpha) \right] > 0 \quad \text{for } 0 < \alpha \le \frac{5}{12\varepsilon} \text{ and } \lambda > 0.$$
(2.14)

Proof. By (2.5) and (2.7), we compute and find that

$$\frac{\partial}{\partial\lambda} \left[\sqrt{\lambda} T_{\lambda}'(\alpha) \right] = \frac{1}{2\alpha} \int_0^{\alpha} \frac{B^2 \left(B^3 \lambda^2 + 5B^2 \lambda + 3A + 6B \right)}{\left(\lambda B^2 + 2B\right)^{5/2}} du > \frac{1}{2\alpha} \int_0^{\alpha} \frac{3B^2 \left(A + 2B\right)}{\left(\lambda B^2 + 2B\right)^{5/2}} du. \quad (2.15)$$

In addition, we compute that

$$\frac{\partial}{\partial u}\left[A(\alpha, u) + 2B(\alpha, u)\right] = R(u),$$

where $R(u) \equiv 3\varepsilon u^3 - 3(1-\varepsilon)u^2 - 6u - 4$. Clearly, $R'(u) = 9\varepsilon u^2 - 6(1-\varepsilon)u - 6$ is a quadratic polynomial of *u* with positive leading coefficient. Furthermore,

$$R'(0) = -6 < 0$$
 and $R'\left(\frac{5}{12\varepsilon}\right) \equiv -\frac{56\varepsilon + 15}{16\varepsilon} < 0.$

Thus we observe that R'(u) < 0 for $0 \le u \le \frac{5}{12\varepsilon}$. It follows that

$$\frac{\partial}{\partial u} \left[A(\alpha, u) + 2B(\alpha, u) \right] = R(u) \le R(0) = -4 < 0 \quad \text{for } 0 \le u \le \frac{5}{12\varepsilon}$$

Then we have

$$A(\alpha, u) + 2B(\alpha, u) > A(\alpha, \alpha) + 2B(\alpha, \alpha) = 0 \quad \text{for } 0 < u < \alpha \le \frac{5}{12\varepsilon}$$

So by (2.15), we obtain (2.14). The proof is complete.

_

Lemma 2.4. Consider (1.1) with $\varepsilon > 0$. Let I be a closed interval in $(0, \beta_{\varepsilon})$. Then the following statements (*i*)–(*iii*) hold:

- (i) If $\overline{T}'(\alpha) < 0$ for $\alpha \in I$, then there exists $\lambda > 0$ such that $T'_{\lambda}(\alpha) < 0$ for $\alpha \in I$ and $0 < \lambda < \lambda$.
- (ii) If $\alpha \overline{T}''(\alpha) + k\overline{T}'(\alpha) < 0$ for $\alpha \in I$ and some k > 0, then there exists $\hat{\lambda} > 0$ such that $\alpha T''_{\lambda}(\alpha) + kT'_{\lambda}(\alpha) < 0$ for $\alpha \in I$ and $0 < \lambda < \hat{\lambda}$.
- (iii) If $[2\alpha \overline{T}''(\alpha) + 3\overline{T}'(\alpha)]' > 0$ for $\alpha \in I$, then there exists $\overline{\lambda} > 0$ such that $[2\alpha T_{\lambda}''(\alpha) + 3T_{\lambda}'(\alpha)]' > 0$ for $\alpha \in I$ and $0 < \lambda < \overline{\lambda}$.

Proof. (I) Assume that $\overline{T}'(\alpha) < 0$ for $\alpha \in I$. By Lemma 2.1(ii), we have

$$\lim_{\lambda \to 0^+} \sqrt{\lambda} T'_{\lambda}(\alpha) = \bar{T}'(\alpha) < 0 \quad \text{for } \alpha \in I.$$
(2.16)

For $\alpha \in I$, by (2.16), we define λ_{α} by

$$\lambda_{\alpha} \equiv \begin{cases} 1 & \text{if } T_{\lambda}'(\alpha) < 0 \text{ for all } \lambda > 0, \\ \sup\{\lambda_1 : T_{\lambda}'(\alpha) < 0 \text{ for } 0 < \lambda < \lambda_1\} & \text{if } T_{\lambda}'(\alpha) \ge 0 \text{ for some } \lambda > 0. \end{cases}$$
(2.17)

Clearly, $T'_{\lambda}(\alpha) < 0$ for $\alpha \in I$ and $0 < \lambda < \lambda_{\alpha}$. Let $\check{\lambda} \equiv \inf\{\lambda_{\alpha} : \alpha \in I\}$. Assume that $\check{\lambda} = 0$. By (2.17), there exists a sequence $\{\alpha_k\}_{k \in \mathbb{N}} \subset I$ such that

$$\lim_{k\to\infty}\lambda_{\alpha_k}=0 \quad \text{and} \quad T'_{\lambda_{\alpha_k}}(\alpha_k)\geq 0 \quad \text{for } k\in\mathbb{N}.$$
(2.18)

Without loss of generality, we assume that $\lim_{k\to\infty} \alpha_k = \check{\alpha} \in I$. So by (2.16) and (2.18), we observe that

$$0 \leq \lim_{k \to \infty} \sqrt{\lambda_{\alpha_k}} T'_{\lambda_{\alpha_k}}(\alpha_k) = \lim_{k \to \infty} \sqrt{\lambda_{\alpha_k}} T'_{\lambda_{\alpha_k}}(\check{\alpha}) = \bar{T}'(\check{\alpha}) < 0,$$

which is a contradiction. It implies that $\lambda > 0$. So statement (i) holds.

(II) Assume that $\alpha \overline{T}''(\alpha) + k\overline{T}'(\alpha) < 0$ for $\alpha \in I$ and some k > 0. Let $G_1(\alpha, \lambda) \equiv \alpha T''_{\lambda}(\alpha) + kT'_{\lambda}(\alpha)$. By Lemma 2.1(ii), we see that

$$\lim_{\lambda \to 0^+} \sqrt{\lambda} G_1(\alpha, \lambda) = \alpha \bar{T}''(\alpha) + k \bar{T}'(\alpha) < 0 \quad \text{for } \alpha \in I.$$
(2.19)

For $\alpha \in I$, by (2.19), we define λ_{α} by

$$\lambda_{\alpha} \equiv \begin{cases} 1 & \text{if } G_1(\alpha, \lambda) < 0 \text{ for all } \lambda > 0, \\ \sup\{\lambda_2 : G_1(\alpha, \lambda) < 0 \text{ for } 0 < \lambda < \lambda_2\} & \text{if } G_1(\alpha, \lambda) \ge 0 \text{ for some } \lambda > 0. \end{cases}$$

Clearly, $G_1(\alpha, \lambda) < 0$ for $\alpha \in I$ and $0 < \lambda < \lambda_{\alpha}$. Let $\hat{\lambda} \equiv \inf\{\lambda_{\alpha} : \alpha \in I\}$. We use the similar argument in (I) to obtain that $\hat{\lambda} > 0$. So statement (ii) holds.

(III) Assume that $[2\alpha \overline{T}''(\alpha) + 3\overline{T}'(\alpha)]' > 0$ for $\alpha \in I$. Let $G_2(\alpha, \lambda) \equiv [2\alpha T''(\alpha) + 3T'(\alpha)]'$. By Lemma 2.1(ii), we see that

$$\lim_{\lambda \to 0^+} \sqrt{\lambda} G_2(\alpha, \lambda) = \lim_{\lambda \to 0^+} \left[2\alpha \sqrt{\lambda} T_{\lambda}^{\prime\prime\prime}(\alpha) + 5\sqrt{\lambda} T_{\lambda}^{\prime\prime}(\alpha) \right] = 2\alpha \bar{T}^{\prime\prime\prime}(\alpha) + 5\bar{T}^{\prime\prime}(\alpha)$$
$$= \left[2\alpha \bar{T}^{\prime\prime}(\alpha) + 3\bar{T}^{\prime}(\alpha) \right]^{\prime} > 0 \quad \text{for } \alpha \in I.$$
(2.20)

For $\alpha \in I$, by (2.20), we define λ_{α} by

$$\lambda_{\alpha} \equiv \begin{cases} 1 & \text{if } G_2(\alpha, \lambda) < 0 \text{ for all } \lambda > 0, \\ \sup\{\lambda_3 : G_2(\alpha, \lambda) < 0 \text{ for } 0 < \lambda < \lambda_3\} & \text{if } G_2(\alpha, \lambda) \ge 0 \text{ for some } \lambda > 0. \end{cases}$$

Clearly, $G_2(\alpha, \lambda) < 0$ for $\alpha \in I$ and $0 < \lambda < \lambda_{\alpha}$. Let $\overline{\lambda} \equiv \inf{\{\lambda_{\alpha} : \alpha \in I\}}$. We use the similar argument in (I) to obtain that $\overline{\lambda} > 0$. So statement (iii) holds. The proof is complete.

Lemma 2.5. Consider (1.5) with $\varepsilon > 0$. Let ε_0 be defined in Theorem 1.2. Then the following statements (*i*)–(*iii*) hold:

- (*i*) $\overline{T}'(\alpha) \ge 0$ for $0 < \alpha < \beta_{\varepsilon}$ and $\varepsilon \ge \varepsilon_0$.
- (ii) $[2\alpha \bar{T}''(\alpha) + 3\bar{T}'(\alpha)]' > 0$ for $\frac{1}{3\varepsilon} \le \alpha \le \frac{5}{12\varepsilon}$ and $\varepsilon \le \varepsilon_0$.
- (iii) There exists $\hat{\varepsilon} \in (0, \varepsilon_0)$ such that $\bar{T}'(\alpha) \ge 0$ for $0 < \alpha \le \frac{1}{3\varepsilon}$ and $\hat{\varepsilon} \le \varepsilon < \varepsilon_0$. Furthermore, $\hat{\varepsilon} < \sqrt{31/1000}$.

Proof. The statement (i) follows immediately by Theorem 1.2 and (2.4). The statement (ii) follows immediately by [6, Lemma 3.5]. By [11, Theorem 2.1], there exists $\hat{\varepsilon} > 0$ satisfying

$$\hat{\varepsilon} < \sqrt{\frac{31}{1000}} < \varepsilon_0$$

such that

$$\bar{T}'\left(\frac{1}{3\varepsilon}\right) \begin{cases} < 0 & \text{for } 0 < \varepsilon < \hat{\varepsilon}, \\ = 0 & \text{for } \varepsilon = \hat{\varepsilon}, \\ > 0 & \text{for } \hat{\varepsilon} < \varepsilon < \varepsilon_0. \end{cases}$$
(2.21)

By Theorem 1.2, (2.4) and [6, Lemma 3.3], we see that, for $0 < \varepsilon < \varepsilon_0$, there exist two positive numbers $\alpha_* < \alpha^* < \beta_{\varepsilon}$ such that

$$\bar{T}'(\alpha) \begin{cases} > 0 & \text{on } (0, \alpha_*) \cup (\alpha^*, \beta_{\varepsilon}), \\ = 0 & \text{when } \alpha = \alpha_* \text{ or } \alpha = \alpha^*, \\ < 0 & \text{for } (\alpha_*, \alpha^*). \end{cases}$$
(2.22)

Since *f* is a convex function on $[0, \frac{1}{3\varepsilon}]$, and by [15, Lemma 3.2], we see that $\overline{T}(\alpha)$ is either strictly increasing on $(0, \frac{1}{3\varepsilon})$, or strictly increasing and then strictly decreasing on $(0, \frac{1}{3\varepsilon})$. So by (2.21) and (2.22), we observe that $\frac{1}{3\varepsilon} \le \alpha_*$ for $\hat{\varepsilon} \le \varepsilon < \varepsilon_0$. It follows that $\overline{T}'(\alpha) \ge 0$ for $0 < \alpha \le \frac{1}{3\varepsilon}$ and $\hat{\varepsilon} \le \varepsilon < \varepsilon_0$. So the statement (iii) holds. The proof is complete.

Lemma 2.6. Consider (1.5) with $0 < \varepsilon \leq \hat{\varepsilon}$ where $\hat{\varepsilon}$ is defined in Lemma 2.5. Then $\alpha \overline{T}''(\alpha) + \overline{T}'(\alpha) < 0$ for $1 \leq \alpha \leq 1.7$.

Proof. Let $\bar{A} \equiv \varepsilon (\alpha^4 - u^4)$, $\bar{B} \equiv \alpha^3 - u^3$, $\bar{C} \equiv \alpha^2 - u^2$ and $\bar{D} \equiv \alpha - u$. We compute that

$$\alpha \bar{T}''(\alpha) + \bar{T}'(\alpha) = \frac{1}{4\sqrt{2}\alpha} \int_0^\alpha \frac{N_1(\alpha, u)}{[F(\alpha) - F(u)]^{5/2}} du,$$
(2.23)

where

$$N_1(\alpha, u) \equiv \frac{1}{72} \Big(9\bar{A}^2 + 4\bar{B}^2 + 36\bar{D}^2 - 6\bar{A}\bar{B} + 198\bar{A}\bar{D} - 120\bar{B}\bar{D} + 36\bar{A}\bar{C} - 12\bar{B}\bar{C} - 36\bar{C}\bar{D} \Big).$$

Let $\alpha \in [1, 1.7]$, $u \in (0, \alpha)$ and $\varepsilon \in (0, \tilde{\varepsilon}]$ be given. By Lemma [11, Lemma 3.6], we have

$$\bar{A} < \frac{4\varepsilon\alpha}{3}\bar{B}$$
 and $\bar{D} > \frac{1}{3\alpha^2}\bar{B} > \frac{1}{3\alpha^2}\left(\frac{3}{4\varepsilon\alpha}\bar{A}\right) = \frac{\bar{A}}{4\alpha^3\varepsilon}.$

Then

$$1 < \alpha^{2} < \frac{\left(\alpha^{2} + \alpha u + u^{2}\right)\bar{D}}{\bar{D}} = \frac{\bar{B}}{\bar{D}} < 3\alpha^{2} \le 3\left(1.7\right)^{2} = 8.67,$$
(2.24)

$$\bar{A} < \frac{4\varepsilon\alpha}{3}\bar{B} < \frac{4\hat{\varepsilon}}{3}(1.7)\,\bar{B} = \frac{34\hat{\varepsilon}}{15}\bar{B} \quad \text{and} \quad \bar{D} > \frac{\bar{A}}{4\alpha^{3}\varepsilon} > \frac{\bar{A}}{4(1.7)^{3}\hat{\varepsilon}} = \frac{250}{4913\hat{\varepsilon}}\bar{A}.$$
(2.25)

In addition, by Lemma 2.5(iii), we compute and find that

$$\frac{34}{15}\hat{\varepsilon} - \frac{2}{3} < \frac{34}{15}\sqrt{\frac{31}{1000}} - \frac{2}{3} \,(\approx -0.26) < 0,\tag{2.26}$$

$$198\left(\frac{34}{15}\hat{\varepsilon} - \frac{20}{33}\right) < 198\left(\frac{34}{15}\sqrt{\frac{31}{1000}} - \frac{20}{33}\right) (\approx -40.98) < -0.40, \tag{2.27}$$

$$1 - \frac{5}{34\hat{\varepsilon}} - \frac{250}{4913\hat{\varepsilon}} < 1 - \frac{5}{34\sqrt{\frac{31}{1000}}} - \frac{250}{4913\sqrt{\frac{31}{1000}}} (\approx -0.88) < 0.$$
(2.28)

By (2.24)–(2.28), we observe that

$$\begin{split} N_1\left(\alpha,u\right) &= \frac{1}{72} \left(9\bar{A}^2 + 4\bar{B}^2 + 36\bar{D}^2 - 6\bar{A}\bar{B} + 198\bar{A}\bar{D} - 120\bar{B}\bar{D} + 36\bar{A}\bar{C} - 12\bar{B}\bar{C} - 36\bar{C}\bar{D}\right) \\ &= \frac{1}{72} \left[9\bar{A}\left(\bar{A} - \frac{2}{3}\bar{B}\right) + 198\bar{D}\left(\bar{A} - \frac{20}{33}\bar{B}\right) + 36\bar{C}\left(\bar{A} - \frac{1}{3}\bar{B} - \bar{D}\right) + 4\bar{B}^2 + 36\bar{D}^2\right] \\ &< \frac{1}{72} \left[9\bar{A}\bar{B}\left(\frac{34}{15}\hat{\epsilon} - \frac{2}{3}\right) + 198\bar{B}\bar{D}\left(\frac{34}{15}\hat{\epsilon} - \frac{20}{33}\right) \\ &+ 36\bar{A}\bar{C}\left(1 - \frac{5}{34\hat{\epsilon}} - \frac{250}{4913\hat{\epsilon}}\right) + 4\bar{B}^2 + 36\bar{D}^2\right] \\ &< \frac{1}{72} \left(-40\bar{B}\bar{D} + 4\bar{B}^2 + 36\bar{D}^2\right) = \frac{\bar{D}^2}{18} \left[\left(\frac{\bar{B}}{\bar{D}} - 5\right)^2 - 16\right] \\ &< \frac{\bar{D}^2}{18} \left[(1 - 5)^2 - 16\right] = 0. \end{split}$$

So by (2.23), we obtain that $\alpha \overline{T}''(\alpha) + \overline{T}'(\alpha) < 0$ for $1 \le \alpha \le 1.7$ and $0 < \varepsilon \le \hat{\varepsilon}$. The proof is complete.

Lemma 2.7. Consider (1.5) with $0.07 \le \varepsilon \le \hat{\varepsilon}$. Then $\alpha \bar{T}''(\alpha) + \frac{5}{2}\bar{T}'(\alpha) < 0$ for $1.7 \le \alpha \le \frac{1}{3\varepsilon}$. *Proof.* We compute that

$$\alpha \bar{T}''(\alpha) + \frac{5}{2} \bar{T}'(\alpha) = \frac{1}{4\sqrt{2}\alpha} \int_0^\alpha \frac{N_2(\alpha, u)}{[F(\alpha) - F(u)]^{5/2}} du,$$
(2.29)

where

$$N_{2}(\alpha, u) \equiv \frac{1}{144} \Big(-9\bar{A}^{2} + 42\bar{A}\bar{B} + 450\bar{A}\bar{D} + 126\bar{A}\bar{C} - 16\bar{B}^{2} - 240\bar{B}\bar{D} \\ -60\bar{B}\bar{C} + 288\bar{D}^{2} + 36\bar{C}\bar{D} \Big).$$
(2.30)

Then we assert that

$$N_2(\alpha, u) < 0 \quad \text{for } 0 < u < \alpha, \ 1.7 \le \alpha \le \frac{1}{3\varepsilon} \text{ and } 0.07 \le \varepsilon \le \hat{\varepsilon}.$$
 (2.31)

The proof of assertion (2.31) is easy but tedious. Thus, we put it in Appendix. So by (2.29)–(2.31), we see that $\alpha \bar{T}''(\alpha) + \frac{5}{2}\bar{T}'(\alpha) < 0$ for $1.7 \le \alpha \le \frac{1}{3\epsilon}$ and $0.07 \le \epsilon \le \hat{\epsilon}$.

Lemma 2.8. Consider (1.5) with $0 < \varepsilon < 0.07$. Then $\overline{T}'(\alpha) < 0$ for $1.7 \le \alpha \le \frac{1}{3\varepsilon}$.

Proof. We compute that

$$\bar{\Gamma}'(\alpha) = \frac{1}{2\sqrt{2}\alpha} \int_0^\alpha \frac{2B(\alpha, u) - A(\alpha, u)}{B^{3/2}(\alpha, u)} du = \frac{1}{2\sqrt{2}\alpha} \int_0^\alpha \frac{\theta(\alpha) - \theta(u)}{B^{3/2}(\alpha, u)} du,$$
(2.32)

where $\theta(u) \equiv 2F(u) - uf(u)$ for $0 \le u < \beta_{\varepsilon}$. Since $0 < \varepsilon < 0.07$, and by [11, Lemma 3.1], there exists $p \in (0, \frac{1}{3\varepsilon})$ such that $\theta'(u) > 0$ for (0, p) and $\theta'(u) < 0$ for $(p, \frac{1}{3\varepsilon})$. Let $\alpha \in [1.7, \frac{1}{3\varepsilon}]$ be given. Assume that $\theta(\alpha) \le 0$, see Figure 2.1(i). Since $\theta(0) = 0$, we see that $\theta(\alpha) - \theta(u) < 0$ for $0 < u < \alpha$. So by (2.32), we obtain that $\overline{T}'(\alpha) < 0$. Assume that $\theta(\alpha) > 0$, see Figure 2.1(ii). We compute and find that

$$\theta'(1.7) = 2\varepsilon u^3 - u^2 + 1\big|_{u=1.7} = \frac{4913}{500}\varepsilon - \frac{189}{100} < 0 \text{ for } 0 < \varepsilon < 0.07.$$

Since $1.7 \le \alpha \le \frac{1}{3\epsilon}$, there exists $\bar{\alpha} \in (0, p)$ such that

$$\theta(\alpha) - \theta(u) \begin{cases} > 0 & \text{for } 0 < u < \bar{\alpha}, \\ = 0 & \text{for } u = \bar{\alpha}, \\ < 0 & \text{for } \bar{\alpha} < u < \alpha. \end{cases}$$

Figure 2.1: Graphs of $\theta(u)$ on $[0, \alpha]$ where $1.7 \le \alpha \le \frac{1}{3\varepsilon}$ and $0 < \varepsilon < 0.07$.

So by (2.32) and similar argument of [14, (3.11)], we observe that

$$\bar{T}'(\alpha) < \frac{1}{2\sqrt{2}\alpha B^{3/2}(\alpha,\bar{\alpha})} \int_0^\alpha u\theta'(u)du = \frac{\alpha \left(8\varepsilon\alpha^3 - 5\alpha^2 + 10\right)}{40\sqrt{2}B^{3/2}(\alpha,\bar{\alpha})}.$$
(2.33)

Since

$$\frac{\partial}{\partial u} \left(8\varepsilon u^3 - 5u^2 + 10 \right) = 2u \left(12\varepsilon u - 5 \right) < 0 \quad \text{for } 1.7 \le u \le \frac{1}{3\varepsilon}$$

we see that, for $1.7 \le u \le \frac{1}{3\varepsilon}$ and $0 < \varepsilon < 0.07$,

$$8\varepsilon u^3 - 5u^2 + 10 < 8\varepsilon u^3 - 5u^2 + 10\big|_{u=1.7} = \frac{4913}{125}\varepsilon - \frac{89}{20} < 0$$

So by (2.33), we obtain that $\bar{T}'(\alpha) < 0$. The proof is complete.

Lemma 2.9. Consider (1.1) with $0 < \varepsilon < \varepsilon_0$. Then there exists $\xi_{\varepsilon} > 0$ such that

$$\Gamma_{\varepsilon} \equiv \{\lambda > 0 : T'_{\lambda}(\alpha) < 0 \text{ for some } \alpha \in (0, \beta_{\varepsilon})\} = (0, \xi_{\varepsilon}).$$

Proof. Let $\varepsilon \in (0, \varepsilon_0)$ be given. By (2.22), there exist two positive numbers $\alpha_* < \alpha^* < \beta_{\varepsilon}$ such that

$$\lim_{\lambda \to 0^+} \sqrt{\lambda} T'_{\lambda}(\alpha) = \bar{T}'(\alpha) \begin{cases} > 0 & \text{on } (0, \alpha_*) \cup (\alpha^*, \beta_{\varepsilon}), \\ = 0 & \text{when } \alpha = \alpha_* \text{ or } \alpha^*, \\ < 0 & \text{on } (\alpha_*, \alpha^*). \end{cases}$$
(2.34)

Then we divide this proof into the next four steps.

Step 1. We prove that $\alpha_* < \frac{5}{12\epsilon}$. Assume that $\alpha_* \ge \frac{5}{12\epsilon}$. By (2.34) and Lemma 2.3, we see that

$$0 \leq \bar{T}'(\alpha) = \lim_{\lambda \to 0^+} \sqrt{\lambda} T'_{\lambda}(\alpha) < \sqrt{\lambda} T'_{\lambda}(\alpha) \quad \text{for } 0 < \alpha \leq \frac{5}{12\varepsilon} \text{ and } \lambda > 0.$$
(2.35)

By Lemma 2.2(ii) and (2.35), we further see that $T'_{\lambda}(\alpha) > 0$ for $0 < \alpha < \beta_{\varepsilon}$ for $\lambda > 0$. So by (2.34), we obtain that

$$0\leq \lim_{\lambda
ightarrow 0^+}\sqrt{\lambda}T_\lambda'\left(rac{lpha_*+lpha^*}{2}
ight)=ar{T}'\left(rac{lpha_*+lpha^*}{2}
ight)<0,$$

which is a contradiction. It implies that $\alpha_* < \frac{5}{12\epsilon}$.

Step 2. We prove that, for $\alpha \in (\alpha_*, \alpha^*) \cap (0, \frac{5}{12\varepsilon}]$, there exists a continuously differential function $\tilde{\lambda}_{\alpha} > 0$ of α such that

$$\sqrt{\lambda}T_{\lambda}'(\alpha) \begin{cases} < 0 & \text{if } 0 < \lambda < \tilde{\lambda}_{\alpha}, \\ = 0 & \text{if } \lambda = \tilde{\lambda}_{\alpha}, \\ > 0 & \text{if } \lambda > \tilde{\lambda}_{\alpha}. \end{cases}$$
(2.36)

By Lemma 2.1(ii), we see that

$$\lim_{\lambda \to \infty} \sqrt{\lambda} T_{\lambda}'(\alpha) = \infty \cdot 1 = \infty \quad \text{for } \alpha \in (0, \beta_{\varepsilon}).$$
(2.37)

By (2.34), (2.37), Lemma 2.3 and implicit function theorem, we observe that, for $\alpha \in (\alpha_*, \alpha^*) \cap (0, \frac{5}{12\epsilon}]$, there exists a continuously differential function $\tilde{\lambda}_{\alpha} > 0$ of α such that (2.36) holds. **Step 3**. We prove that

$$\xi_{\varepsilon} \equiv \sup\left\{\tilde{\lambda}_{\alpha}: \alpha \in (\alpha_*, \alpha^*) \cap \left(0, \frac{5}{12\varepsilon}\right]\right\} \in (0, \infty).$$

Clearly, $\xi_{\varepsilon} > 0$. By (2.34) and Lemma 2.3, we see that

$$0 = \lim_{\lambda \to 0^+} \sqrt{\lambda} T'_{\lambda}(\alpha_*) < T'_{\lambda=1}(\alpha_*).$$

So by Lemma 2.3 and continuity of $T'_{\lambda=1}(\alpha)$ with respect to α , there exists $\delta > 0$ such that

$$0 < T_{\lambda=1}'(\alpha) \le \sqrt{\lambda} T_{\lambda}'(\alpha) \quad \text{for } \alpha_* < \alpha < \alpha_* + \delta < \frac{5}{12\varepsilon} \text{ and } \lambda \ge 1,$$

from which it follows that $\tilde{\lambda}_{\alpha} < 1$ for $\alpha_* < \alpha < \alpha_* + \delta$. Thus $\lim_{\alpha \to \alpha^+_*} \tilde{\lambda}_{\alpha} \leq 1 < \infty$. By similar argument, we obtain that

$$\lim_{\alpha \to (\alpha^*)^-} \tilde{\lambda}_{\alpha} < \infty \quad \text{if } \alpha^* < \frac{5}{12\varepsilon}$$

So by Step 2, we observe that $\xi_{\varepsilon} \in (0, \infty)$.

Step 4. We prove that $\Gamma_{\varepsilon} = (0, \xi_{\varepsilon})$. Let $\lambda_1 \in (0, \xi_{\varepsilon})$. There exists $\alpha_1 \in (\alpha_*, \alpha^*) \cap (0, \frac{5}{12\varepsilon}]$ such that $\lambda_1 < \tilde{\lambda}_{\alpha_1}$. Then by (2.36), we see that $T'_{\lambda_1}(\alpha_1) < 0$, which implies that $\lambda_1 \in \Gamma_{\varepsilon}$. Thus $(0, \xi_{\varepsilon}) \subseteq \Gamma_{\varepsilon}$. Let $\lambda_2 \in \Gamma_{\varepsilon}$. There exists $\alpha_2 \in (0, \beta_{\varepsilon})$ such that $T'_{\lambda_2}(\alpha_2) < 0$. Next, we consider two cases.

Case 1. Assume that $\frac{5}{12\epsilon} < \alpha^*$. By (2.34) and Lemma 2.3, we see that

$$0 \leq \lim_{\lambda \to 0^+} \sqrt{\lambda} T'_{\lambda}(\alpha) < \sqrt{\lambda} T'_{\lambda}(\alpha) \quad \text{for } \alpha \in (0, \alpha_*] \text{ and } \lambda > 0.$$
(2.38)

By Steps 2 and 3, we see that

$$\sqrt{\lambda}T'_{\lambda}(\alpha) \ge 0 \quad \text{for } \alpha \in \left(\alpha_{*}, \frac{5}{12\varepsilon}\right] \quad \text{if } \lambda \ge \xi_{\varepsilon}.$$
 (2.39)

By (2.39) and Lemma 2.2, we see that

$$T'_{\lambda}(\alpha) > 0 \quad \text{for } \frac{5}{12\varepsilon} \le \alpha < \beta_{\varepsilon} \text{ and } \lambda \ge \xi_{\varepsilon}.$$
 (2.40)

So by (2.38)–(2.40), we obtain that $T'_{\lambda}(\alpha) \ge 0$ for $\alpha \in (0, \beta_{\varepsilon})$ if $\lambda \ge \xi_{\varepsilon}$. It implies that $\lambda_2 < \xi_{\varepsilon}$. Thus $\Gamma_{\varepsilon} \subseteq (0, \xi_{\varepsilon})$.

Case 2. Assume that $\alpha^* < \frac{5}{12\epsilon}$. By (2.34) and Lemma 2.3, we see that

$$0 \leq \lim_{\lambda \to 0^+} \sqrt{\lambda} T'_{\lambda}(\alpha) < \sqrt{\lambda} T'_{\lambda}(\alpha) \quad \text{for } \alpha \in (0, \alpha_*] \cup \left[\alpha^*, \frac{5}{12\varepsilon}\right] \text{ and } \lambda > 0.$$
 (2.41)

By Steps 2 and 3, we see that

$$\sqrt{\lambda}T'_{\lambda}(\alpha) \ge 0 \quad \text{for } \alpha \in (\alpha_*, \alpha^*) \quad \text{if } \lambda \ge \xi_{\varepsilon}.$$
 (2.42)

By (2.41) and Lemma 2.2(ii), we see that

$$T'_{\lambda}(\alpha) > 0 \quad \text{for } \frac{5}{12\varepsilon} \le \alpha < \beta_{\varepsilon} \text{ and } \lambda > 0.$$
 (2.43)

So by (2.41)–(2.43), we obtain that $T'_{\lambda}(\alpha) \ge 0$ for $\alpha \in (0, \beta_{\varepsilon})$ if $\lambda \ge \xi_{\varepsilon}$. It implies that $\lambda_2 < \xi_{\varepsilon}$. Thus $\Gamma_{\varepsilon} \subseteq (0, \xi_{\varepsilon})$.

By the above discussions, we obtain that $\Gamma_{\varepsilon} = (0, \xi_{\varepsilon})$. The proof is complete.

Lemma 2.10. Consider (1.1) with $0 < \varepsilon < \varepsilon_0$. Then there exists $\kappa_{\varepsilon} \in (0, \xi_{\varepsilon})$ such that $T_{\lambda}(\alpha)$ has exactly two critical points, a local maximum at $\alpha_M(\lambda)$ and a local minimum at $\alpha_m(\lambda) (> \alpha_M(\lambda))$, on $(0, \beta_{\varepsilon})$ if $0 < \lambda < \kappa_{\varepsilon}$.

Proof. Let $\varepsilon \in (0, \varepsilon_0)$ be given. By (2.34) and Lemma 2.1(ii), there exists $\lambda_1 > 0$ such that

$$T'_{\lambda}\left(\frac{\alpha_* + \alpha^*}{2}\right) < 0 \quad \text{for } 0 < \lambda < \lambda_1.$$
(2.44)

We divide this proof into the next four steps.

Step 1. We prove that there exists $\lambda_2 \in (0, \lambda_1)$ such that, for $0 < \lambda < \lambda_2$, either $T'_{\lambda}(\alpha) > 0$ on $(0, \frac{1}{3\varepsilon}]$, or $T_{\lambda}(\alpha)$ has exactly one critical point, a local maximum, on $(0, \frac{1}{3\varepsilon}]$, see Figure 2.2. By Lemma 2.2(i), we have

$$T'_{\lambda}(\alpha) > 0 \quad \text{for } 0 < \alpha \le 1 \text{ and } \lambda > 0.$$
 (2.45)

Figure 2.2: Graphs of $T_{\lambda}(\alpha)$ on $(0, \frac{1}{3\epsilon}]$ for $0 < \lambda < \lambda_2$.

Then we consider the following three cases.

Case 1. Assume that $\hat{\varepsilon} \leq \varepsilon < \varepsilon_0$. By Lemmas 2.1(ii), 2.3 and 2.5(iii), we see that

$$0 \leq \bar{T}'(\alpha) = \lim_{\lambda \to 0^+} \sqrt{\lambda} T'_{\lambda}(\alpha) < \sqrt{\lambda} T'_{\lambda}(\alpha) \quad \text{for } 1 < \alpha \leq \frac{1}{3\varepsilon} \text{ and } \lambda > 0.$$

So by (2.45), $T'_{\lambda}(\alpha) > 0$ on $(0, \frac{1}{3\epsilon}]$ for $\lambda > 0$, see Figure 2.2(i).

Case 2. Assume that $0.07 \le \varepsilon < \hat{\varepsilon}$. By (2.21), Lemmas 2.1(ii), 2.4(ii), 2.6 and 2.7, there exists $\lambda_2 \in (0, \lambda_1)$ such that

$$T'_{\lambda}\left(\frac{1}{3\varepsilon}\right) < 0 \quad \text{and} \quad \alpha T''_{\lambda}(\alpha) + K(\alpha)T'_{\lambda}(\alpha) < 0 \quad \text{for } 1 \le \alpha \le \frac{1}{3\varepsilon} \text{ and } 0 < \lambda < \lambda_2, \quad (2.46)$$

where $K(\alpha) \equiv 1$ if $1 \le \alpha \le 1.7$, and $K(\alpha) \equiv 5/2$ if $1.7 < \alpha \le \frac{1}{3\varepsilon}$. By (2.45) and (2.46), there exists $\alpha_{\lambda} \in (1, \frac{1}{3\varepsilon})$ such that $T'_{\lambda}(\alpha_{\lambda}) = 0$ for $0 < \lambda < \lambda_2$. Furthermore,

$$\alpha_{\lambda}T_{\lambda}''(\alpha_{\lambda}) = \alpha_{\lambda}T_{\lambda}''(\alpha_{\lambda}) + K(\alpha_{\lambda})T_{\lambda}'(\alpha_{\lambda}) < 0 \quad \text{for } 0 < \lambda < \lambda_{2}$$

Thus $T_{\lambda}(\alpha)$ has exactly one local maximum at α_{λ} on $\left(0, \frac{1}{3\epsilon}\right]$ for $0 < \lambda < \lambda_2$, see Figure 2.2(ii).

Case 3. Assume that $0 < \varepsilon < 0.07$. By Lemmas 2.4, 2.6 and 2.8, there exists $\lambda_2 \in (0, \lambda_1)$ such that

$$\alpha T_{\lambda}^{\prime\prime}(\alpha) + T_{\lambda}^{\prime}(\alpha) < 0 \quad \text{for } 1 \le \alpha \le 1.7 \text{ and } 0 < \lambda < \lambda_2, \tag{2.47}$$

$$T'_{\lambda}(\alpha) < 0 \quad \text{for } 1.7 \le \alpha \le \frac{1}{3\varepsilon} \text{ and } 0 < \lambda < \lambda_2.$$
 (2.48)

So by (2.45), (2.47) and (2.48), there exists $\alpha_{\lambda} \in (1, 1.7)$ such that $T'_{\lambda}(\alpha_{\lambda}) = 0$ for $0 < \lambda < \lambda_2$. Furthermore,

$$\alpha_{\lambda}T_{\lambda}''(\alpha_{\lambda}) = \alpha_{\lambda}T_{\lambda}''(\alpha_{\lambda}) + T_{\lambda}'(\alpha_{\lambda}) < 0 \quad \text{for } 0 < \lambda < \lambda_{2}.$$

Thus $T_{\lambda}(\alpha)$ has exactly one local maximum at α_{λ} on $\left(0, \frac{1}{3\varepsilon}\right]$ for $0 < \lambda < \lambda_2$, see Figure 2.2(ii).

Step 2. We prove that there exists $\lambda_3 \in (0, \lambda_2)$ such that, for $\lambda \in (0, \lambda_3)$, one of the following cases holds:

- (ci) $T'_{\lambda}(\alpha) > 0$ on $\left(\frac{1}{3\varepsilon}, \frac{5}{12\varepsilon}\right)$.
- (cii) $T'_{\lambda}(\alpha) < 0$ on $\left(\frac{1}{3\varepsilon}, \frac{5}{12\varepsilon}\right)$.
- (ciii) $T'_{\lambda}(\alpha) < 0$ on $\left(\frac{1}{3\varepsilon}, \check{\alpha}\right)$ and $T'_{\lambda}(\alpha) > 0$ on $\left(\check{\alpha}, \frac{5}{12\varepsilon}\right)$ for some $\check{\alpha} \in \left(\frac{1}{3\varepsilon}, \frac{5}{12\varepsilon}\right)$.
- (civ) $T'_{\lambda}(\alpha) > 0$ on $\left(\frac{1}{3\varepsilon}, \check{\alpha}\right)$ and $T'_{\lambda}(\alpha) < 0$ on $\left(\check{\alpha}, \frac{5}{12\varepsilon}\right)$ for some $\check{\alpha} \in \left(\frac{1}{3\varepsilon}, \frac{5}{12\varepsilon}\right)$.
- (cv) $T'_{\lambda}(\alpha) > 0$ on $\left(\frac{1}{3\varepsilon}, \check{\alpha}\right) \cup \left(\hat{\alpha}, \frac{5}{12\varepsilon}\right)$ and $T'_{\lambda}(\alpha) < 0$ on $(\check{\alpha}, \hat{\alpha})$ for some $\check{\alpha}, \hat{\alpha} \in \left(\frac{1}{3\varepsilon}, \frac{5}{12\varepsilon}\right)$.

See Figure 2.3.

Figure 2.3: Graphs of $T_{\lambda}(\alpha)$ on $(\frac{1}{3\varepsilon}, \frac{5}{12\varepsilon})$ for $0 < \lambda < \lambda_3$.

Let $H(\alpha, \lambda) \equiv 2\alpha T_{\lambda}''(\alpha) + 3T_{\lambda}'(\alpha)$. By Lemmas 2.4(iii) and 2.5(ii), there exists $\lambda_3 \in (0, \lambda_2)$ such that

$$\frac{\partial}{\partial \alpha} H(\alpha, \lambda) > 0 \quad \text{for } \frac{1}{3\varepsilon} \le \alpha \le \frac{5}{12\varepsilon} \text{ and } 0 < \lambda \le \lambda_3.$$
(2.49)

Fixed $\lambda \in (0, \lambda_3)$. Then we consider three cases.

Case 1. Assume that $H(\alpha, \lambda) < 0$ for $\frac{1}{3\varepsilon} \le \alpha < \frac{5}{12\varepsilon}$. If $T_{\lambda}(\alpha)$ has a critical point α_1 in $(\frac{1}{3\varepsilon}, \frac{5}{12\varepsilon})$, then

$$2\alpha_1 T_{\lambda}''(\alpha_1) = H(\alpha_1, \lambda) < 0.$$

It implies that $T_{\lambda}(\alpha)$ has at most one critical point, a local maximum, on $(\frac{1}{3\epsilon}, \frac{5}{12\epsilon})$. Thus one of (ci), (cii) and (civ) holds.

Case 2. Assume that $H(\alpha, \lambda) > 0$ for $\frac{1}{3\epsilon} < \alpha \le \frac{5}{12\epsilon}$. If $T_{\lambda}(\alpha)$ has a critical point α_2 in $(\frac{1}{3\epsilon}, \frac{5}{12\epsilon})$, then

$$2\alpha_2 T_{\lambda}''(\alpha_2) = H(\alpha_2, \lambda) > 0.$$

It implies that $T_{\lambda}(\alpha)$ has at most one critical point, a local minimum, on $(\frac{1}{3\varepsilon}, \frac{5}{12\varepsilon})$. Thus one of (ci), (cii) and (ciii) holds.

Case 3. Assume that there exists $\alpha_* \in (\frac{1}{3\epsilon}, \frac{5}{12\epsilon})$ such that $H(\alpha, \lambda) < 0$ for $\frac{1}{3\epsilon} < \alpha < \alpha_*$ and $H(\alpha, \lambda) > 0$ for $\alpha_* < \alpha < \frac{5}{12\epsilon}$. If $T_{\lambda}(\alpha)$ has a critical point in $(\frac{1}{3\epsilon}, \alpha_*)$, by above similar argument, $T_{\lambda}(\alpha)$ has at most one critical point, a local maximum, on $(\frac{1}{3\epsilon}, \alpha_*)$. If $T_{\lambda}(\alpha)$ has a critical point in $(\alpha_*, \frac{5}{12\epsilon})$, by above similar argument, $T_{\lambda}(\alpha)$ has at most one critical point, a local maximum, on $(\frac{1}{3\epsilon}, \alpha_*)$. If $T_{\lambda}(\alpha)$ has a critical point in $(\alpha_*, \frac{5}{12\epsilon})$. Thus one of (ci)–(cv) holds.

Step 3. We prove Lemma 2.10. By Lemmas 2.1(i) and 2.2(ii), we see that, for $\lambda > 0$, either $T'_{\lambda}(\alpha) > 0$ on $\left[\frac{5}{12\varepsilon}, \beta_{\varepsilon}\right)$, or there exists $\mathring{\alpha} \in \left(\frac{5}{12\varepsilon}, \beta_{\varepsilon}\right)$ such that $T'_{\lambda}(\alpha) < 0$ on $\left[\frac{5}{12\varepsilon}, \mathring{\alpha}\right)$ and $T'_{\lambda}(\alpha) > 0$ on $(\mathring{\alpha}, \beta_{\varepsilon})$, see Figure 2.4.

Figure 2.4: Graphs of $T_{\lambda}(\alpha)$ on $[5/(12\varepsilon), \beta_{\varepsilon})$ for $\lambda > 0$.

Then by (2.44) and Steps 1–2, we observe that $T_{\lambda}(\alpha)$ has exactly two critical points, a local maximum at $\alpha_M(\lambda)$ and a local minimum at $\alpha_m(\lambda)$ (> $\alpha_M(\lambda)$), on (0, β_{ε}) if 0 < λ < $\kappa_{\varepsilon} = \lambda_3$. The proof is complete.

Lemma 2.11. Consider (1.1) with $0 < \varepsilon < \varepsilon_0$. Let $\alpha_M(\lambda)$ and $\alpha_m(\lambda)$ be defined in Lemma 2.10. Then $\alpha_M(\lambda)$ is a strictly increasing function of $\lambda \in (0, \kappa_{\varepsilon})$ and

$$\lim_{\lambda \to 0^+} \alpha_M(\lambda) < \alpha_M(\lambda) < \lim_{\lambda \to \kappa_{\varepsilon}^-} \alpha_M(\lambda) \le \alpha_m(\lambda) \text{ for } \lambda \in (0, \kappa_{\varepsilon}).$$
(2.50)

Proof. By Lemma 2.10, we have that

$$T'_{\lambda}(\alpha) \begin{cases} > 0 & \text{for } \alpha \in (0, \alpha_{M}(\lambda)) \cup (\alpha_{m}(\lambda), \infty) , \\ = 0 & \text{for } \alpha = \alpha_{M}(\lambda) \text{ or } \alpha = \alpha_{m}(\lambda), \\ < 0 & \text{for } \alpha \in (\alpha_{M}(\lambda), \alpha_{m}(\lambda)) , \end{cases} \quad \text{if } 0 < \lambda < \kappa_{\varepsilon}.$$
(2.51)

By Lemma 2.2, we see that $0 < \alpha_M(\lambda) < \frac{5}{12\varepsilon}$ for $0 < \lambda < \kappa_{\varepsilon}$. Let $0 < \lambda_1 < \lambda_2 < \kappa_{\varepsilon}$. By Lemma 2.3, we obtain that

$$\sqrt{\lambda_1}T'_{\lambda_1}(\alpha_M(\lambda_2)) < \sqrt{\lambda_2}T'_{\lambda_2}(\alpha_M(\lambda_2)) = 0,$$

which implies that $\alpha_M(\lambda_1) < \alpha_M(\lambda_2)$ by (2.51). So $\alpha_M(\lambda)$ is a strictly increasing function of $\lambda \in (0, \kappa_{\varepsilon})$. It follows that

$$\lim_{\lambda\to 0^+} \alpha_M(\lambda) < \alpha_M(\lambda) < \lim_{\lambda\to \kappa_\varepsilon^-} \alpha_M(\lambda) \quad \text{for } \lambda\in (0,\kappa_\varepsilon).$$

Assume that there exists $\lambda_3 \in (0, \kappa_{\varepsilon})$ such that $\lim_{\lambda \to 0^+} \alpha_M(\lambda) < \alpha_m(\lambda_3) < \lim_{\lambda \to \kappa_{\varepsilon}^-} \alpha_M(\lambda)$. Then there exists $\lambda_4 \in (\lambda_3, \kappa_{\varepsilon})$ such that

$$\alpha_M(\lambda_3) < \alpha_m(\lambda_3) < \alpha_M(\lambda_4) < \frac{5}{12\varepsilon}.$$
(2.52)

By (2.51), there exists $\alpha_1 \in (\alpha_M(\lambda_4), \frac{5}{12\varepsilon})$ such that $T'_{\lambda_4}(\alpha_1) < 0$. Then by (2.51), (2.52) and Lemma 2.3, we observe that

$$0 < \sqrt{\lambda_3} T'_{\lambda_3}(\alpha_1) < \sqrt{\lambda_4} T'_{\lambda_4}(\alpha_1) < 0$$

which is a contradiction. So (2.50) holds. The proof is complete.

Lemma 2.12 ([9, Lemma 4.6]). Consider (1.1) with fixed L > 0. Let $\rho_{L,\varepsilon} \equiv \min\{L, \beta_{\varepsilon}\}$ and sgn(u) be the signum function. Then the following statements (i)–(iii) hold:

- (i) There exists a positive function $\lambda_L(\alpha) \in C^1(0, \rho_{L,\varepsilon})$ such that $T_{\lambda_L(\alpha)}(\alpha) = L$. Moreover, the bifurcation curve $S_L = \{(\lambda_L(\alpha), \alpha) : \alpha \in (0, \rho_{L,\varepsilon})\}$ is continuous on the $(\lambda, ||u||_{\infty})$ -plane.
- (*ii*) $\lim_{\alpha\to 0^+} \lambda_L(\alpha) = 0$ and $\lim_{\alpha\to \rho_{L_{\alpha}}^-} \lambda_L(\alpha) = \infty$.
- (*iii*) $\operatorname{sgn}(\lambda'_{L}(\alpha)) = \operatorname{sgn}(T'_{\lambda_{L}(\alpha)}(\alpha))$ for $\alpha \in (0, \rho_{L,\varepsilon})$.

Lemma 2.13 ([10, Lemma 3.5]). Consider (1.1). Let L > 0. Then the following statements (i) and (ii) hold:

- (i) If $\lambda_L(\alpha)$ has a local maximum at α_M , then $T_{\lambda_L(\alpha_M)}(\alpha)$ has a local maximum at α_M . Conversely, if $T_{\lambda}(\alpha)$ has a local maximum at α_M and $T_{\lambda}(\alpha_M) = L$, then $\lambda_L(\alpha)$ has a local maximum at α_M .
- (ii) If $\lambda_L(\alpha)$ has a local minimum at α_m , then $T_{\lambda_L(\alpha_m)}(\alpha)$ has a local minimum at α_m . Conversely, if $T_{\lambda}(\alpha)$ has a local minimum at α_m and $T_{\lambda}(\alpha_m) = L$, then $\lambda_L(\alpha)$ has a local minimum at α_m .

Lemma 2.14. Consider (1.1) with $0 < \varepsilon < \varepsilon_0$. Then there exists a continuous function $L_{\varepsilon} \in (0, \infty)$ of ε such that

$$\Lambda_{\varepsilon} \equiv \{L > 0 : \lambda'_{L}(\alpha) < 0 \text{ for some } \alpha \in (0, \rho_{L,\varepsilon})\} = (L_{\varepsilon}, \infty).$$

Furthermore, $\lambda'_{L}(\alpha) > 0$ *for* $\alpha \in (0, \rho_{L,\varepsilon})$ *where* $0 < L < L_{\varepsilon}$.

Proof. Let $\varepsilon \in (0, \varepsilon_0)$ be given. By Lemma 2.9 and similar argument in the proof of [7, Lemma 4.7], there exists $L_{\varepsilon} \in [0, \infty)$ such that $\Lambda_{\varepsilon} = (L_{\varepsilon}, \infty)$. We divide the rest of the proof into the next three steps.

Step 1. We prove that $L_{\varepsilon} > 0$. Assume that $L_{\varepsilon} = 0$. By Lemma 2.9, we have

$$T'_{\lambda}(\alpha) \ge 0 \quad \text{for } 0 < \alpha < \beta_{\varepsilon} \text{ and } \lambda \ge \xi_{\varepsilon}.$$
 (2.53)

Let $L = T_{\xi_{\varepsilon}}(1)$. It implies that $L \in \Lambda_{\varepsilon} = (0, \infty)$. Then there exists $\alpha_1 \in (0, \rho_{L,\varepsilon})$ such that $\lambda'_L(\alpha_1) < 0$. It follows that $T'_{\lambda_L(\alpha_1)}(\alpha_1) < 0$ by Lemma 2.12(iii). By (2.45) and (2.53), we observe that $\alpha_1 > 1$ and $0 < \lambda_L(\alpha_1) < \xi_{\varepsilon}$. By Lemmas 2.1(iii), 2.12(i) and (2.53), we further observe that

$$L = T_{\lambda_L(\alpha_1)}(\alpha_1) > T_{\xi_{\varepsilon}}(\alpha_1) \ge T_{\xi_{\varepsilon}}(1) = L,$$

which is a contradiction. Thus $L_{\varepsilon} > 0$.

Step 2. We prove that $\lambda'_L(\alpha) > 0$ for $\alpha \in (0, \rho_{L,\varepsilon})$ where $0 < L < L_{\varepsilon}$. Let $L \in (0, L_{\varepsilon})$ be given. Assume that there exists $\alpha_2 \in (0, \rho_{L,\varepsilon})$ such that $\lambda'_L(\alpha_2) = 0$. So by Lemma 2.12(iii), we obtain that $T'_{\lambda_L(\alpha_2)}(\alpha_2) = 0$. Since

$$0 < lpha_2 <
ho_{L,arepsilon} = \min\{L, eta_arepsilon\} < \min\{L_arepsilon, eta_arepsilon\} =
ho_{L_arepsilon, arepsilon},$$

we see that $T_{\lambda_L(\alpha_2)}(\alpha_2) = L < L_{\varepsilon} = T_{\lambda_{L_{\varepsilon}}(\alpha_2)}(\alpha_2)$. So by Lemma 2.1(iii), we obtain that $\lambda_L(\alpha_2) > \lambda_{L_{\varepsilon}}(\alpha_2)$. Assume that $\alpha_2 \ge \frac{5\varepsilon}{12}$. Since $T'_{\lambda_L(\alpha_2)}(\alpha_2) = 0$, and by Lemma 2.2(ii), $T_{\lambda_L(\alpha_2)}(\alpha)$ has a local minimum at α_2 . By Lemma 2.13, we find that $\lambda_L(\alpha)$ has a local minimum at α_2 , which is a contradiction since $L < L_{\varepsilon}$. So $0 < \alpha_2 < \frac{5\varepsilon}{12}$. By Lemma 2.3, we see that

$$\sqrt{\lambda_{L_{\varepsilon}}(\alpha_2)}T'_{\lambda_{L_{\varepsilon}}(\alpha_2)}(\alpha_2) < \sqrt{\lambda_{L}(\alpha_2)}T'_{\lambda_{L}(\alpha_2)}(\alpha_2) = 0,$$

from which it follows that by Lemma 2.12(iii), $\lambda'_{L_{\varepsilon}}(\alpha_2) < 0$. It is a contradiction since $\lambda'_{L_{\varepsilon}}(\alpha) \ge 0$ for $\alpha \in (0, \rho_{L,\varepsilon})$. Thus $\lambda'_{L}(\alpha) > 0$ for $\alpha \in (0, \rho_{L,\varepsilon})$ where $0 < L < L_{\varepsilon}$.

Step 3. We prove the continuity of L_{ε} . Let $\bar{\varepsilon} \in (0, \varepsilon_0)$ be given. For the sake of convenience, we let $T_{\lambda}(\alpha, \varepsilon) = T_{\lambda}(\alpha)$ and $\lambda_L(\alpha, \varepsilon) = \lambda_L(\alpha)$. We consider the following two cases and prove they would not occur.

Case 1. Assume that $\liminf_{\epsilon \to \bar{\epsilon}} L_{\epsilon} < L_{\bar{\epsilon}}$. Let $L \in (\liminf_{\epsilon \to \bar{\epsilon}} L_{\epsilon}, L_{\bar{\epsilon}})$ be given. Then there exists $\{\varepsilon_n\}_{n \in \mathbb{N}} \subset (0, \varepsilon_0)$ such that

$$\lim_{n\to\infty} \varepsilon_n = \bar{\varepsilon} \quad \text{and} \quad L_{\varepsilon_n} < L < L_{\bar{\varepsilon}} \quad \text{for } n \in \mathbb{N}.$$

So there exists $\{\alpha_n\}_{n \in \mathbb{N}} \subset (0, \rho_{L,\varepsilon_n})$ such that

$$\frac{\partial}{\partial \alpha}\lambda_L(\alpha,\bar{\varepsilon}) > 0 \quad \text{for } 0 < \alpha < \rho_{L,\varepsilon} \quad \text{and} \quad \frac{\partial}{\partial \alpha}\lambda_L(\alpha_n,\varepsilon_n) < 0 \quad \text{for } n \in \mathbb{N}.$$
(2.54)

By Lemmas 2.2(i) and 2.12(iii), we have

$$\frac{\partial}{\partial \alpha}\lambda_L(\alpha,\varepsilon) > 0 \quad \text{for } 0 < \alpha \le 1 \text{ and } 0 < \varepsilon < \varepsilon_0.$$
(2.55)

By (2.54) and (2.55), we see that $\alpha_n \in (1, \rho_{L, \varepsilon_n})$. We assume without loss of generality that $\lim_{n\to\infty} \alpha_n = \bar{\alpha} \in [1, \rho_{L, \varepsilon_n}]$. If $\bar{\alpha} < \rho_{L, \varepsilon_n}$, by (2.54), we observe that

$$0 < \frac{\partial}{\partial \alpha} \lambda_L(\bar{\alpha}, \bar{\varepsilon}) = \lim_{n \to \infty} \frac{\partial}{\partial \alpha} \lambda_L(\alpha_n, \varepsilon_n) \leq 0,$$

which is a contradiction. If $\bar{\alpha} = \rho_{L,\varepsilon_n}$, by (2.54) and Lemma 2.12(ii), we observe that

$$\lim_{\alpha\to\rho_{L,\varepsilon}^{-}}\lambda_{L}(\alpha,\bar{\varepsilon})=\infty\quad\text{and}\quad \lim_{\alpha\to\rho_{L,\varepsilon}^{-}}\frac{\partial}{\partial\alpha}\lambda_{L}(\alpha,\bar{\varepsilon})\leq0,$$

which is a contradiction.

Case 2. Assume that $\limsup_{\epsilon \to \overline{\epsilon}} L_{\epsilon} > L_{\overline{\epsilon}}$. Let $L \in (L_{\overline{\epsilon}}, \limsup_{\epsilon \to \overline{\epsilon}} L_{\epsilon})$ be given. Then there exists $\{\varepsilon_n\}_{n \in \mathbb{N}} \subset (0, \varepsilon_0)$ such that

$$\lim_{n \to \infty} \varepsilon_n = \bar{\varepsilon} \quad \text{and} \quad L_{\bar{\varepsilon}} < L < L_{\varepsilon_n} \quad \text{for } n \in \mathbb{N}.$$

So there exists $\bar{\alpha} \in (0, \rho_{L,\bar{\epsilon}})$ such that

$$\frac{\partial}{\partial \alpha}\lambda_L(\bar{\alpha},\bar{\varepsilon}) < 0 \quad \text{and} \quad \frac{\partial}{\partial \alpha}\lambda_L(\alpha,\varepsilon_n) > 0 \quad \text{for } 0 < \alpha < \rho_{L,\varepsilon_n} \text{ and } n \in \mathbb{N}.$$
(2.56)

Since $f(\beta_{\varepsilon}) = 0$, and by implicit function theorem, β_{ε} is a strictly decreasing and continuous function of $\varepsilon > 0$. So we see that $\bar{\alpha} < \rho_{L,\bar{\varepsilon}} \leq \beta_{\bar{\varepsilon}} < \beta_{\varepsilon_n}$ for $n \in \mathbb{N}$. It implies that $0 < \bar{\alpha} < \rho_{L,\varepsilon_n}$ for $n \in \mathbb{N}$. By (2.56), we observe that

$$0>\frac{\partial}{\partial\alpha}\lambda_L(\bar{\alpha},\bar{\varepsilon})=\lim_{n\to\infty}\frac{\partial}{\partial\alpha}\lambda_L(\bar{\alpha},\varepsilon_n)\geq 0,$$

which is a contradiction.

So by Cases 1 and 2, we see that $\limsup_{\epsilon \to \bar{\epsilon}} L_{\epsilon} \leq L_{\bar{\epsilon}} \leq \liminf_{\epsilon \to \bar{\epsilon}} L_{\epsilon}$. It follows that $L_{\bar{\epsilon}} = \lim_{a \to \bar{a}} L_{\epsilon}$. Thus L_{ϵ} is a continuous function on $(0, \epsilon_0)$.

The proof is complete.

Lemma 2.15. Consider (1.1) with $0 < \varepsilon < \varepsilon_0$. Then there exists $\tilde{L}_{\varepsilon} > L_{\varepsilon}$ such that $\lambda_L(\alpha)$ has exactly one local maximum and exactly one local minimum on $(0, \rho_{L,\varepsilon})$ for $L > \tilde{L}_{\varepsilon}$.

Proof. Let $\lambda_* \in (0, \kappa_{\varepsilon})$ be given. By Lemma 2.10, then

$$T'_{\lambda}(\alpha) \begin{cases} > 0 & \text{for } \alpha \in (0, \alpha_{M}(\lambda)) \cup (\alpha_{m}(\lambda), \beta_{\varepsilon}), \\ = 0 & \text{for } \alpha = \alpha_{M}(\lambda) \text{ or } \alpha = \alpha_{m}(\lambda), & \text{if } 0 < \lambda \le \lambda^{*}. \\ < 0 & \text{for } \alpha \in (\alpha_{M}(\lambda), \alpha_{m}(\lambda)), \end{cases}$$
(2.57)

Let $\tilde{L}_{\varepsilon} \equiv T_{\lambda^*}(\alpha_M(\lambda^*))$. We divide this proof into the next three steps.

Step 1. We prove that $\tilde{L}_{\varepsilon} > L_{\varepsilon}$. Let $L \geq \tilde{L}_{\varepsilon}$ and

$$\alpha_1 \in \left(\alpha_M(\lambda^*), \min\left\{\alpha_m(\lambda^*), \frac{5}{12\varepsilon}\right\}\right).$$
(2.58)

By (2.57) and (2.58), we see that

$$\lim_{\lambda\to 0^+} T_{\lambda}(\alpha) = \infty > L \ge T_{\lambda^*}(\alpha_M(\lambda^*)) > T_{\lambda^*}(\alpha_1).$$

So by Lemma 2.1(iii) and continuity of $T_{\lambda}(\alpha)$ with respect to λ , there exists $\lambda_* \in (0, \lambda^*)$ such that $L = T_{\lambda_*}(\alpha_1)$. Clearly, $\lambda_* = \lambda_L(\alpha_1)$ by Lemma 2.12(i). Then by (2.57), (2.58) and Lemma 2.3, we observe that

$$\sqrt{\lambda_*}T'_{\lambda_L(\alpha_1)}(\alpha_1) = \sqrt{\lambda_*}T'_{\lambda_*}(\alpha_1) < \sqrt{\lambda^*}T'_{\lambda^*}(\alpha_1) < 0.$$

So by Lemma 2.12(iii), we obtain that $\lambda'_L(\alpha_1) < 0$. It implies that $L > L_{\varepsilon}$ by Lemma 2.14. Thus $\tilde{L}_{\varepsilon} > L_{\varepsilon}$.

Step 2. We prove that $\lambda_L(\alpha)$ has exactly one local maximum in $(0, \rho_{L,\varepsilon})$ for $L > \tilde{L}_{\varepsilon}$. Let $L > \tilde{L}_{\varepsilon}$ be given. By Lemmas 2.2(i) and 2.12(iii), we see that $\lambda'_L(\alpha) > 0$ for $0 < \alpha \le 1$. Since

 $L > \tilde{L}_{\varepsilon}$, and by Lemma 2.14, $\lambda_L(\alpha)$ has at least one local maximum in $(0, \rho_{L,\varepsilon})$. Assume that $\lambda_L(\alpha)$ has two local maximums at α_M^1 and α_M^2 $(> \alpha_M^1)$. Then $\lambda_L(\alpha)$ has a local minimum at $\alpha_m \in (\alpha_M^1, \alpha_M^2)$. Without loss of generality, we assume that $\lambda_L(\alpha_M^1) > \lambda_L(\alpha_m)$. For the sake of convenience, we let

$$\lambda_1 = \lambda_L(\alpha_M^1), \quad \lambda_2 = \lambda_L(\alpha_M^2) \text{ and } \lambda_3 = \lambda_L(\alpha_m).$$

So by Lemma 2.13, we see that $T_{\lambda_1}(\alpha_M^1)$ and $T_{\lambda_2}(\alpha_M^2)$ are local maximum values and $T_{\lambda_3}(\alpha_m)$ is a local minimum value. In addition, we note that

$$T_{\lambda_1}(\alpha_M^1) = T_{\lambda_L(\alpha_M^1)}(\alpha_M^1) = L > \tilde{L}_{\varepsilon} = T_{\lambda^*}(\alpha_M(\lambda^*)).$$
(2.59)

Assume that $\lambda_1 \ge \lambda^*$. By Lemma 2.1(iii) and (2.59), we observe that $T_{\lambda^*}(\alpha_M^1) \ge T_{\lambda_1}(\alpha_M^1) > T_{\lambda^*}(\alpha_M(\lambda^*))$. It implies that

$$\alpha_m(\lambda^*) < \alpha_M^1 \quad \text{and} \quad T'_{\lambda^*}(\alpha_M^1) > 0.$$
 (2.60)

By Lemma 2.2(ii), we have $\alpha_M^1 < \alpha_M^2 < \frac{5}{12\epsilon}$. So by Lemma 2.3 and (2.60), we observe hat

$$0 < \sqrt{\lambda^*}T'_{\lambda^*}(\alpha^1_M) \le \sqrt{\lambda_1}T'_{\lambda_1}(\alpha^1_M) = 0$$
,

which is a contradiction. So $\lambda_1 < \lambda^*$. Similarly, we obtain that $\lambda_2 < \lambda^*$. So by (2.57) and Lemma 2.10, we see that

$$\alpha_M(\lambda_1) = \alpha_M^1 < \alpha_m = \alpha_m(\lambda_3) < \alpha_M^2 = \alpha_M(\lambda_2),$$

which is a contradiction by Lemma 2.11. Thus $\lambda_L(\alpha)$ has exactly one local maximum in $(0, \rho_{L,\varepsilon})$.

Step 3. We prove Lemma 2.15. Since $\lambda'_L(\alpha) > 0$ for $0 < \alpha \le 1$, and by Lemma 2.12(ii) and Step 2, we see that $\lambda_L(\alpha)$ has exactly one local maximum and one local minimum on $(0, \rho_{L,\varepsilon})$ for $L > \tilde{L}_{\varepsilon}$.

The proof is complete.

3 Proof of the main result

Proof of Theorem 1.3. (I) The statement (i) follows immediately by Lemma 2.12(i)(ii).

(II) Assume that $\varepsilon \ge \varepsilon_0$. By Theorem 1.2 and (2.4), we obtain that $\overline{T}'(\alpha) \ge 0$ for $0 < \alpha < \beta_{\varepsilon}$. So by Lemmas 2.1(ii) and 2.3, we see that

$$0 \leq \bar{T}'(\alpha) = \lim_{\lambda \to 0^+} \sqrt{\lambda} T'_{\lambda}(\alpha) < \sqrt{\lambda} T'_{\lambda}(\alpha) \quad \text{for } 0 < \alpha \leq \frac{5}{12\varepsilon} \text{ and } \lambda > 0.$$
(3.1)

Since $T'_{\lambda}(\frac{5}{12\epsilon}) > 0$ for $\lambda > 0$, and by Lemma 2.2(ii), we further see that

$$T'_{\lambda}(\alpha) > 0 \quad \text{for } \frac{5}{12\varepsilon} < \alpha < \beta_{\varepsilon} \text{ and } \lambda > 0.$$
 (3.2)

So by (3.1), (3.2) and Lemma 2.12(iii), we obtain that

 $\lambda'_L(\alpha) > 0$ for $0 < \alpha < \rho_{L,\varepsilon}$ and $\lambda > 0$.

Then the statement (ii) holds.

(III) Assume that $0 < \varepsilon < \varepsilon_0$. By Lemma 2.14, there exists a continuous function $L_{\varepsilon} \in (0, \infty)$ of ε such that

$$\Lambda_{\varepsilon} = \left\{ L > 0 : \lambda'_{L}(\alpha) < 0 \text{ for some } \alpha \in (0, \rho_{L,\varepsilon}) \right\} = (L_{\varepsilon}, \infty) \,.$$

So by Lemma 2.12(i), the bifurcation curve S_L is monotone increasing if $0 < L \leq L_{\varepsilon}$, and is S-like shaped if $L > L_{\varepsilon}$. In addition, by Lemma 2.15, there exists $\tilde{L}_{\varepsilon} > L_{\varepsilon}$ such that $\lambda_L(\alpha)$ has one local maximum and one local minimum on $(0, \rho_{L,\varepsilon})$ for $L > \tilde{L}_{\varepsilon}$. So by Lemma 2.12(i), the bifurcation curve S_L is S-shaped if $L > \tilde{L}_{\varepsilon}$. Next, we divide into the next two steps to prove that $\lim_{\varepsilon \to 0^+} L_{\varepsilon} \in (0, \infty)$ and $\lim_{\varepsilon \to \varepsilon_0^-} L_{\varepsilon} = \infty$.

Step 1. We prove that $\lim_{\epsilon \to \varepsilon_0^-} L_{\epsilon} = \infty$. Assume that $\lim_{\epsilon \to \varepsilon_0^-} L_{\epsilon} < \infty$. Let $L > \lim_{\epsilon \to \varepsilon_0^-} L_{\epsilon}$. For the sake of convenience, we let

$$\lambda_L(\alpha,\varepsilon) = \lambda_L(\alpha), \qquad T_\lambda(\alpha,\varepsilon) = T_\lambda(\alpha) \text{ and } \bar{T}(\alpha,\varepsilon) = \bar{T}(\alpha).$$

Since $L > \lim_{\varepsilon \to \varepsilon_0^-} L_{\varepsilon}$, there exists $\delta > 0$ such that $L > L_{\varepsilon}$ for $\varepsilon \in (\varepsilon_0 - \delta, \varepsilon_0)$. So for $\varepsilon \in (\varepsilon_0 - \delta, \varepsilon_0)$, by Lemmas 2.2(ii) and 2.14, there exists $\alpha_{\varepsilon} \in [1, \frac{5}{12\varepsilon}]$ such that $\frac{\partial}{\partial \alpha} \lambda_L(\alpha_{\varepsilon}, \varepsilon) < 0$. Without loss of generality, we assume that $\lim_{\varepsilon \to \varepsilon_0^+} \alpha_{\varepsilon} = \alpha_0 \in [1, \frac{5}{12\varepsilon}]$. By Theorem 1.2 and (2.4), we see that $\overline{T}'(\alpha_0, \varepsilon_0) \ge 0$. So by Lemma 2.3, we further see that

$$0 \leq \bar{T}'(\alpha_0, \varepsilon_0) = \lim_{\lambda \to 0^+} \sqrt{\lambda} T'_{\lambda}(\alpha_0, \varepsilon_0) < \sqrt{\lambda} T'_{\lambda}(\alpha_0, \varepsilon_0) \quad \text{for } \lambda > 0.$$

Then by Lemma 2.12(iii), we obtain that $\frac{\partial}{\partial \alpha} \lambda_L(\alpha_0, \varepsilon_0) > 0$. It follows that

$$0\geq \lim_{\varepsilon\to\varepsilon_0^+}\frac{\partial}{\partial\alpha}\lambda_L(\alpha_{\varepsilon},\varepsilon)=\frac{\partial}{\partial\alpha}\lambda_L(\alpha_0,\varepsilon_0)>0,$$

which is a contradiction. So $\lim_{\epsilon \to \epsilon_0^-} L_{\epsilon} = \infty$.

Step 2. We prove that $\lim_{\epsilon \to 0^+} L_{\epsilon} \in (0, \infty)$. Notice that as $\epsilon \to 0^+$, the cubic polynomial f(u) reduces to the quadratic polynomial $u^2 + u + 1$. So we consider the equation

$$\begin{cases} -\left(\frac{u'(x)}{\sqrt{1-(u'(x))^2}}\right)' = \lambda(u^2+u+1), \quad -L < x < L, \\ u(-L) = u(L) = 0. \end{cases}$$
(3.3)

Since $u^2 + u + 1$ satisfies all hypotheses of [7, Theorem 3.2], there exists $L_0 > 0$ such that the bifurcation curve S_L of (3.3) is S-like shaped for $L > L_0$, monotone increasing for $0 < L \leq L_0$, and has no vertical tangent lines for $0 < L < L_0$. Thus we have the following assertions (i)–(iii):

- (i) if $L > L_0$, then $\lambda'_L(\alpha, 0) < 0$ for some $\alpha > 0$.
- (ii) if $L = L_0$, then $\lambda'_L(\alpha, 0) \ge 0$ for $\alpha > 0$.
- (iii) if $0 < L < L_0$, then $\lambda'_L(\alpha, 0) > 0$ for $\alpha > 0$.

By a similar argument as in the proof of Lemma 2.14, we can prove that L_{ε} is a continuous function of $\varepsilon \in [0, \varepsilon_0)$. Thus $\lim_{\varepsilon \to 0^+} L_{\varepsilon} = L_0 \in (0, \infty)$.

The proof is complete.

4 Appendix

In this section, we prove assertion (2.31). Let $\bar{\epsilon} = \sqrt{\frac{31}{1000}}$ (≈ 0.176). By Lemma 2.5(iii), we have $\hat{\epsilon} < \bar{\epsilon}$. To prove (2.31), it is sufficient to prove that

$$N_2(\alpha, u) < 0 \quad \text{for} \quad 0 < u < \alpha, \ 1.7 \le \alpha \le \frac{1}{3\varepsilon} \quad \text{and} \quad 0.07 \le \varepsilon \le \overline{\varepsilon} \ (\approx 0.176).$$
 (4.1)

Let $\alpha \in [1.7, \frac{1}{3\epsilon}]$ be given and $N_2(u) = N_2(\alpha, u)$. It is easy to compute that

$$\begin{split} N_{2}'(u) &= -\frac{1}{2}\varepsilon^{2}u^{7} + \frac{49}{24}\varepsilon u^{6} + \left(\frac{21}{4}\varepsilon - \frac{2}{3}\right)u^{5} + \left(\frac{125}{8}\varepsilon - \frac{25}{12}\right)u^{4} + \left(\frac{1}{2}\varepsilon^{2}\alpha^{4} - \frac{7}{6}\varepsilon\alpha^{3}\right) \\ &- \frac{7}{2}\varepsilon\alpha^{2} - \frac{25}{2}\varepsilon\alpha - \frac{20}{3}\right)u^{3} + \left(-\frac{7}{8}\varepsilon\alpha^{4} + \frac{2}{3}\alpha^{3} + \frac{5}{4}\alpha^{2} + 5\alpha + \frac{3}{4}\right)u^{2} \\ &+ \left(-\frac{7}{4}\varepsilon\alpha^{4} + \frac{5}{6}\alpha^{3} - \frac{1}{2}\alpha + 4\right)u - \frac{25}{8}\varepsilon\alpha^{4} + \frac{5}{3}\alpha^{3} - \frac{1}{4}\alpha^{2} - 4\alpha, \end{split}$$

$$\begin{split} N_{2}^{\prime\prime}(u) &= -\frac{7}{2}\varepsilon^{2}u^{6} + \frac{49}{4}\varepsilon u^{5} + \left(\frac{105}{4}\varepsilon - \frac{10}{3}\right)u^{4} + \left(\frac{125}{2}\varepsilon - \frac{25}{3}\right)u^{3} + \left(\frac{3}{2}\varepsilon^{2}\alpha^{4} - \frac{7}{2}\varepsilon\alpha^{3}\right)u^{3} \\ &- \frac{21}{2}\varepsilon\alpha^{2} - \frac{75}{2}\varepsilon\alpha - 20\right)u^{2} + \left(-\frac{7}{4}\varepsilon\alpha^{4} + \frac{4}{3}\alpha^{3} + \frac{5}{2}\alpha^{2} + 10\alpha + \frac{3}{2}\right)u^{3} \\ &- \frac{7}{4}\varepsilon\alpha^{4} + \frac{5}{6}\alpha^{3} - \frac{1}{2}\alpha + 4, \end{split}$$

$$N_{2}^{\prime\prime\prime}(u) = -21\varepsilon^{2}u^{5} + \frac{245}{4}\varepsilon u^{4} + \left(105\varepsilon - \frac{40}{3}\right)u^{3} + \left(\frac{375}{2}\varepsilon - 25\right)u^{2} + (3\varepsilon^{2}\alpha^{4} - 7\varepsilon\alpha^{3}\alpha^{4})u^{2} + (3\varepsilon^{2}\alpha^{4} - 7\varepsilon\alpha^{3}\alpha^{4})u^{2} + (3\varepsilon^{2}\alpha^{4} - 7\varepsilon\alpha^{3})u^{2} + (3\varepsilon^{2$$

$$N_{2}^{(4)}(u) = -105\varepsilon^{2}u^{4} + 245\varepsilon u^{3} + (315\varepsilon - 40)u^{2} + (375\varepsilon - 50)u + 3\varepsilon^{2}\alpha^{4} - 7\varepsilon\alpha^{3} - 21\varepsilon\alpha^{2} - 75\varepsilon\alpha - 40,$$

$$N_2^{(5)}(u) = -420\varepsilon^2 u^3 + 735\varepsilon u^2 + (630\varepsilon - 80) u + 375\varepsilon - 50,$$
$$N_2^{(6)}(u) = -1260\varepsilon^2 u^2 + 1470\varepsilon u + 630\varepsilon - 80.$$

Then we divide the proof into the next four steps.

Step 1. We prove that, for $0.07 \le \varepsilon \le \overline{\varepsilon}$,

$$N_2''(0) = -\frac{7}{4}\varepsilon\alpha^4 + \frac{5}{6}\alpha^3 - \frac{1}{2}\alpha + 4 > 0.$$
(4.2)

It is easy to see that

$$1.7 \le \alpha \le \frac{1}{3\varepsilon} \le \frac{1}{3(0.07)} = \frac{100}{21} \text{ for } 0.07 \le \varepsilon \le \overline{\varepsilon}.$$
 (4.3)

Since $\varepsilon \leq \frac{1}{3\alpha}$, and by (4.3), we observe that

$$N_{2}^{\prime\prime}(0) \ge -\frac{7}{4} \left(\frac{1}{3\alpha}\right) \alpha^{4} + \frac{5}{6} \alpha^{3} - \frac{1}{2} \alpha + 4 = \frac{1}{4} \left(\alpha^{3} - 2\alpha + 16\right)$$
$$> \frac{1}{4} \left[(1.7)^{3} - 2 \left(\frac{100}{21}\right) + 16 \right] = \frac{239173}{84000} > 0.$$

Step 2. We prove that, for $0.07 \le \varepsilon \le \overline{\varepsilon}$,

$$N_{2}^{\prime\prime}(\alpha) = -2\alpha^{6}\varepsilon^{2} + \alpha^{3}\left(7\alpha^{2} + 14\alpha + 25\right)\varepsilon - 2\alpha^{4} - 5\alpha^{3} - 10\alpha^{2} + \alpha + 4 < 0.$$
(4.4)

Clearly,

$$\left\{ (\alpha, \varepsilon) : 1.7 \le \alpha \le \frac{1}{3\varepsilon} \text{ and } 0.07 \le \varepsilon \le \overline{\varepsilon} \right\} = \Omega_1 \cup \Omega_2,$$

where

$$\Omega_1 \equiv \left\{ (\alpha, \varepsilon) : 1.7 \le \alpha \le \frac{1}{3\overline{\varepsilon}} \text{ and } 0.07 \le \varepsilon \le \overline{\varepsilon} \right\},\tag{4.5}$$

$$\Omega_2 \equiv \left\{ (\alpha, \varepsilon) : \frac{1}{3\overline{\varepsilon}} \le \alpha \le \frac{1}{3\varepsilon} \text{ and } 0.07 \le \varepsilon \le \overline{\varepsilon} \right\},\tag{4.6}$$

see Figure 4.1. So we consider the following two cases.

Figure 4.1: The sets Ω_1 and $\Omega_2.0$

Case 1. Assume that $(\alpha, \varepsilon) \in \Omega_1$. It implies that

$$1.7 \le \alpha \le \frac{1}{3\bar{\epsilon}} \ (\approx 1.893) < 1.9.$$
 (4.7)

So we observe that

$$\begin{split} \frac{\partial}{\partial \varepsilon} N_2''(\alpha) &= -4\varepsilon \alpha^6 + 7\alpha^5 + 14\alpha^4 + 25\alpha^3 > -4\bar{\varepsilon}\alpha^6 + 7\alpha^5 + 14\alpha^4 + 25\alpha^3 \\ &> -4\bar{\varepsilon} \left(1.9\right)^6 + 7 \left(1.7\right)^5 + 14 \left(1.7\right)^4 + 25 \left(1.7\right)^3 \\ &= \frac{33914439}{10^5} - \frac{47045881}{25 \times 10^6} \sqrt{310} \ (\approx 306.01) > 0. \end{split}$$

Then by (4.7),

$$\begin{split} N_{2}^{\prime\prime}\left(\alpha\right) &< N_{2}^{\prime\prime}\left(\alpha\right)\Big|_{\varepsilon=\bar{\varepsilon}} \\ &= -\frac{31}{500}\alpha^{6} + \frac{7}{10}\sqrt{\frac{31}{10}}\alpha^{5} + \left(\frac{7}{5}\sqrt{\frac{31}{10}} - 2\right)\alpha^{4} + \left(\frac{5}{2}\sqrt{\frac{31}{10}} - 5\right)\alpha^{3} \\ &- 10\alpha^{2} + \alpha + 4 \\ &< 0, \end{split}$$

see Figure 4.2(i).

Case 2. Assume that $(\alpha, \varepsilon) \in \Omega_2$. It implies that

$$(\alpha, \varepsilon) \in \Omega_2 = \left\{ (\alpha, \varepsilon) : \frac{1}{3\varepsilon} \le \alpha \le \frac{1}{0.21} \text{ and } 0 < \varepsilon < \frac{1}{3\alpha} \right\}$$

Then we observe that

$$\frac{\partial}{\partial \varepsilon} N_2''(\alpha) = -4\alpha^6 \varepsilon + \alpha^3 \left(7\alpha^2 + 14\alpha + 25\right) > -4\alpha^6 \left(\frac{1}{3\alpha}\right) + \alpha^3 \left(7\alpha^2 + 14\alpha + 25\right) \\ = \frac{1}{3} \left(17\alpha^2 + 75 + 42\alpha\right) \alpha^3 > 0.$$
(4.8)

Since

$$1.8 < (1.89 \approx) \frac{1}{3\bar{\varepsilon}} \le \alpha \le \frac{1}{0.21} < 5, \tag{4.9}$$

and by (4.8), we observe that

$$N_{2}^{\prime\prime}(\alpha) < N_{2}^{\prime\prime}(\alpha)\big|_{\varepsilon=\frac{1}{3\alpha}} = \frac{1}{9}\left(\alpha^{2}-3\right)\left(\alpha^{2}-3\alpha-12\right) < 0,$$

see Figure 4.2(ii).

Thus (4.4) holds by Cases 1–2.

Figure 4.2: (i) The graph of $-\frac{31}{500}\alpha^6 + \frac{7}{10}\sqrt{\frac{31}{10}}\alpha^5 + (\frac{7}{5}\sqrt{\frac{31}{10}}-2)\alpha^4 + (\frac{5}{2}\sqrt{\frac{31}{10}}-5)\alpha^3 - 10\alpha^2 + \alpha + 4$ on [1.7, 9]. (ii) The graph of $(\alpha^2 - 3)(\alpha^2 - 3\alpha - 12)$ on [1.8, 5].

Step 3. We prove that, for $0.07 \le \varepsilon \le \overline{\varepsilon}$,

 $N_2''(u)$ is strictly increasing, or strictly increasing-decreasing, or strictly increasing-decreasing-increasing on $(0, \alpha)$. (4.10)

Clearly, $N_2^{(6)}(u)$ is a quadratic polynomial of u with negative leading coefficient. Since, for $\varepsilon > 0$,

$$N_2^{(6)}(0) = 630\varepsilon - 80 \begin{cases} < 0 & \text{if } 0.07 \le \varepsilon < \frac{8}{63}, \\ \ge 0 & \text{if } \frac{8}{63} \le \varepsilon \le \overline{\varepsilon}, \end{cases} \text{ and } N_2^{(6)}\left(\frac{1}{3\varepsilon}\right) = 90\left(7\varepsilon + 3\right) > 0,$$

we see that

$$\begin{cases} N_2^{(5)}(u) \text{ is strictly decreasing-increasing on } (0,\alpha) \text{ if } 0.07 \le \varepsilon < \frac{8}{63}, \\ N_2^{(5)}(u) \text{ is strictly increasing on } (0,\alpha) \text{ if } (0.126 \approx) \frac{8}{63} \le \varepsilon \le \overline{\varepsilon}. \end{cases}$$
(4.11)

In addition, we compute and find that

$$N_{2}^{(5)}(0) = 375\varepsilon - 50 \begin{cases} < 0 & \text{for } 0.07 \le \varepsilon < \frac{2}{15} \ (\approx 0.133) \,, \\ \ge 0 & \text{for } \frac{2}{15} \le \varepsilon \le \bar{\varepsilon}, \end{cases}$$
(4.12)

$$N_2^{(5)}(1.7) = -\frac{103173}{50}\varepsilon^2 + \frac{71403}{20}\varepsilon - 186 > 0 \quad \text{for } 0.07 \le \varepsilon \le \bar{\varepsilon}.$$
 (4.13)

Since $0 < u < \alpha$ and $1.7 \le \alpha \le \frac{1}{3\varepsilon}$, and by (4.11)–(4.13), we obtain that

 $N_2^{(4)}(u)$ is either strictly decreasing-increasing, or strictly increasing on $(0, \alpha)$. (4.14) Since $1.7 \le \alpha \le \frac{1}{3\varepsilon}$ and $0.07 \le \varepsilon \le \overline{\varepsilon}$, we compute and find that

$$N_{2}^{(4)}(0) = 3\varepsilon^{2}\alpha^{4} - 7\varepsilon\alpha^{3} - 21\varepsilon\alpha^{2} - 75\varepsilon\alpha - 40$$

$$< 3\varepsilon^{2} \left(\frac{1}{3\varepsilon}\right)^{4} - 7\varepsilon (1.7)^{3} - 21\varepsilon (1.7)^{2} - 75\varepsilon (1.7) - 40$$

$$= \frac{1}{27000\varepsilon^{2}} \left(-6009687\varepsilon^{3} - 1080000\varepsilon^{2} + 1000\right)$$

$$< \frac{1}{27000\varepsilon^{2}} \left[-6009687 (0.07)^{3} - 1080 000 (0.07)^{2} + 1000\right]$$

$$= -\frac{6353322641}{27 \times 10^{9}\varepsilon^{2}} < 0.$$
(4.15)

So by (4.14) and (4.15), we obtain that

 $N_2^{\prime\prime\prime}(u)$ is either strictly decreasing, or strictly decreasing-increasing on $(0, \alpha)$. (4.16) Since $0.07 \le \varepsilon \le \overline{\varepsilon}$, and by (4.3), we see that

$$N_{2}^{\prime\prime\prime}(0) = -\frac{7}{4}\epsilon\alpha^{4} + \frac{4}{3}\alpha^{3} + \frac{5}{2}\alpha^{2} + 10\alpha + \frac{3}{2} \ge -\frac{7}{4}\hat{\epsilon}\alpha^{4} + \frac{4}{3}\alpha^{3} + \frac{5}{2}\alpha^{2} + 10\alpha + \frac{3}{2}$$
$$= \frac{1}{12}\left(-\frac{21}{10}\sqrt{\frac{31}{10}}\alpha^{4} + 16\alpha^{3} + 30\alpha^{2} + 120\alpha + 18\right) > 0,$$
(4.17)

see Figure 4.3. Then by (4.16) and (4.17), we obtain (4.10).

Step 4. We prove (4.1). By Steps 1–2 and (4.10), we obtain that

$$N'_2(u)$$
 is strictly increasing-decreasing on $(0, \alpha)$. (4.18)

Figure 4.3: The graph of $-\frac{21}{10}\sqrt{\frac{31}{10}}\alpha^4 + 16\alpha^3 + 30\alpha^2 + 120\alpha + 18$ on [1.7, 5].

Since $N'_2(\alpha) = 0$ for $1.7 \le \alpha \le \frac{1}{3\varepsilon}$, and by (4.18), we obtain that

 $N_2(u)$ is either strictly increasing, or strictly decreasing-increasing on $(0, \alpha)$. (4.19)

We assert that

$$N_{2}(0) = -\frac{1}{16}\varepsilon^{2}\alpha^{8} + \frac{7}{24}\varepsilon\alpha^{7} + \frac{7}{8}\varepsilon\alpha^{6} + \frac{25}{8}\varepsilon\alpha^{5} - \frac{1}{9}\alpha^{6} - \frac{5}{12}\alpha^{5} - \frac{5}{3}\alpha^{4} + \frac{1}{4}\alpha^{3} + 2\alpha^{2} \le 0.$$
(4.20)

Since $N_2(\alpha) = 0$, and by (4.19) and (4.20), we see that (4.1) holds. Next, we prove assertion (4.20). Since $1.7 \le \alpha \le \frac{1}{3\varepsilon}$ and $0.07 \le \varepsilon \le \overline{\varepsilon}$, we compute and find that

$$\begin{aligned} \frac{\partial}{\partial \varepsilon} N_2 \left(0 \right) &= \left(-\frac{1}{8} \varepsilon \alpha^3 + \frac{7}{24} \alpha^2 + \frac{7}{8} \alpha + \frac{25}{8} \right) \alpha^5 \\ &\ge \left[-\frac{1}{8} \varepsilon \left(\frac{1}{3\varepsilon} \right)^3 + \frac{7}{24} \left(1.7 \right)^2 + \frac{7}{8} \left(1.7 \right) + \frac{25}{8} \right] \alpha^5 \\ &= \frac{117837\varepsilon^2 - 100}{21600\varepsilon^2} \alpha^5 \ge \frac{117837 \left(0.07 \right)^2 - 100}{21600\varepsilon^2} \alpha^5 \\ &= \frac{4774 \, 013}{216 \times 10^6 \varepsilon^2} \alpha^5 > 0. \end{aligned}$$
(4.21)

Recall the sets Ω_1 and Ω_2 defined by (4.5) and (4.6) respectively, see Figure 4.1. Then we consider the following two cases.

Case 1. Assume that $(\alpha, \varepsilon) \in \Omega_1$. By (4.7) and (4.21), we see that

$$N_{2}\left(0
ight)\leq N_{2}\left(0
ight)|_{arepsilon=arepsilon}=Q_{1}\left(lpha
ight)<0\quad ext{for }0.07\leqarepsilon\leqarepsilon,$$

where

$$Q_{1}(\alpha) \equiv -\frac{31}{16000}\alpha^{8} + \frac{7}{240}\sqrt{\frac{31}{10}}\alpha^{7} + \left(\frac{7}{80}\sqrt{\frac{31}{10}} - \frac{1}{9}\right)\alpha^{6} + \left(\frac{5}{16}\sqrt{\frac{31}{10}} - \frac{5}{12}\right)\alpha^{5} - \frac{5}{3}\alpha^{4} + \frac{1}{4}\alpha^{3} + 2\alpha^{2},$$

see Figure 4.4(i).

Case 2. Assume that $(\alpha, \varepsilon) \in \Omega_2$. By (4.9) and (4.21), we see that

$$N_2(0) \leq N_2(0)|_{\varepsilon=rac{1}{3lpha}} = Q_2(lpha) < 0 \quad ext{for } rac{1}{3ar{arepsilon}} \leq lpha \leq rac{1}{0.21},$$

where

$$Q_{2}(\alpha) \equiv -\frac{1}{48}\alpha^{6} - \frac{1}{8}\alpha^{5} - \frac{5}{8}\alpha^{4} + \frac{1}{4}\alpha^{3} + 2\alpha^{2},$$

see Figure 4.4(ii).

Figure 4.4: (i) The graph of $Q_1(\alpha)$ on [1.7, 1.9]. (ii) The graph of $Q_2(\alpha)$ on [1.8, 5].

Thus, by Cases 1 and 2, assertion (4.20) holds. The proof is complete.

References

- R. BARTNIK, L. SIMON, Spacelike hypersurfaces with prescribed boundary values and mean curvature, *Comm. Math. Phys.* 87(1982), 131–152. https://doi.org/10.1007/ BF01211061; MR0680653; Zbl 0512.53055
- [2] M. G. CRANDALL, P. H. RABINOWITZ, Bifurcation, perturbation of simple eigenvalues and linearized stability Arch. Rational Mech. Anal. 52(1973), 161–180. https://doi.org/10. 1007/BF00282325; MR0341212; Zbl 0275.47044
- [3] I. COELHO, C. CORSATO, F. OBERSNEL, P. OMARI, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation *Adv. Nonlinear Stud.* 12(2012), 621–638. https://doi.org/10.1007/BF00282325; MR2976056; Zbl 1263.34028
- [4] C. CORSATO, Mathematical analysis of some differential models involving the Euclidean or the Minkowski mean curvature operator, PhD thesis, University of Trieste, 2015.
- [5] R. P. FEYNMAN, R. B. LEIGHTON, M. SANDS, The Feynman lectures on physics. Vol. 2: Mainly electromagnetism and matter, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1964. MR0213078; Zbl 0131.38703
- [6] K.-C. HUNG, S.-H. WANG, Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity and their applications *Trans. Amer. Math. Soc.* 365(2013), 1933–1956. https://doi.org/10.1090/S0002-9947-2012-05670-4; MR3009649; Zbl 1282.34031

- [7] S.-Y. HUANG, Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications *J. Differential Equations* 264(2018), 5977–6011. https://doi.org/10.1016/j.jde.2018.01.021; MR3765772; Zbl 1390.34051
- [8] S.-Y. HUANG, Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application *Commun. Pure Appl. Anal.* 17(2018), 1271–1294. https://doi.org/10.3934/cpaa.2018061; MR3809123; Zbl 1398.34034
- [9] S.-Y. HUANG, Bifurcation diagrams of positive solutions for one-dimensional Minkowskicurvature problem and its applications *Discrete Contin. Dyn. Syst.* **39**(2019), 3443–3462. https://doi.org/10.3934/dcds.2019142; MR3959436; Zbl 1419.34086
- [10] S.-Y. HUANG, Global bifurcation diagrams for Liouville–Bratu–Gelfand problem with Minkowski-curvature operator, J. Dynam. Differential Equations, accepted. https://doi. org/10.1007/s10884-021-09982-4
- [11] S.-Y. HUANG, S.-H. WANG, An evolutionary property of the bifurcation curves for a positone problem with cubic nonlinearity *Taiwanese J. Math.* **20**(2016), 639–661. https: //doi.org/10.11650/tjm.20.2016.6563; MR3512001; Zbl 1383.34029
- [12] S.-Y. HUANG, S.-H. WANG, Proof of a conjecture for the one-dimensional perturbed Gelfand problem from combustion theory Arch. Ration. Mech. Anal. 222(2016), 769–825. https://doi.org/10.1007/s00205-016-1011-1; MR3544317; Zbl 1354.34041
- [13] K.-C. HUNG, S.-Y. HUANG, S.-H. WANG, A global bifurcation theorem for a positone multiparameter problem and its application *Discrete Contin. Dyn. Syst.* 37(2017), 5127–5149. https://doi.org/10.3934/dcds.2017222; MR3668355; Zbl 1378.34041
- K.-C. HUNG, S.-H. WANG, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem *J. Differential Equations* 251(2011), 223–237. https://doi.org/10.1016/j.jde.2011. 03.017; MR2800152; Zbl 1229.34037
- [15] T. LAETSCH, The number of solutions of a nonlinear two point boundary value problem Indiana Univ. Math. J. 20(1970), 1–13. https://doi.org/10.1512/iumj.1971.20.20001; MR0269922; Zbl 0215.14602
- [16] R. MA, Y. Lu, Multiplicity of positive solutions for second order nonlinear Dirichlet problem with one-dimension Minkowski-curvature operator *Adv. Nonlinear Stud.* 15(2015), 789–803. https://doi.org/10.1515/ans-2015-0403; MR3405816; Zbl 1344.34041
- [17] J. SHI, Multi-parameter bifurcation and applications, in: *Topological methods, variational methods and their applications (Taiyuan, 2002)*, World Sci. Publ., River Edge, NJ, 2003, pp. 211–221. MR2011699; Zbl 1210.35020