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Abstract. We establish the existence of global solutions and Lq time-decay of a three
dimensional chemotaxis system with chemoattractant and repellent. We show the ex-
istence of global solutions by the energy method. We also study Lq time-decay for the
linear homogeneous system by using Fourier transform and finding Green’s matrix.
Then, we find Lq time-decay for the nonlinear system using solution representation by
Duhamel’s principle and time-weighted estimate.
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1 Introduction

Chemotaxis is the oriented movement of biological cells or microscopic organisms toward
or away from the concentration gradient of certain chemicals in their environment. We may
use cells to denote the biological objects whose movement we are interested in and chemo
attractants or repellents to denote chemicals which attract or repell the cells. This type of
movement exists in many biological phenomena, such as the movement of bacteria toward
certain chemicals [1], or the movement of endothelial cells toward the higher concentration of
chemoattractant that cancer cells produce [4].

Keller and Segel [11, 12] derived a mathematical model to describe the aggregation of
certain types of bacteria, which consists of the equations for the cell density n = n(x, t) and
the concentration of chemical attractant c = c(x, t) and is given by{

nt = ∆n−∇ · (nχ∇c),

αct = ∆c + f (c, n),

where χ is the sensitivity of the cell movement to the density gradient of the attractant, α is a
positive constant, and the reaction term f is a smooth function of the arguments. Since then,
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many mathematical approaches to describe chemotaxis using systems of partial differential
equations have emerged, some of which will be discussed later in this section.

In this paper, we use the equations for continuum mechanics to describe the movement
of cells and for the chemoattractant and repellent, we use diffusion equations. The com-
bined effects of chemoattractant and repellent for chemotaxis are studied in diseases such as
Alzheimer’s disease [2].

We consider the initial value problem for the system in R3 given by
∂tn +∇ · (nu) = n(n∞ − n)

∂tu + u · ∇u + ∇p(n)
n = χ1∇c1 − χ2∇c2 + δ∆u

∂tc1 = ∆c1 − a12c1 + a11c1n

∂tc2 = ∆c2 − a22c2 + a21c2n,

(1.1)

where n(x, t), u(x, t), c1(x, t), c2(x, t) for t > 0, x ∈ R3, are the cell concentration, velocity
of cells, chemoattractant concentration, and chemorepellent concentration, respectively. The
initial data is given by

(n, u, c1, c2)|t=0 = (n0, u0, c1,0, c2,0)(x), x ∈ R3, (1.2)

where it is supposed to hold that

(n0, u0, c1,0, c2,0)(x)→ (n∞, 0, 0, 0) as |x| → ∞,

for some constant n∞ > 0.
In this model the cells follow a convective logistic equation, the velocity is given by the

compressible Navier–Stokes type equations with the added effects of chemoattractants and
-repellents. The pressure for the cells p(n) is a smooth function of n and p′(n) > 0, a positive
constant δ is the coefficient for the viscosity term, and χ1 and χ2 express the sensitivity of the
cell movement to the density gradients of the attractants and repellents, respectively. Usually
χi, (i = 1, 2) are functions of ci and in this paper we consider the case χi = Kici, where Ki are
positive constants, so that the sensitivity is proportional to the concentration of the attractants
and repellents. We choose Ki = 2 for simplicity. We may equally use χi = Kic

αi
i , where αi

are positive constants. For chemical substances, we use the reaction diffusion equations. The
reaction terms are based on a Lotka–Volterra type model in which the nonnegative regions
of ci are invariant in the sense that if the initial conditions for ci are nonnegative, they are
nonnegative for positive t. This can be verified by the maximum principle. The couplings
between ci and n are given as nonlinear terms.

The main goal of this paper is to establish the local and global existence of smooth solutions
in three dimensions around a constant state (n∞, 0, 0, 0) and the decay rate of global smooth
solutions for the above system (1.1). The main result of this paper is stated as follows.

Theorem 1.1. Let N ≥ 4 be an integer. There exists a positive numbers ε0, C0 such that if

‖[n0 − n∞, u0, c1,0, c2,0]‖HN ≤ ε0,

then, the Cauchy problem (1.1)–(1.2) has a unique solution (n, u, c1, c2)(t) globally in time which
satisfies

(u, c1, c2)(t) ∈ C([0, ∞); HN(R3)) ∩ C1([0, ∞); HN−2(R3)),

n− n∞ ∈ C([0, ∞); HN(R3)) ∩ C1([0, ∞); HN−1(R3))



Existence of global solutions to chemotaxis fluid system with logistic source 3

and there are constants λ1 > 0 and λ2 > 0 such that

‖[n− n∞, u, c1, c2]‖2
HN + λ1

∫ t

0
‖∇[u, c1, c2]‖2

HN + λ2

∫ t

0
‖[n− n∞, c1, c2]‖2

HN

≤ C0‖[n0 − n∞, u0, c1,0, c2,0]‖2
HN . (1.3)

Furthermore, the global solution [n, u, c1, c2] satisfies the following time-decay rates for t ≥ 0:

‖n− n∞‖Lq ≤ C(1 + t)−2+ 3
2q , (1.4)

‖u‖Lq ≤ C(1 + t)
−3
2 + 3

2q , (1.5)

‖c1, c2‖Lq ≤ C(1 + t)
−3
2 , (1.6)

with 2 ≤ q < ∞, C > 0.

The proof of the existence of global solutions in Theorem 1.1 is based on the local exis-
tence and an a priori estimates. We show the local solutions by constructing a sequence of
approximation functions based on iteration. To obtain the a priori estimates we use the energy
method. Moreover, to obtain the time-decay rate in Lq norm of solutions in Theorem 1.1, we
first find the Green’s matrix for the linear system using the Fourier transform and then obtain
the refined energy estimates with the help of Duhamel’s principle.

To motivate our study, we present previous related work on chemotaxis models. Many
of them are based on the Keller–Segel system. Wang [21] explored the interactions between
the nonlinear diffusion and logistic source on the solutions of the attraction–repulsion chemo-
taxis system in three dimensions. E. Lankeit and J. Lankeit [13] proved the global existence of
classical solutions to a chemotaxis system with singular sensitivity. Liu and Wang [14] estab-
lished the existence of global classical solutions and steady states to an attraction–repulsion
chemotaxis model in one dimension based on the energy methods.

Concerning the chemotaxis models based on fluid dynamics, there are two approaches,
incompressible and compressible. For the incompressible case, Chae, Kang and Lee [3],
and Duan, Lorz, and Markowich [8] showed the global-in-time existence for the incompress-
ible chemotaxis equations near the constant states, if the initial data is sufficiently small.
Rodriguez, Ferreira, and Villamizar-Roa [19] showed the global existence for an attraction–
repulsion chemotaxis fluid model with logistic source. Tan and Zhou [20] proved the global
existence and time decay estimate of solutions to the Keller–Segel system in R3 with the small
initial data. For the compressible case, Ambrosi, Bussolino, and Preziosi [2] discussed the
vasculogenesis using the compressible fluid dynamics for the cells and the diffusion equation
for the attractant.

Many related approaches use the Fourier transform, and we only mention that Duan [6]
and Duan, Liu, and Zhu [7] proved the time-decay rate by the combination of energy estimates
and spectral analysis. Also by using Green’s function and Schauder fixed point theorem, one
can study the existence and regularity of solution for these kinds of equations (see [9, 10, 17,
18]).

For later use in this paper, we give some notations. C denotes some positive constant and
λi, where i = 1, 2, denotes some positive (generally small) constant, where both C and λi may
take different values in different places. For any integer m ≥ 0, we use Hm to denote the
Sobolev space Hm(R3). Set L2 = H0. We set ∂α = ∂α1

x1 ∂α2
x2 ∂α3

x3 for a multi-index α = [α1, α2, α3].
The length of α is |.| = α1 + α2 + α3; we also set ∂j = ∂xj for j = 1, 2, 3. For an integrable
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function f : R3 → R, its Fourier transform is defined by f̂ =
∫

R3 e−ix·ξ f (x)dx, x · ξ = ∑3
i=0 xjξ j,

and x ∈ R3, where i =
√
−1 is the imaginary unit. Let us denote the space

X(0, T) = {(u, c1, c2) ∈ C([0, T]; HN(R3)) ∩ C1([0, T]; HN−2(R3)),

n− n∞ ∈ C([0, T]; HN(R3)) ∩ C1([0, T]; HN−1(R3))}.

This paper is organized as follows. In Section 2, we reformulate the Cauchy problem
under consideration. In Section 3, we prove the global existence and uniqueness of solutions.
In Section 4, we investigate the linearized homogeneous system to obtain the L2 − Lq time-
decay property and the explicit representation of solutions. In Section 5, we study the Lq

time-decay rates of solutions to the reformulated nonlinear system and finish the proof of
Theorem1.1.

2 Reformulation of the system (1.1)

Let U(t) = [n, u, c1, c2] be a smooth solution to the Cauchy problem of the chemotaxis system
(1.1) with initial data U0 = [n0, u0, c1,0, c2,0]. We introduce the transformation:

n(x, t) = n∞ + ρ(x, t). (2.1)

Then the Cauchy problem (1.1) is reformulated as
∂tρ + n∞∇ · u + n∞ρ = −∇ · (ρu)− ρ2

∂tu + u · ∇u− δ∆u + p′(n∞)
n∞
∇ρ = ∇(c1)

2 −∇(c2)2 − ( p′(ρ+n∞)
ρ+n∞

− p′(n∞)
n∞

)∇ρ

∂tc1 = ∆c1 − (a12 − a11n∞)c1 + a11ρc1

∂tc2 = ∆c2 − (a22 − a21n∞)c2 + a21ρc2,

(2.2)

with initial data
(ρ, u, c1, c2)|t=0 = (ρ0, u0, c1,0, c2,0)→ (0, 0, 0, 0), (2.3)

as |x| → ∞, where ρ0 = n0 − n∞. We assume that a12 − a11n∞ > 0 and a22 − a21n∞ > 0.
In what follows, the integer N ≥ 4 is always assumed.

Proposition 2.1. There exists a positive number ε0 which is small enough such that if

‖[ρ0, u0, c1,0, c2,0]‖HN ≤ ε0,

then the Cauchy problem (2.2)–(2.3) has a unique solution (ρ, u, c1, c2)(t) globally in time which
satisfies (ρ, u, c1, c2)(t) ∈ X(0, ∞) and there are constants C0 > 0, λ1 > 0 and λ1 > 0 such that

‖[ρ, u, c1, c2]‖2
HN +λ1

∫ t

0
‖∇[u, c1, c2]‖2

HN +λ2

∫ t

0
‖[ρ, c1, c2]‖2

HN ≤ C0‖[ρ0, u0, c1,0, c2,0]‖2
HN . (2.4)

Proposition 2.2. Let U(t) = [ρ, u, c1, c2] be the solution to the Cauchy problem (2.2)–(2.3) obtained
in Proposition 2.1, which satisfies the following Lq-time decay estimates for any t ≥ 0:

‖ρ‖Lq ≤ C(1 + t)−2+ 3
2q , (2.5)

‖u‖Lq ≤ C(1 + t)
−3
2 + 3

2q , (2.6)

‖c1, c2‖Lq ≤ C(1 + t)
−3
2 , (2.7)

with 2 ≤ q < ∞ and C > 0.

The proof of Theorem 1.1 obtained directly from the global existence proof in Proposition
2.1 and the derivation of rates in Theorem 1.1 is based on Proposition 2.2.
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3 Global solution of the nonlinear system (2.2)

The goal of this section is to prove the global existence of solutions to the Cauchy problem
(2.2) when initial data is a small, smooth perturbation near the steady state (n∞, 0, 0, 0). The
proof is based on some uniform a priori estimates combined with the local existence, which
will be shown in Subsections 3.1 and 3.2.

3.1 Existence of local solutions

In this subsection, we show the proof of the existence of local solutions [ρ, u, c1, c2] by con-
structing a sequence of functions that converges to a function satisfying the Cauchy problem.
We construct a solution sequence (ρj, uj, cj

1, cj
2)j≥0 by iteratively solving the Cauchy problem

on the following
∂tρ

j+1 + n∞∇ · uj+1 + n∞ρj+1 = −ρj∇ · uj+1 −∇ρj+1uj − ρj2

∂tuj+1 − δ∆uj+1 = −uj · ∇uj +∇(cj
1)

2 −∇(cj
2)

2 − p′(ρj+n∞)
ρj+n∞

∇ρj

∂tc
j+1
1 − ∆cj+1

1 + (a12 − a11n∞)c
j+1
1 = a11ρjcj+1

1

∂tc
j+1
2 − ∆cj+1

2 + (a22 − a21n∞)c
j+1
2 = a21ρjcj+1

2 ,

(3.1)

with initial data

(ρj+1, uj+1, cj+1
1 , cj+1

2 )|t=0 = U0 = (ρ0, u0, c1,0, c2,0)→ (0, 0, 0, 0) (3.2)

as |x| → ∞, for j ≥ 0. For simplicity, in what follows, we write U j = (ρj, uj, cj
1, cj

2) and
U0 = (ρ0, u0, c1,0, c2,0), where U0 = (0, 0, 0, 0).
Now, we can start the following Lemma.

Lemma 3.1. There are constants T1 and ε0 > 0 such that if the initial data U0 ∈ HN(R3) and
‖U0‖HN ≤ ε0, then there exists a unique solution U = (ρ, u, c1, c2) of the Cauchy problem (2.2)–(2.3)
on [0, T1] with U ∈ X(0, T1).

Proof. We first set U0 = (0, 0, 0, 0). Then, we use U0 to solve the equations for U1. The first
equation is the first order partial differential equation and the second, third, and fourth equa-
tions are the second order parabolic equations. We obtain u1(x, t), c1

1(x, t), c1
2(x, t), and ρ1(x, t)

in this order. Similarly, we define (uj, cj
1, cj

2, ρj) iteratively. Now, we prove the existence and
uniqueness of solutions in space C([0, T1]; HN(R3)), where T1 > 0 is suitably small. The proof
is divided into four steps as follows.

In the first step, we show the uniform boundedness of the sequence of functions under
our construction via energy estimates. We show that there exists a constant M > 0 such that
U j ∈ C([0, T1]; HN(R3)) is well defined and

sup
0≤t≤T1

‖U j(t)‖HN ≤ M, (3.3)

for all j ≥ 0. We use the induction to prove (3.3). It is trivial when j = 0. Suppose that it is
true for j ≥ 0 where M is small enough. To prove for j + 1, we need some energy estimate for
U j+1. Applying ∂α to the first equation of (3.1), multiplying it by ∂αρj+1 and integrating in x,
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we obtain

1
2

d
dt

∫
R3
(∂αρj+1)2dx + n∞

∫
R3
|∂αρj+1|2dx

= − n∞

∫
R3

∂αρj+1∂α∇ · uj+1dx−
∫

R3
∂αρj+1∂α(∇ρj+1 · uj)dx

+
∫

R3
∂αρj+1∂α(ρj∇ · uj+1)dx−

∫
R3

∂αρj+1∂αρj2dx.

The terms on the right hand side are further bounded by

C‖∇ · uj+1‖HN‖ρj+1‖HN + C‖∇ · uj‖L∞‖ρj+1‖2
HN

+ ‖uj‖HN‖ρj+1‖HN‖∇ρj+1‖HN−2 + ‖ρj‖HN‖ρj+1‖HN‖∇ · uj+1‖HN

+ C‖ρj‖HN−2‖ρj+1‖HN‖ρj‖HN .

Then, after taking the summation over |α| ≤ N and using the Cauchy inequality, one has

1
2

d
dt
‖ρj+1‖2

HN+λ2‖ρj+1‖2
HN

≤ C‖∇ · uj+1‖2
HN + C‖uj‖2

HN‖ρj+1‖2
HN + C‖ρj‖2

HN‖ρj+1‖2
HN + C‖ρj‖2

HN . (3.4)

Similarly, applying ∂α to the second equation of (3.1), multiplying it by ∂αuj+1, taking integra-
tions in x, and then using integration by parts, we have

1
2

d
dt

∫
R3
(∂αuj+1)2dx + δ

∫
R3
|∂α∇ · uj+1|2dx =

p′(n∞)

n∞

∫
R3
∇ · ∂αuj+1∂αρj+1dx

−
∫

R3
∇ · ∂αuj+1∂αcj2

1 dx +
∫

R3
∇ · ∂αuj+1∂αcj2

2 dx

−
∫

R3
∂αuj+1 · ∂α(uj · ∇uj)dx−

∫
R3

∂αuj+1 · ∂α

(
∇p(ρj + n∞)

ρj + n∞

)
dx.

Then, after taking the summation over |α| ≤ N, the terms on the right side of the previous
equation are bounded by

C‖∇ · uj+1‖HN‖ρj+1‖HN + C‖cj
1‖HN−3‖∇ · uj+1‖HN‖cj

1‖HN

+ C‖cj
2‖HN−3‖∇ · uj+1‖HN‖cj

2‖HN + ‖uj‖2
HN‖∇ · uj+1‖HN + C‖ρj‖HN‖∇ · uj+1‖HN .

By using the Cauchy inequality, we obtain

1
2

d
dt
‖uj+1‖2

HN+λ1‖∇ · uj+1‖2
HN≤ C‖ρj+1‖2

HN+C‖cj
1‖

2
HN+C‖cj

1‖
2
HN‖∇ · uj+1‖2

HN+C‖cj
2‖

2
HN

+ C‖cj
2‖

2
HN‖∇ · uj+1‖2

HN+C‖uj‖2
HN‖∇ · uj+1‖2

HN+‖ρj‖2
HN . (3.5)

In a similar way as above, we can estimate c1 and c2 as

1
2

d
dt
‖cj+1

1 ‖
2
HN + ‖∇cj+1

1 ‖
2
HN + λ2‖cj+1

1 ‖
2
HN ≤ C‖ρj‖2

HN‖cj+1
1 ‖

2
HN (3.6)

1
2

d
dt
‖cj+1

2 ‖
2
HN + ‖∇cj+1

2 ‖
2
HN + λ2‖cj+1

2 ‖
2
HN ≤ C‖ρj‖2

HN‖cj+1
2 ‖

2
HN . (3.7)
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Taking the linear combination of inequalities (3.4)–(3.7), we have

1
2

d
dt
(‖ρj+1‖2

HN+‖uj+1‖2
HN+‖cj+1

1 ‖
2
HN + ‖cj+1

2 ‖
2
HN ) + λ1‖∇[uj+1, cj+1

1 , cj+1
2 ]‖2

HN

+ λ2‖[ρj+1, cj+1
1 , cj+1

2 ]‖2
HN ≤ C‖[ρj, uj, cj

1, cj
2]‖

2
HN + C‖[ρj, uj]‖2

HN‖ρj+1‖2
HN

+ C‖[uj, cj
1, cj

2]‖
2
HN‖∇ · uj+1‖2

HN + C‖ρj‖2
HN‖[cj+1

1 , cj+1
2 ]‖2

HN .

Thus, after integrating with respect to t, we have

‖U j+1(t)‖2
HN+λ1

∫ t

0
‖∇[uj+1, cj+1

1 , cj+1
2 ]‖2

HN ds + λ2

∫ t

0
‖[ρj+1, cj+1

1 , cj+1
2 ]‖2

HN ds

≤ C‖U j+1(0)‖2
HN+C

∫ t

0
‖U j(s)‖2

HN ds + C
∫ t

0
‖U j(s)‖2

HN‖[ρj+1,∇ · uj+1, cj+1
1 , cj+1

2 ]‖2
HN ds. (3.8)

In the last inequality, we use the induction hypothesis. We obtain

‖U j+1(t)‖2
HN+λ1

∫ t

0
‖∇[uj+1, cj+1

1 , cj+1
2 ]‖2

HN ds + λ2

∫ t

0
‖[ρj+1, cj+1

1 , cj+1
2 ]‖2

HN ds

≤ Cε2
0 + CM2T1 + CM2

∫ t

0
‖[ρj+1,∇ · uj+1, cj+1

1 , cj+1
2 ]‖2

HN ds,

for 0 ≤ t ≤ T1. Now, we take the small constants ε0 > 0, T1 > 0 and M > 0. Then we have

‖U j+1(t)‖2
HN+λ1

∫ t

0
‖∇[uj+1, cj+1

1 , cj+1
2 ]‖2

HN ds + λ2

∫ t

0
‖[ρj+1, cj+1

1 , cj+1
2 ]‖2

HN ds ≤ M2, (3.9)

for 0 ≤ t ≤ T1. This implies that (3.3) holds true for j + 1. Hence (3.3) is proved for all j ≥ 0.
For the second step, we prove that the sequence (U j)j≥0 is a Cauchy sequence in the Banach

space C([0, T1]; HN−1(R3)), which converges to the solution U = (ρ, u, c1, c2) of the Cauchy
problem (2.2)–(2.3), and satisfies sup0≤t≤T1

∥∥[U j(t)]
∥∥

HN−1 ≤ M. See for example [16].
For simplicity, we denote δ f j+1 := f j+1 − f j. Subtracting the j-th equations from the

(j + 1)-th equations, we have the following equations for δρj+1, δuj+1, δcj+1
1 and δcj+1

1 :

∂tδρj+1 + n∞∇ · (δuj+1) + n∞δρj+1 = −ρj∇ · δuj+1 − δρj∇ · uj

−uj∇δρj+1 − δuj∇ρj + (ρj + ρj−1)δρj

∂tδuj+1 − δ∆δuj+1 = −uj · ∇δuj − δuj · ∇uj−1 +∇((cj
1 + cj−1

1 )δcj
1)

−∇((cj
2 + cj−1

2 )δcj
2)− (∇p(ρj+n∞)

ρj+n∞
− ∇p(ρj−1+n∞)

ρj−1+n∞
)

∂tδcj+1
1 + ∆δcj+1

1 + (a12 − a11n∞)δcj+1
1 = a11ρjδcj+1

1 + a11δρjcj
1

∂tδcj+1
2 + ∆δcj+1

2 + (a22 − a21n∞)δcj+1
2 = a21ρjδcj+1

2 + a21δρjcj
2.

The estimate of δρj+1 is as follows:

1
2

d
dt
‖δρj+1‖2

HN−1+n∞‖δρj+1‖2
HN−1≤ C‖∇ · δuj+1‖HN−1‖δρj+1‖HN−1

+ C‖ρj‖HN−1‖δρj+1‖HN−1‖∇ · δuj+1‖HN−1 + C‖δρj‖HN−1‖∇ · uj‖HN−1‖δρj+1‖HN−1

+ C‖∇ · uj‖L∞‖δρj+1‖2
HN−1+C‖δρj+1‖HN−2‖uj‖HN−1‖δρj+1‖HN−1

+ C‖δρj+1‖HN−1‖δuj‖HN−1‖∇ρj‖HN−1+C‖δρj+1‖HN−1‖δ ρj‖HN−1 .
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Then

1
2

d
dt
‖δρj+1‖2

HN−1+λ2‖δρj+1‖2
HN−1≤ C‖∇ · δuj+1‖2

HN−1 + C‖ρj‖2
HN−1‖δρj+1‖2

HN−1

+ C‖∇ · uj‖2
HN−1‖δρj‖2

HN−1+C‖uj‖2
HN−1‖δρj+1‖2

HN−1

+ C‖∇ρj‖2
HN−1‖δuj‖2

HN−1+C‖δρj‖2
HN−1 . (3.10)

The estimate of δuj+1 is

1
2

d
dt
‖δuj+1‖2

HN−1+δ‖∇ · δuj+1‖2
HN−1≤ C‖∇ · δuj+1‖HN−1‖uj‖HN−1‖δuj‖HN−1

+ ‖δuj+1‖HN−1‖∇ · uj‖HN−1‖δuj‖HN−1+C‖δuj+1‖HN−1‖δuj‖HN−1‖∇ · uj−1‖HN−1

+ C‖δcj
1‖

2
HN−1‖∇ · δuj+1‖2

HN−1+C‖δcj+1
2 ‖

2
HN−1‖∇ · δuj+1‖2

HN−1+C‖δρj+1‖2
HN

+ C‖δρj‖HN−1‖∇ · δuj+1‖HN−1 .

Then

1
2

d
dt
‖δuj+1‖2

HN−1+λ1‖∇ · δuj+1‖2
HN−1≤ C‖uj‖2

HN−1‖δuj‖2
HN−1+‖δuj+1‖2

HN−1‖∇ · uj‖2
HN−1

+ C‖δuj+1‖2
HN−1‖∇ · uj−1‖2

HN−1+C‖δuj‖2
HN−1

+ C‖δcj
1‖

2
HN−1+C‖δcj

2‖
2
HN−1+‖δρj‖2

HN−1 . (3.11)

We have a similar way to estimate δcj+1
1 and δcj+1

2 as follows:

1
2

d
dt‖δcj+1

1 ‖
2
HN−1+‖∇δcj+1

1 ‖
2
HN−1+λ2‖δcj+1

1 ‖
2
HN−1

≤ C‖ρj‖2
HN−1‖δcj+1

1 ‖
2
HN−1+C‖δcj

1‖
2
HN−1‖ρj‖2

HN−1 (3.12)

and

1
2

d
dt
‖δcj+1

2 ‖
2
HN−1+‖∇δcj+1

2 ‖
2
HN−1+λ2‖δcj+1

2 ‖
2
HN−1

≤ C‖ρj‖2
HN−1‖δcj+1

2 ‖
2
HN−1+C‖δcj

2‖
2
HN−1‖ρj‖2

HN−1 . (3.13)

We combine the equations (3.10)–(3.13) to obtain

1
2

d
dt
(‖δρj+1‖2

HN−1+‖δuj+1‖2
HN−1+‖δcj+1

1 ‖
2
HN−1+‖δcj+1

2 ‖
2
HN−1)

+ λ1(‖∇ · δuj+1‖2
HN−1+‖∇δcj+1

1 ‖
2
HN−1+‖∇δcj+1

2 ‖
2
HN−1)

+ λ2(‖δρj+1‖2
HN−1+‖δcj+1

1 ‖
2
HN−1+C‖δcj+1

2 ‖
2
HN−1)

≤ C(‖δuj+1‖2
HN−1 + ‖δρj+1‖2

HN−1+‖δcj+1
1 ‖

2
HN−1+‖δcj+1

2 ‖
2
HN−1)

+ C(‖δuj‖2
HN−1 + C‖δρj‖2

HN−1+C‖δcj
1‖

2
HN−1+C‖δcj

2‖
2
HN−1).

By using Gronwall’s inequality, we obtain

sup
0≤t≤T1

(‖δρj+1‖2
HN−1+‖δuj+1‖2

HN−1+‖δcj+1
1 ‖

2
HN−1+‖δcj+1

2 ‖
2
HN−1)

≤ e
∫ t

0 cds
∫ t

0
‖δU j(s)‖2

HN−1 ds + e
∫ t

0 cds‖δU j+1(0)‖2
HN−1 ds

≤ CT1(eCT1) sup
0≤t≤T1

‖δU j‖2
HN−1 .
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By taking T1 > 0 sufficiently small we find that (U j)j≥0 is a Cauchy sequence in the Banach
space C([0, T1]; HN−1(R3)). Thus, we have the limit function

U = U0 + lim
m→∞

m

∑
j=0

(U j+1 −U j)

in the same space C([0, T1]; HN−1(R3)), and satisfies

sup
0≤t≤T1

‖U‖HN−1≤ sup
0≤t≤T1

lim
j→∞

inf‖U j‖HN−1≤ M. (3.14)

Thus, as j→ ∞ the limit exists such that

(U)j≥0 → U(t)

strongly in C([0, T1]; HN−1) and as j′ → ∞, where {j′} is a subsequence of {j}, we have

D(u, c1, c2)j′ → D(u, c1, c2)

weakly in L2([0, T1]; HN) by step one. Also by step one, we know

(U)j′′(t)→ U(t)

weakly in HN for every fixed t ∈ [0, T1], where j′′ = j′′(t) is a subsequence of {j′}, depending
on t. Thus, we have a solution U(t) ∈ L∞([0, T1]; HN) for the problem (2.2)–(2.3).

For the third step, we show that ‖U j+1(t)‖2
HN is continuous in time for each j ≥ 0.

For simplicity, let us define the equivalent energy functional

E(U j+1(t)) = ‖ρj+1‖2
HN+‖uj+1‖2

HN+‖cj+1
1 ‖

2
HN + ‖cj+1

2 ‖
2
HN .

Similarly to how we proved (3.8), we have

|EU j+1(t)− EU j+1(s)|=
∣∣∣∣∫ t

s
EU j+1(θ)dθ

∣∣∣∣ ≤ ∫ t

s
‖U j(s)‖2

HN dθ

+ C
∫ t

0
(1 + ‖U j(s)‖2

HN )‖[ρj+1,∇ · uj+1, cj+1
1 , cj+1

2 ]‖2
HN ds + C

∫ t

s
‖∇[cj+1

1 , cj+1
2 ]‖2

HN ds

≤ CM2(t− s) + C(M2 + 1)
∫ t

s
‖[ρj+1,∇ · uj+1, cj+1

1 , cj+1
2 ]‖2

HN ds

+ C
∫ t

s
‖∇[cj+1

1 , cj+1
2 ]‖2

HN ds,

for any 0 ≤ s ≤ t ≤ T1. The time integral on the right-hand side from the above inequality is
bounded by (3.9), and hence EU j+1(t) is continuous in t for each j ≥ 0. Therefore, ‖U j(t)‖2

HN

is continuous in time for each j ≥ 1. Furthermore, U = (ρ, u, c1, c2) is a local solution to the
Cauchy problem (2.2)–(2.3).

For the fourth step, we show that the Cauchy problem (2.2)–(2.3) admits at most one solu-
tion in C([0, T1]; HN(R3)). We assume that there exist two local solutions U, Ũ in C([0, T1]; HN)

which satisfy (3.2). Let ρ̃ = ρ1(x, t)− ρ2(x, t), ũ(x, t) = u1(x, t)− u2(x, t), c̃1(x, t) = c1,1(x, t)−
c1,2(x, t) and c̃2(x, t) = c2,1(x, t)− c2,2(x, t) solve

∂tρ̃ + n∞∇ · ũ + n∞ρ̃ = −∇ · (ρ̃u1)−∇ · (ρ2ũ)− (ρ1 + ρ2)ρ̃

∂tũ + u1 · ∇ũ− δ∆ũ = −ũ · ∇u2 −
p′(ρ1+n∞)

ρ1+n∞
∇ρ̃ +∇((c1,1 + c1,2)c̃1)

−∇((c2,1 + c2,2))c̃2 −
(

p′(ρ1+n∞)
ρ1+n∞

− p′(ρ2+n∞)
ρ2+n∞

)
∇ρ2

∂t c̃1 = ∆c̃1 − a12c̃1 + a11ρ1c̃1 + a11ρ̃1c1,2

∂t c̃2 = ∆c̃2 − a22c̃2 + a21ρ1c̃2 + a21ρ̃c2,2.

(3.15)
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Multiplying ρ̃ to both sides of the first equation of (3.15) and integrating over R3, we have∫
R3

ρ̃∂tρ̃dx + n∞

∫
R3

ρ̃∇ · ũdx + n∞

∫
R3
|ρ̃|2dx

= −
∫

R3
ρ̃∇ · (ρ̃u1)dx +

∫
R3

ρ̃∇ · (ρ2ũ)dx +
∫

R3
(ρ1 + ρ2)ρ̃

2.

Using integration by parts and the Cauchy–Schwarz inequality, we have

1
2

d
dt‖ρ̃‖

2
L2+n∞‖ρ̃‖2

L2≤
n∞

2
‖ρ̃‖2

L2 +
n∞

2
‖∇ · ũ‖2

L2 +
1
2
‖∇ · u1‖L∞

∫
R3
|ρ̃|2dx

+ ‖ρ2‖L∞

∫
R3
(|∇ · ũ|2 + |ρ̃|2)dx + ‖∇ρ2‖L∞

∫
R3
(|ũ|2 + |ρ̃|2)dx

+ ‖[ρ1 + ρ2]‖L∞

∫
R3
| ρ̃|2dx. (3.16)

Next, we establish the energy estimates for ũ. By multiplying ũ to both sides of the second
equation of (3.15) and integrating in x, we have∫

R3
ũ · ∂tũdx +

∫
R3

ũ · (u1 · ∇ũ)dx− δ
∫

R3
ũ · ∆ũdx

= − p′(n∞)

n∞

∫
R3

ũ · ∇u2dx +
∫

R3
ũ · ∇ρ̃dx

+
∫

R3
ũ · ( p′(ρ1 + n∞)

ρ1 + n∞
− p′(n∞)

n∞
)∇ρ̃ +

∫
R3

ũ · ∇((c1,1 + c1,2)c̃1)dx

−
∫

R3
ũ · ∇((c2,1 + c2,2)c̃2)dx−

∫
R3

ũ · ( p′(ρ1 + n∞)

ρ1 + n∞
dx− p′(ρ2 + n∞)

ρ2 + n∞
)∇ρ2dx.

By using integration by parts and the Cauchy–Schwarz inequality, we have

1
2

d
dt
‖ũ‖2

L2+δ‖∇ · ũ‖2
L2≤ ‖∇ · u1‖L∞‖ũ‖2

L2+‖∇ · u2‖L∞‖ũ‖2
L2+

p′(n∞)
2n∞
‖∇ · ũ‖2

L2+
p′(n∞)

2n∞
‖ρ̃‖2

L2

+ ‖ρ1‖L∞(‖∇ · ũ‖2
L2+‖ρ̃‖2

L2) + ‖∇ρ1‖L∞(‖ũ‖2
L2+‖ρ̃‖2

L2)

+ ‖c1,1 + c1,2‖L∞(‖∇ · ũ‖2
L2+‖c̃1‖2

L2)

+ ‖c2,1 + c2,2‖L∞(‖∇ · ũ‖2
L2+‖c̃2‖2

L2) + ‖∇ρ2‖L∞(‖ũ‖2
L2+‖ρ̃‖2

L2).

Since L∞ norms of ρi, ui, c1,i, c2,i where i = 1, 2 are bounded, we have

1
2

d
dt
‖ũ‖2

L2+
δ

2
‖∇ · ũ‖2

L2 ≤ C‖ũ‖2
L2+C‖ρ̃‖2

L2+C‖c̃1‖2
L2+C‖c̃2‖2

L2 . (3.17)

We have a similar way to estimate c̃1 and c̃2 as follows:

1
2

d
dt
‖c̃1‖2

L2 + ‖∇c̃1‖2
L2 + a12‖c̃1‖2

L2≤ a11‖ρ1‖L∞‖c̃1‖2
L2+

a11
2 ‖c1,2‖L∞(‖ρ̃‖2

L2+‖c̃1‖2
L2) (3.18)

1
2

d
dt
‖c̃2‖2

L2 + ‖∇c̃2‖2
L2 + a22‖c̃2‖2

L2≤ a21‖ρ1‖L∞‖c̃2‖2
L2+

a21
2 ‖c2,2‖L∞(‖ρ̃‖2

L2+‖c̃2‖2
L2). (3.19)

By taking a linear combination of all estimates, we obtain

1
2

d
dt
(‖ρ̃‖2

L2+‖ũ‖2
L2+‖c̃1‖2

L2 + ‖c̃2‖2
L2) + λ1(‖∇ · ũ‖2

L2+‖∇̃c1‖2
L2+‖∇̃c2‖2

L2)

+ λ2(‖ρ̃‖2
L2+‖c̃1‖2

L2 + ‖c̃2‖2
L2) ≤ C(‖ρ̃‖2

L2+‖ũ‖2
L2+‖c̃1‖2

L2 + ‖c̃2‖2
L2). (3.20)
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The Gronwall’s inequality implies

sup
0≤t≤T1

(‖ρ̃‖2
L2+‖ũ‖2

L2+‖c̃1‖2
L2 + ‖c̃2‖2

L2)

≤ ecT1(‖ρ̃(0)‖2
L2+‖ũ(0)‖2

L2+‖c̃1(0)‖2
L2 + ‖c̃2(0)‖2

L2). (3.21)

Since the initial data of (ρ̃, ũ, c̃1, c̃2) are all zero for T > 0, that implies the uniqueness of the
local solution.

3.2 A priori estimates

In this subsection, we provide some estimates for the solutions for any t > 0. We use the
energy method to obtain uniform-in-time a priori estimates for smooth solutions to Cauchy
problems (2.2)–(2.3).

Lemma 3.2 (A priori estimates). Let U(t) = (ρ, u, c1, c2) ∈ C([0, T]; HN(R3) be the smooth solu-
tion to the Cauchy problem (2.2)–(2.3) for T > 0 with

sup
0≤t≤T

‖(ρ, u, c1, c2)(t)‖N ≤ ε (3.22)

for 0 < ε ≤ 1. Then, there are ε0 > 0, C0 > 0, λ1 > 0 and λ2 > 0 such that for any ε ≤ ε0,

‖[ρ, u, c1, c2]‖2
HN + λ1

∫ t

0
‖∇[u, c1, c2]‖2

HN+λ2

∫ t

0
‖[ρ, c1, c2]‖2

HN ≤ C0‖[ρ0, u0, c1,0, c2,0]‖2
HN (3.23)

holds for any t ∈ [0, T].

Proof. First, we find the zero-order estimates. For the estimate of ρ, multiplying ρ to both
sides of the first equation of (2.2) and taking integrations in x ∈ R3, we obtain∫

R3
ρρtdx + n∞

∫
R3

ρ∇ · udx + n∞

∫
R3
|ρ|2dx = −

∫
R3

ρ∇ · (ρu)dx−
∫

R3
ρρ2dx.

Using integration by parts and the Cauchy–Schwarz inequality, we have

1
2

∫
R3

(
ρ2)

t dx + n∞

∫
R3
|ρ|2dx + n∞

∫
R3

ρ∇ · udx

≤ 1
2

sup
x
|∇u|

∫
R3
|ρ|2dx + sup

x
|ρ|
∫

R3
|ρ|2dx

≤ C‖ρ, u‖HN

∫
R3
|ρ|2dx. (3.24)

Now, we estimate u by multiplying the second equation of (2.2) by u and integrating over R3.
Then, we have∫

R3
u · utdx +

∫
R3

u · (u · ∇u)dx− δ
∫

R3
u · ∆udx + p′(n∞)

n∞

∫
R3

u · ∇ρdx

=
∫

R3
u · ∇c2

1dx−
∫

R3
u · ∇c2

2dx−
∫

R3
u ·
(

p′(ρ + n∞)

ρ + n∞
− p′(n∞)

n∞

)
∇ρdx.

By using integration by parts and the Cauchy–Schwarz inequality, we have

1
2

∫
R3

(
u2)

t dx + δ
∫

R3
|∇u|2dx− p′(n∞)

n∞

∫
R3

ρ∇ · udx

≤ ‖u‖H1

∫
R3
|∇u|2dx + C‖u‖HN

∫
R3
(|c1|2 + |c2|2 + |ρ|2)dx. (3.25)
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For the estimates of c1, we multiply c1 to both sides of the equation of c1 and integrate with
respect to x, and we have∫

R3
c1(c1)tdx−

∫
R3

c1∆c1dx + (a12 − n∞a11)
∫

R3
|c1|2dx ≤ a11 sup

x
|ρ|
∫

R3
|c1|2dx.

By using integration by parts, we have

1
2

∫
R3
(c2

1)tdx +
∫

R3
|∇c1|2dx + (a12 − n∞a11)

∫
R3
|c1|2dx ≤ a11‖ρ‖H2

∫
R3
|c1|2dx. (3.26)

Similar to above, from the equation of c2, we have

1
2

∫
R3
(c2

2)tdx +
∫

R3
|∇c2|2dx + (a22 − n∞a21)

∫
R3
|c2|2dx ≤ a21‖ρ‖H2

∫
R3
|c2|2dx. (3.27)

Consider the linear combination d1 × (3.24) + (3.25) + (3.26) + (3.27), where d1 = p′(n∞)
n2

∞
. We

see that as long as E
1
2
N(U) = ‖U‖HN is small so that

(a12 − n∞a11) > a11E
1
2
N(U),

(a22 − n∞a21) > a21E
1
2
N(U)

are satisfied, the linear combination yields

1
2

d
dt

∫
R3

(
d1|ρ|2+|u|2+|c1|2+|c2|2

)
dx + n∞

∫
R3
|ρ|2dx + δ

∫
R3
|∇u|2dx

+
∫

R3
|∇c1|2dx +

∫
R3
|∇c2|2dx + (a12 − n∞a11)

∫
R3
|c1|2dx + (a22 − n∞a21)

∫
R3
|c2|2dx

≤ 0. (3.28)

Now, we make estimates on the high-order derivatives of (ρ, u, c1, c2). Take α with 1 ≤ |α| ≤ N.
Applying ∂α to the first equation of (2.2), multiplying by ∂αρ and then integrating in x, we
have ∫

R3
∂αρ∂αρtdx + n∞

∫
R3

∂αρ∂α∇ · udx + n∞

∫
R3

∂αρ∂αρdx

= −
∫

R3
∂αρ∂α∇ · (ρu)dx−

∫
R3

∂αρ∂αρ2dx.

By using integration by parts and Cauchy-Schwarz inequality, we obtain

1
2

d
dt

∫
R3

(∂αρ)2 dx + n∞

∫
R3
|∂αρ|2dx + n∞

∫
R3

∂αρ∂α∇ · udx

=
∫

R3
∂αρ

α

∑
β=0

Cβ
α ∂β∇ · u∂α−βρdx +

∫
R3

∂αρ
α

∑
β=0

Cβ
α ∂βu · ∂α−β∇ρdx−

∫
R3

∂αρ∂αρ2dx

≤ C‖u‖HN

∫
R3
|∂αρ|2+C‖ρ‖HN

∫
R3
|∂αρ|2+|∂α∇u|2dx. (3.29)

Similarly for ∂αu, what follows from (2.2)2 is

1
2

d
dt

∫
R3

(∂αu)2 dx− δ
∫

R3
∂αu · ∂α∆udx +

p′(n∞)

n∞

∫
R3

∂αu · ∂α∇ρdx

= −
∫

R3
∂αu · ∂α(u · ∇u)dx +

∫
R3

∂αu · ∂α∇c2
1dx−

∫
R3

∂αu · ∂α∇c2
2dx

−
∫

R3
∂αu · ∂α(( p′(ρ+n∞)

ρ+n∞
− p′(n∞)

n∞
)∇ρ)dx.
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By using integration by parts and the Cauchy–Schwarz inequality, we have

1
2

d
dt

∫
R3

(∂αu)2 dx + δ
∫

R3
|∂α∇u|2dx− p′(n∞)

n∞

∫
R3

∂α∇ · u ∂αρ dx

≤ C‖u‖HN

∫
R3
|∂αu|2dx + C‖c1‖HN

∫
R3
(|∂αu|2+|∂α∇c1|2)dx

+ C‖c2‖HN

∫
R3
(|∂αu|2+|∂α∇c2|2)dx + C‖ρ‖HN

∫
R3
|∂αu|2dx + |∂αρ|2dx. (3.30)

Similarly, we estimate c1, c2 as follows:

1
2

d
dt

∫
R3
(∂αc1)

2 +
∫

R3
|∇∂αc1|2ds + (a12 − n∞a11)

∫
R3
|∂αc1|2ds

≤ C‖ρ‖HN

∫
R3
‖∂αc1|2ds + C‖c1‖HN

∫
R3
(|∂αc1|2+|∂αρ|2)ds, (3.31)

and
1
2

d
dt

∫
R3
(∂αc2)

2 +
∫

R3
|∇∂αc2|2ds + (a22 − n∞a21)

∫
R3
|∂αc2|2ds

≤ C‖ρ‖HN

∫
R3
‖∂αc2|2ds + C‖c2‖HN

∫
R3
(|∂αc2|2+|∂αρ|2)ds. (3.32)

Then, after taking the summation over 1 ≤ |α| 6 N and the combination (3.29)× d1 + (3.30) +
(3.31) + (3.32), we obtain

1
2

d
dt ∑

1≤|α|≤N
Cα

∫
R3
|∂α(ρ, u, c1, c2)|2+λ1 ∑

1≤|α|≤N

∫
R3
|∂α∇(u, c1, c2)|2dx

+ λ2 ∑
1≤|α|≤N

∫
R3
|∂α(ρ, c1, c2)|2dx ≤ 0, (3.33)

for some positive constants Cα, λ1 and λ2. Therefore (3.23) follows from the further linear
combination of (3.28) and (3.33) and the time integration over [0, T]. This completes the proof
of Lemma 3.2.

Now, we are ready to present the proof of Proposition 2.1.

Proof of Proposition 2.1. Choose a positive constant M = min{ε0, ε1}, where ε0 > 0 and ε1 > 0
are given in Lemma 3.1 and Lemma 3.2.

Let U0 ∈ HN(R3) satisfy ‖U0‖HN< M
2
√

C0+1 . Now, let us define

T = {t ≥ 0 : sup
0≤s≤t

‖U(s)‖HN≤ M}.

Since ‖U0‖HN≤ M
2
√

C0+1 ≤
M
2 < M ≤ ε0, then T > 0 holds from the local existence result. If T

is finite, from the definition of T, we have

sup
0≤s≤t

‖U‖HN= M. (3.34)

On the other hand, from a priori estimates, we have

sup
0≤s≤t

‖U(s)‖HN≤
√

C0‖U0‖HN≤
M
√

C0

2
√

C0 + 1
≤ M

2 ,

which is a contradiction to (3.34). Therefore, T = ∞ holds. This implies that the local solution
U(t) obtained in Lemma 3.1 can be extended to infinity in time. Thus, we have a global
solution (ρ, u, c1, c2)(t) ∈ C([0, ∞); HN). This completes the proof of Proposition 2.1.
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4 Linearized homogeneous system

In this section, to study the time-decay property of solutions to the nonlinear system (2.2), we
have to consider the following Cauchy problem arising from the system (2.2)–(2.3)

∂tρ + n∞∇ · u + n∞ρ = g1

∂tu− δ∆u + p′(n∞)
n∞
∇ρ = g2

∂tc1 − ∆c1 + (a12 − a11)c1 = g3

∂tc2 − ∆c2 + (a22 − a21)c2 = g4,

(4.1)

with initial data
(ρ, u, c1, c2)|t=0 = U0 = (ρ0, u0, c1,0, c2,0). (4.2)

Here, the nonlinear source term takes the form
g1 = −∇ · (ρu)− ρ2

g2 = −u · ∇u +∇c2
1 −∇c2

2 − ( p′(ρ+n∞)
ρ+n∞

− p′(n∞)
n∞

)∇ρ.

g3 = a11ρc1

g4 = a21ρc2.

(4.3)

To obtain the time-decay rates of the solution to the system (4.1) in the next section, we
are concerned with the following Cauchy problem for the linearized homogenous system
corresponding to (4.1) 

∂tρ + n∞∇ · u + n∞ρ = 0

∂tu− δ∆u + p′(n∞)
n∞
∇ρ = 0

∂tc1 − ∆c1 + (a12 − a11)c1 = 0

∂tc2 − ∆c2 + (a22 − a21)c2 = 0.

(4.4)

In this section, we always denote U1 = [ρ, u] as the solution to the linearized homogeneous
system {

∂tρ + n∞∇ · u + n∞ρ = 0

∂tu− δ∆u + p′(n∞)
n∞
∇ρ = 0,

(4.5)

with the initial data U1|t=0 = U1,0 = (ρ0, u0) in R3.

4.1 Representation of solutions

We first find the explicit representation of the Fourier transform of the solution U1 = [ρ, u] for
the system {

ρt + n∞∇ · u + n∞ρ = 0

ut − δ∆u + p′(n∞)
n∞
∇ρ = 0,

(4.6)

with initial data U1|t=0 = U1,0 = (ρ0, u0).
After taking the Fourier transform in x for the first equation of (4.6), we have

ρ̂t + n∞iξû + n∞ρ̂ = 0, (4.7)

with initial data ρ̂|t=0 = ρ̂0.
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Similarly, by taking the Fourier transform for the second equation of (4.6), we get

ût + δ|ξ|2û + p′(n∞)
n∞

iξρ̂ = 0, (4.8)

with initial data û|t=0 = û0.
Further, by taking the dot product of (4.8) with ξ̃, we have

ξ̃ · ût + δ|ξ|2ξ̃ · û + i p′(n∞)
n∞

ξ̃ · ξρ̂ = 0. (4.9)

Here and in the sequel we set ξ̃ = ξ
|ξ| for |ξ| 6= 0.

Then, we have {
ρ̂t + in∞ξ · û + n∞ρ̂ = 0

ξ̃ · ût + δ|ξ|2ξ̃ · û + i p′(n∞)
n∞

ξ̃ · ξρ̂ = 0.
(4.10)

We can rewrite (4.10) as
∂tÛ = A(ξ)Û, (4.11)

with Û(ξ, t) = (ρ̂(ξ, t), ξ̃ · û(ξ, t))T and

A(ξ) =

[
−n∞ −in∞|ξ|

−i p′(n∞)
n∞
|ξ| −δ|ξ|2

]
,

where T denotes the transpose of a row vector. Then,

det(A− λI) = λ2 + (δξ2 + n∞)λ + δn∞|ξ|2 + p′(n∞)|ξ|2 = 0.

The eigenvalues of the system are as follows

λ1 = −1
2
(δξ2 + n∞) +

1
2

√
(δξ2 + n∞)2 − 4|ξ|2(δn∞ + p′(n∞))

λ2 = −1
2
(δξ2 + n∞)−

1
2

√
(δξ2 + n∞)2 − 4|ξ|2(δn∞ + p′(n∞)).

Therefore, the eigenvectors corresponding to the eigenvalues λ of A(ξ) that satisfy (A −
λI)X = 0 are

v1 =

[
in∞|ξ|

−(n∞ + λ1)

]
and

v2 =

[
in∞|ξ|

−(n∞ + λ2)

]
.

From the work above, one can define the general solution of (4.10) as[
ρ̂

ξ̃ · û

]
=

[
in∞|ξ|eλ1t in∞|ξ|eλ2t

−(n∞ + λ1)eλ1t −(n∞ + λ2)eλ2t

] [
d1

d2

]
, (4.12)

where d1, d2 satisfy [
ρ̂|t=0

ξ̃ · û|t=0

]
=

[
in∞|ξ| in∞|ξ|

−(n∞ + λ1) −(n∞ + λ2)

] [
d1

d2

]
.

From this, we deduce that[
d1

d2

]
= 1

in∞|ξ|(λ1−λ2)

[
−(n∞ + λ2) −in∞|ξ|
(n∞ + λ1) in∞|ξ|

] [
ρ̂0

ξ̃ · û0

]
. (4.13)
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Therefore, we have[
ρ̂

ξ̃ · û

]
= 1

in∞|ξ|(λ1−λ2)

[
in∞|ξ|eλ1t in∞|ξ|eλ2t

−(n∞ + λ1)eλ1t −(n∞ + λ2)eλ2t

][
−(n∞ + λ2) −in∞|ξ|
(n∞ + λ1) in∞|ξ|

][
ρ̂0

ξ̃ · û0

]
. (4.14)

It is straightforward to obtain

ρ̂ =
(λ1 + n∞)eλ2t − (λ2 + n∞)eλ1t

(λ1 − λ2)
ρ̂0 − in∞

eλ1t − eλ2t

(λ1 − λ2)
ξ · û0 (4.15)

and

ξ̃ · û =
(n∞ + λ1)(n∞ + λ2)

in∞|ξ|

(
eλ1t − eλ2t

λ1 − λ2

)
ρ̂0 +

(λ1 + n∞)eλ1t − (λ2 + n∞)eλ2t

λ1 − λ2
ξ̃ · û0. (4.16)

Moreover, by taking the curl for the second equation of (4.6), we have

∇× ut − δ∇× ∆u +
p′(n∞)

n∞
∇×∇ρ = 0, (4.17)

since ∇×∇ρ = 0 implies
∂t(∇× u)− δ∇× ∆u = 0.

Taking the Fourier transform in x for the above equation, we have

∂t(ξ̃ × û) + δ|ξ|2(ξ̃ × û) = 0. (4.18)

Initial data is given as
(ξ̃ × û)|t=0 = ξ̃ × û0. (4.19)

By solving the initial value problem (4.18) and (4.19), we have

ξ̃ × û = e−δ|ξ|2t ξ̃ × û0. (4.20)

For t ≥ 0 and ξ ∈ R3 with |ξ| 6= 0, one has the decomposition û = ξ̃ ξ̃ · û− ξ̃ × (ξ̃ × û). It is
straightforward to get

û =
(n∞ + λ1)(n∞ + λ2)

in∞|ξ|2

(
eλ1t − eλ2t

λ1 − λ2

)
ξ · ρ̂0

+

(
(λ1 + n∞)eλ1t − (λ2 + n∞)eλ2t

λ1 − λ2

)
ξ̃ ξ̃ · û0 − e−δ|ξ|2t ξ̃ × (ξ̃ × û0). (4.21)

Then

û =
(n∞ + λ1)(n∞ + λ2)

in∞|ξ|

(
eλ1t − eλ2t

λ1 − λ2

)
ξ

|ξ| ρ̂0

+

(
(λ1 + n∞)eλ1t − (λ2 + n∞)eλ2t

λ1 − λ2

)
ξ ⊗ ξ

|ξ|2 û0 + e−δ|ξ|2t(I3 −
ξ ⊗ ξ

|ξ|2 )û0. (4.22)

After summarizing the above computations on the explicit representation of the Fourier
transform of the solution U1 = [ρ, u], we have[

ρ̂(ξ, t)
û(ξ, t)

]
= Ĝ(ξ, t)

[
ρ̂(ξ, 0)
û(ξ, 0)

]
.
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We can verify the exact expression of the Fourier transform Ĝ(ξ, t) of Green’s function G(ξ, t)=
etB as

Ĝ(ξ, t) =
[

Ĝ11 Ĝ12

Ĝ21 Ĝ22

]

=

 (λ1+n∞)eλ2t−(λ2+n∞)eλ1t

λ1−λ2
−in∞ξ eλ1t−eλ2t

(λ1−λ2)
(n∞+λ1)(n∞+λ2)ξ

in∞|ξ|2
(

eλ1t−eλ2t

λ1−λ2

)
(λ1+n∞)eλ1t−(λ2+n∞)eλ2t

λ1−λ2

ξ⊗ξ
|ξ|2 + e−δξ2t(I3 − ξ⊗ξ

|ξ|2 )

 . (4.23)

4.2 L2–Lq time-decay property

In this subsection, we use (4.23) to obtain the refined L2–Lq time-decay property for

U1 = (ρ, u) = etBU1,0,

where etB is the linear solution operator for t ≥ 0. For this, we need to find the time-frequency
pointwise estimate on ρ̂, û in the following lemma.

Lemma 4.1. Let U1 = [ρ, u] be the solution to the linear homogeneous system (4.6) with the initial
data U1|t=0 = (ρ0, u0). Then there exist constants ε > 0, λ > 0, C > 0 such that for all t > 0, |ξ| ≤ ε,

|ρ̂(ξ, t)| ≤ C(|ξ|2e−λ|ξ|2t + e−n∞λt)|ρ̂0(ξ)|+ C(|ξ|e−λ|ξ|2t + |ξ|e−n∞λt)|û0(ξ)|, (4.24)

|û(ξ, t)| ≤ C|ξ|(e−λ|ξ|2t + e−n∞λt)|ρ̂0(ξ)|+ C(e−λ|ξ|2t + |ξ|2e−n∞λt)|û0(ξ)|, (4.25)

and for all t > 0, |ξ| ≥ ε,
|ρ̂(ξ, t)| ≤ Ce−λt|ρ̂0(ξ), û0(ξ)|, (4.26)

|û(ξ, t)| ≤ Ce−λt|ρ̂0(ξ), û0(ξ)|. (4.27)

Proof. In order to obtain the upper bound of ρ̂(ξ, t) and û(ξ, t), we have to estimate Ĝ11, Ĝ12,
Ĝ21, and Ĝ22 in (4.23). To do so, we need to deal with the low frequency |ξ| ≤ ε and high
frequency |ξ| > ε. By using the definition of the eigenvalue, we can analyze the eigenvalue
for |ξ| → 0 as

λ1 ∼ −O(1)|ξ|2,

λ2 ∼ −n∞ + O(1)|ξ|2.

On the other hand, we have the leading orders of the eigenvalue for |ξ| → ∞ as

λ1 ∼ −O(1),

λ2 ∼ −δξ2 + O(1).

Now, we can estimate Ĝ(ξ, t) as follows: For |ξ| ≤ ε,

|Ĝ11| ≤ C(|ξ|2e−λ|ξ|2t + e−n∞λt),

|Ĝ12| ≤ |ξ|(e−λ|ξ|2t + e−n∞λt),

|Ĝ21| ≤ C|ξ|(e−λ|ξ|2t + e−n∞λt),

|Ĝ22| ≤ C(e−λ|ξ|2t + |ξ|2e−n∞λt) + Ce−δ|ξ|2t,

≤ C(e−λ|ξ|2t + |ξ|2e−n∞λt),
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and for |ξ| > ε

|Ĝ11| ≤ Ce−O(1)λt ≤ Ce−λt,

|Ĝ12| = |Ĝ21| ≤ Ce−λt,

|Ĝ22| ≤ Ce−δ|ξ|2t + Ce−O(1)t ≤ Ce−λt.

Since the real parts of the eigenvalues are negative except when ξ = 0, Ĝ decays exponentially
when the eigenvalues coalesce.

Therefore, after plugging the above computations into (4.15) and (4.22), it holds that

|ρ̂(ξ, t)| ≤ C(|ξ|2e−λ|ξ|2t + e−n∞λt)|ρ̂0(ξ)|+ C(|ξ|e−λ|ξ|2t + |ξ|e−n∞λt)|û0(ξ)|

and
|û(ξ, t)| ≤ C|ξ|(e−λ|ξ|2t + e−n∞λt)|ρ̂0(ξ)|+ C(e−λ|ξ|2t + |ξ|2e−n∞λt)|û0(ξ)|,

for |ξ| ≤ ε. This proves (4.24) and (4.25). Finally, (4.26) and (4.27) can be proven in the
completely same way as for (4.24) and (4.25). This completes the proof of Lemma 4.1.

Theorem 4.2. Let 2 ≤ q ≤ ∞, and let m ≥ 0 be an integer. Suppose that U1 = eBtU1,0 is the
solution to the Cauchy problem (4.6) with the initial data U1,0 = (ρ0, u0). Then U1 = [ρ, u] satisfies
the following time-decay property:

‖∇mρ(t)‖Lq ≤ C(1 + t)−
3
2 (1−

1
q )−

m+1
2 ‖ρ0, u0‖L1 + e−λt‖∇m+[3( 1

2−
1
q )]+(ρ0, u0)‖L2 , (4.28)

‖∇mu(t)‖Lq ≤ C(1 + t)−
3
2 (1−

1
q )−

m
2 ‖ρ0, u0‖L1 + e−λt‖∇m+[3( 1

2−
1
q )]+(ρ0, u0)‖L2 , (4.29)

for any t ≥ 0, where C = C(m, q) and [3( 1
2 −

1
q )]+ is defined as[

3
(

1
2
− 1

q

)]
+

=

{
0 if q = 2[
3
( 1

2 −
1
q

)]
− + 1 if q 6= 2

(4.30)

where [·]− denotes the integer part of the argument.

Proof. Take 2 ≤ q ≤ ∞ and an integer m ≥ 0. Set U1 = eBtU1,0. From the Hausdorff–Young
inequality,

‖∇mρ(t)‖Lq(R3
x)
≤ C‖|ξ|mρ̂(ξ, t)‖Lq ′(R3

ξ )

≤ C‖|ξ|mρ̂(ξ, t)‖Lq ′(|ξ|≤ε) + C‖|ξ|mρ̂(ξ, t)‖Lq ′(|ξ|≥ε), (4.31)

where 1
q +

1
q′ = 1.

We estimate the first term of (4.31) by using (4.24), as follows:

‖|ξ|mρ̂(ξ, t)‖q′

Lq ′(|ξ|≤ε)
≤ c

∫
|ξ|≤ε

[(|ξ|(m+2)q′e−λq′|ξ|2t + |ξ|mq′e−n∞λq′t)|ρ̂0(ξ)|q
′

+ c(|ξ|mq′+q′e−λq′|ξ|2t + |ξ|mq′+q′e−n∞λq′t)|û0(ξ)|q ′]dξ

≤ C sup
ξ

|ρ̂0|q ′
∫
|ξ|≤ε

(|ξ|(m+2)q′e−q′λ|ξ|2(1+t)+q′λ|ξ|2 + |ξ|mq′e−n∞λq′t)dξ

+ C sup
ξ̂

|û0|q ′
∫
|ξ|≤ε

(|ξ|(m+1)q′e−λq′|ξ|2(1+t)+λq′|ξ|2 + |ξ|(m+1)q′e−n∞λq′t)dξ

≤ C(1 + t)−
mq′+2q′+3

2 ‖ρ0‖q′

L1 + C(1 + t)−
mq′+q′+3

2 ‖u0‖q′

L1

+ Ce−n∞λq′t‖[ρ0, u0]‖q′

L1 .
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Thus,

‖|ξ|mρ̂(ξ, t)‖Lq′ (|ξ|≤ε) ≤ C(1 + t)−
3

2q′−
m+2

2 ‖ρ0‖L1 + C(1 + t)−
3

2q′−(
m+1

2 )‖u0‖L1

+ Ce−n∞λt‖[ρ0, u0]‖L1

≤ C(1 + t)−
3
2 [1−

1
q ]−

m+1
2 ‖[ρ0, u0]‖L1 . (4.32)

Now, we estimate the second term of (4.31) from (4.26) as

‖|ξ|mρ̂(ξ, t)‖Lq′ (|ξ|≥ε) ≤ C
[∫
|ξ|≥ε
|ξ|mq′e−q′λt|ρ̂0(ξ), û0(ξ)|q

′
dξ

] 1
q′

Now, take ε1 > 0 which is small enough. By the Hölder inequality 1
q′ =

1
2 +

2−q′
2q′ , we have

‖|ξ|mρ̂(ξ, t)‖Lq′ (|ξ|≥ε) ≤ C
[∫
|ξ|≥ε
|ξ|−(3+ε)( 2−q′

2 )|ξ|(3+ε)( 2−q′
2 )+mq′e−q′λt|ρ̂0(ξ), û0(ξ)|q ′dξ

] 1
q′

≤ Ce−λt
[∫
|ξ|≥ε
|ξ|−(3+ε)dξ

] 2−q′
2q′
[∫
|ξ|≥ε
|ξ|((3+ε)( 2−q′

2 )+mq′) 2
q′ |ρ̂0(ξ), û0(ξ)|

q′( 2
q′ )dξ

]( 1
q′ )(

q′
2 )

≤ Ce−λt‖|ξ|−(3+ε)‖
2−q′
2q′ ‖|ξ|(3+ε) 2−q′

2q′ +m
[ρ̂0(ξ), û0(ξ)]‖L2

≤ Ce−λt‖∇m+(3+ε) 2−q′
2q′ [ρ0, u0]‖L2

≤ Ce−λt‖∇m+3[ 1
q′−

1
2 ]+ [ρ0, u0]‖L2

≤ Ce−λt‖∇m+3[ 1
2−

1
q ]+ [ρ0, u0]‖L2 , (4.33)

after plugging (4.33) and (4.32) into (4.31) implies (4.28).
To prove (4.29), it similarly holds that

‖∇mu(t)‖Lq(R3
x)
≤ C‖|ξ|mû(ξ, t)‖Lq ′(R3

ξ )

≤ C‖|ξ|mû(ξ, t)‖Lq ′(|ξ|≤ε) + C‖|ξ|mû(ξ, t)‖Lq ′(|ξ|≥ε), (4.34)

where from (4.25), the first term is

‖|ξ|mû(ξ, t)‖q′

Lq′ (|ξ|≤ε)
≤ C

∫
|ξ|≤ε

(|ξ|mq′+q′(e−q′λ|ξ|2(t+1) + e−n∞λq′t)|ρ̂0(ξ)|q ′)dξ

+ C
∫

ξ≤ε
(|ξ|mq′e−λq′|ξ|2(t+1) + |ξ|(m+2)q′e−n∞λq′t)|û0(ξ)|q ′dξ

≤ C(1 + t)−
mq′+q′+3

2 ‖[ρ0‖q′

L1 + (1 + t)−
mq′+3

2 ‖u0‖q′

L1

+ Ce−n∞λq′t‖[ρ0, u0]‖q ′
L1 .

It follows that

‖|ξ|mû(ξ, t)‖Lq′ (|ξ|≤ε) ≤ C(1 + t)−
3

2q′−
m+1

2 ‖[ρ0‖L1

+ (1 + t)−
3

2q′−
m
2 ‖u0‖L1 + Ce−n∞λt‖[ρ0, u0]‖L1

≤ C(1 + t)−
3
2 [1−

1
q ]−

m+1
2 ‖ρ0‖L1 + (1 + t)−

3
2 [1−

1
q ]−

m
2 ‖u0‖L1

≤ C(1 + t)−
3
2 [1−

1
q ]−

m
2 ‖[ρ0, u0]‖L1 . (4.35)
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Similarly to obtaining (4.33), one has

‖|ξ|mû(ξ, t)‖Lq ′(|ξ|≥ε) ≤ Ce−λt‖∇m+3[ 1
2−

1
q ]+ [ρ0, u0]‖L2 . (4.36)

Thus, plugging (4.35) and (4.36) into (4.34) implies (4.29). This completes the proof of Theo-
rem 4.2.

Corollary 4.3. Assume that U1 = eBtU1,0 is the solution to the Cauchy problem (4.6) with initial data
U1,0 = [ρ0, u0]. Then U1 = [ρ, u] satisfies the following:

‖ρ(t)‖L2 ≤ C(1 + t)−
5
4 ‖[ρ0, u0]‖L1 + e−λt‖[ρ0, u0]‖L2 , (4.37)

‖u(t)‖L2 ≤ C(1 + t)−
3
4 ‖[ρ0, u0]‖L1 + e−λt‖[ρ0, u0]‖L2 , (4.38)

‖ρ(t)‖L∞ ≤ C(1 + t)−2‖[ρ0, u0]‖L1 + e−λt‖[ρ0, u0]‖Ḣ2 , (4.39)

‖u(t)‖L∞ ≤ C(1 + t)−
3
2 ‖[ρ0, u0]‖L1 + e−λt‖[ρ0, u0]‖Ḣ2 . (4.40)

5 Time-decay rates for the nonlinear system

In this section, we will prove (2.5)–(2.7) in Proposition 2.2. The main idea is to introduce a
general approach to combine the energy estimates and spectral analysis. We will apply the
linear L2 − Lq time-decay property of the linearized homogeneous system (4.4), studied in
the previous section, to the nonlinear case. We need the mild form of the original nonlin-
ear Cauchy problem (2.2). Throughout this section, we suppose that U = [ρ, u, c1, c2] is the
solution to the Cauchy problem (2.3) with initial data U0 = (ρ0, u0, c1,0, c2,0).

Then, by Duhamel’s principle, the solution U = [ρ, u, c1, c2] can be formally written as

U(t) = eBtU0 +
∫ t

0
e(t−s)B[g1, g2, g3, g4]ds, (5.1)

where eBtU0 is the solution to the Cauchy problem (4.1) with initial data U0 = (ρ0, u0, c1,0, c2,0).
Here, the nonlinear source term takes the form (4.3).

5.1 Time rate for the energy functional and high-order energy functional

In this subsection, we will prove the time-decay rate for the energy functional ‖U(t)‖2
HN and

the time-decay rate for the high-order energy functional ‖∇U(t)‖2
HN . For that, we investigate

the time-decay rates of solutions in Proposition 2.1 under extra conditions on the given initial
data U0 = [ρ0, u0, c1,0, c2,0]. We define

εHN (U0) = ‖U0‖HN + ‖[ρ0, u0]‖L1 , (5.2)

for an integer N ≥ 4. We also define ENU(t) ∼ ‖[ρ, u, c1, c2]‖2
HN as the energy functional and

DNU(t) ∼ ‖[∇(u, c1, c2)]‖2
HN , Dh

NU(t) ∼ ‖[ρ, c1, c2]‖2
HN as the dissipation rates.

First, we start with this proposition for the energy functional and the high-order energy
functional.
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Proposition 5.1. Let U = [ρ, u, c1, c2] be the solution to the Cauchy problem (2.2) with initial data
U0 = (ρ0, u0, c1,0, c2,0). If εN+1(U0) > 0 is small enough, then the solution U = [ρ, u, c1, c2] satisfies

‖U(t)‖HN ≤ εN+1(U0)(1 + t)
−3
4 , (5.3)

and
‖∇U(t)‖HN ≤ εN+1(U0)(1 + t)

−5
4 , (5.4)

for any t ≥ 0.

Proof. Suppose εN+1(U0) is sufficiently small. From Proposition 2.1 the solution U=[ρ, u, c1, c2]

satisfies:
d
dt
EN(U(t)) + λ1DN(U(t)) + λ2Dh

N(U(t)) ≤ 0, (5.5)

for t ≥ 0.
Now, we proceed by making the time-weighted estimate and iteration for the inequality

(5.5). Let l ≥ 0. Multiplying (5.5) by (1 + t)l and integrating over [0, t] gives

(1 + t)lENU(t) + λ1

∫ t

0
(1 + s)lDN(U(s))ds + λ2

∫ t

0
(1 + s)lDh

N(U(s))ds

≤ EN(U0) + l
∫ t

0
(1 + s)l−1ENU(s)ds

≤ EN(U0) + Cl
∫ t

0
(1 + s)l−1(DN−1U(s) +Dh

N(U(s)) + ‖u(s)‖2
L2)ds,

where we have used

ENU(t) ≤ CDN−1U(t) + CDh
N(U(t)) + ‖u(t)‖2

L2 .

Using (5.5) again, we have

EN+1(U(t)) + λ1

∫ t

0
DN+1(U(t)) + λ2

∫ t

0
Dh

N+1(U(t)) ≤ EN+1(U0),

and

(1 + t)l−1EN+1U(t) + λ1

∫ t

0
(1 + s)l−1DN+1(U(s))ds + λ2

∫ t

0
(1 + s)l−1Dh

N+1(U(s))ds

≤ EN+1(U0) + C(l − 1)
∫ t

0
(1 + s)l−2EN+1U(s)ds

≤ EN+1(U0) + C(l − 1)
∫ t

0
(1 + s)l−2(DNU(s) + CDh

N+1(U(s)) + ‖u(s)‖2
L2)ds.

By iterating the above estimates for 1 < l < 2, we have

(1 + t)lENU(t) + λ1

∫ t

0
(1 + s)lDN(U(s))ds + λ2

∫ t

0
(1 + s)lDh

N(U(s))ds

≤ EN+1(U0) + C
∫ t

0
(1 + s)l−1‖u(s)‖2

L2 ds. (5.6)

To estimate the integral term on the right-hand side of (5.6), let us define

EN,∞(U(t)) = sup
0≤s≤T

(1 + t)
3
2 ENU(t).
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Now, we estimate the integral term on the right-hand side of (5.6) by applying the linear
estimate on u in (4.38) to the mild form (5.1), giving us

‖u(t)‖L2 ≤ C(1 + t)
−3
4 ‖ρ0, u0‖L1 + Ce−λt‖ρ0, u0‖L2

+ C
∫ t

0
(1 + t− s)

−3
4 ‖g1, g2‖L1 ds + C

∫ t

0
e−λ(t−s))‖g1, g2‖L2 ds. (5.7)

Recall the definitions (4.3) of g1 and g2. It is direct to check that for any 0 ≤ s ≤ t,

‖g1(s), g2(s)‖L1∩L2 ≤ CENU(t) ≤ C(1 + s)
−3
2 EN,∞U(t),

where
EN,∞(U(t)) = sup

0≤s≤T
(1 + t)

3
2 ENU(t).

Putting the above inequalities into (5.7), gives

‖u(t)‖L2 ≤ C(1 + t)
−3
4 (‖ρ0, u0‖L1∩L2 + EN,∞U(t)). (5.8)

Next, we prove the uniform-in-time boundedness of EN,∞U(t) which yields the time-decay
rates of the energy functional ENU(t). In fact, by taking l = 3

2 + ε in (5.6) where ε > 0 is
sufficiently small, it follows that

(1 + t)
3
2+εENU(t) + λ1

∫ t

0
(1 + s)

3
2+εDN(U(s))ds + λ2

∫ t

0
(1 + s)

3
2+εDh

N(U(s))ds

≤ EN+1(U0) + C
∫ t

0
(1 + s)

1
2+ε‖u(s)‖2

L2 ds.

Here, using (5.10) and the fact that EN,∞(U(t)) is non-decreasing in t, it further holds that∫ t

0
(1 + s)

1
2+ε‖u(t)‖2

L2 ds ≤ C(1 + t)ε(E2
N,∞U(t)) + ‖ρ0, u0‖2

L1∩L2).

Therefore, it follows that

(1 + t)
3
2+εENU(t) + λ1

∫ t

0
(1 + s)

3
2+εDN(U(s))ds + λ2

∫ t

0
(1 + s)

3
2+εDh

N(U(s))ds

≤ EN+1(U0) + C(1 + t)ε(E2
N,∞U(t)) + ‖ρ0, u0‖2

L1∩L2),

which implies

(1 + t)
3
2 ENU(t) ≤ C(EN+1(U0) + ‖ρ0, u0‖2

L1 + E2
N,∞U(t)),

and thus

EN,∞U(t) ≤ C(ε2
N+1(U0) + E2

N,∞U(t)).

Since εN+1(U0) > 0 is sufficiently small, it holds that EN,∞U(t)) ≤ Cε2
N+1(U0) for any t ≥ 0,

which gives ‖U(s)‖HN ≤ C(ENU(t))
1
2 ≤ CεN+1(U0)(1 + t)−

3
4 . This proves (5.3).

Now, we estimate the high-order energy functional. By comparing the definitions of
ENU(t), DNU(t) and Dh

NU(t), it follows from (5.5) that we have

d
dt
‖∇U(t)‖2

HN + λ‖∇U(t)‖2
HN ≤ C‖∇u(t)‖2

L2 ,
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which implies

‖∇U(t)‖2
HN ≤ e−λt‖∇U0‖2

HN + C
∫ t

0
e−λ(t−s)‖∇u(s)‖2

L2 ds, (5.9)

for any t ≥ 0.
Similarly to obtaining (5.8), we estimate the time integral term on the (r.h.s.) of the above

inequality. One can apply the linear estimate (4.29) to the mild form (5.1) so that

‖∇u(t)‖L2 ≤ C(1 + t)
−5
4 ‖ρ0, u0‖L1 + Ce−λt‖[ρ0, u0]‖Ḣ1

+ C
∫ t

0
(1 + t− s)

−5
4 ‖[g1(s), g2(s)]‖L1 ds + C

∫ t

0
e−λ(t−s)‖[g1(s), g2(s)]‖Ḣ1 ds. (5.10)

Recall the definition (4.3) of g1 and g2. It is straightforward to check that for any 0 ≤ s ≤ t,

‖[g1(s), g2(s)]‖L1∩Ḣ1 ≤ CENU(s) ≤ Cε2
N+1(U0)(1 + s)

−3
2 .

Putting this into (5.10) gives

‖∇u(t)‖L2 ≤ CεN+1(U0)(1 + t)
−5
4 . (5.11)

Then, by using (5.11) in (5.9), we have

‖∇U(t)‖2
HN ≤ e−λt‖∇U0‖2

HN + Cε2
N+1(U0)(1 + t)

−5
2 ,

which implies (5.4). The proof of Proposition 5.1 is complete.

5.2 Time-decay rate in Lq

In this subsection, we will prove Proposition 2.2 for time-decay rates in Lq with 2 ≤ q ≤ ∞
corresponding to (1.4)–(1.6) in Theorem 1.1. For N ≥ 4, Proposition 5.1 shows that if εN+1(U0)

is small enough,
‖U(s)‖HN ≤ CεN+1(U0)(1 + t)−

3
4 , (5.12)

and
‖∇U(t)‖HN ≤ CεN+1(U0)(1 + t)

−5
4 . (5.13)

Now, let us establish the estimates on u, ρ as follows.
Estimate on ‖u(t)‖Lq . For the L2 rate, it is easy to see from (5.8) and (5.12) that

‖u(t)‖L2 ≤ CεN+1(U0)(1 + t)
−3
4 ≤ C(1 + t)

−3
4 .

For the L∞ rate, by applying the L∞ linear estimate on u in (4.40) to the mild form (5.1), we
have

‖u(t)‖L∞ ≤ C(1 + t)
−3
2 ‖ρ0, u0‖L1 + Ce−λt‖∇2[ρ0, u0]‖L2

+ C
∫ t

0
(1 + t− s)

−3
2 ‖[[g1(s), g2(s)]‖L1 ds + C

∫ t

0
e−λ(t−s)‖∇2[g1(s), g2(s)]‖L2 ds

≤ C(1 + t)
−3
2 ‖ρ0, u0‖L1∩Ḣ2 + C

∫ t

0
(1 + t− s)

−3
2 ‖[g1(s), g2(s)]‖L1∩Ḣ2 ds. (5.14)

Since by (5.12) and (5.13)

‖[g1(s), g2(s)]‖L1∩Ḣ2 ≤ C‖∇U(t)‖HN‖U(s)‖HN ≤ Cε2
N+1(U0)(1 + s)−2,
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it follows that
‖u(t)‖L∞ ≤ CεN+1(U0)(1 + t)

−3
2 .

Then, by L2 − L∞ interpolation,

‖u‖Lq ≤ CεN+1(U0)(1 + t)
−3
2 + 3

2q (5.15)

for 2 ≤ q ≤ ∞.
Estimate on ‖ρ(t)‖Lq . For the L2 rate, utilizing the L2 estimate on ρ in (4.37) to (5.1), we have

‖ρ(t)‖L2 ≤ C(1 + t)
−5
4 ‖ρ0, u0‖L1 + Ce−λt‖ρ0, u0‖L2 + C

∫ t

0
(1 + t− s)

−5
4 ‖g1, g2‖L1 ds

+ C
∫ t

0
e−λ(t−s)‖g1(s), g2(s)‖L2 ds. (5.16)

Due to (5.12),
‖g1(s), g∗2(s)‖L1∩L2 ≤ C‖U(s)‖2

HN ≤ Cε2
N+1(U0)(1 + t)

−3
2 .

Then (5.16) implies the slower decay estimate

‖ρ(t)‖L2 ≤ CεN+1(U0)(1 + t)
−5
4 ≤ C(1 + t)

−5
4 . (5.17)

For the L∞ rate, utilizing the L∞ estimate on ρ in (4.39) to (5.1), we have

‖ρ(t)‖L∞ ≤ (1 + t)−2‖ρ0, u0‖L1∩Ḣ2 + C
∫ t

0
(1 + t− s)−2‖[g1(s), g2(s)]‖L1∩Ḣ2 ds. (5.18)

Since by (5.12) and (5.13)

‖[g1(s), g2(s)]‖L1∩Ḣ2 ≤ C‖∇U(t)‖HN‖U(s)‖HN ≤ Cε2
N+1(U0)(1 + s)−2,

which yields from (5.18) that

‖ρ(t)‖L∞ ≤ CεN+1(U0)(1 + s)−2.

Therefore, by L2 − L∞ interpolation,

‖ρ(t)‖Lq ≤ CεN+1(U0)(1 + s)−2+ 3
2q (5.19)

for 2 ≤ q ≤ ∞.
Next, we estimate the time-decay rate of [c1, c2]. We start with the estimate on ‖c1(t)‖Lq .

For the L2 rate,

‖c1‖L2 ≤ C‖ĉ1‖L2(ξ) (5.20)

≤ C
[∫

ξ
e−2(|ξ|2+(a12−a11n∞))t|ĉ0|2dξ

] 1
2

+ a11

∫ t

0

[∫
ξ
[e−2(|ξ|2+(a12−a11n∞))(t−s)| ˆρc1|2dξ

] 1
2

ds

≤ e−(a12−a11n∞)t
[∫

ξ
e−2|ξ|2(t)|ĉ0|2dξ

] 1
2

+C
∫ t

0
e−(a12−a11n∞)(t−s)

[∫
ξ

e−2|ξ|2(t−s+1)| ˆρc1|2dξ

] 1
2

ds

≤ Ce−(a12−a11n∞)t‖ĉ0‖L2 + C
∫ t

0
e−(a12−a11n∞)(t−s) sup

ξ

e−|ξ|
2(t−s+1)‖ρc1(s)‖L2 ds (5.21)

Due to (5.12),
‖ρc1(s)‖L2 ≤ C‖U(s)‖2

N ≤ Cε2
N+1(U0)(1 + t)

−3
2 .
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Then (5.20) implies the slower decay estimate

‖c1‖L2 ≤ CεN+1(U0)(1 + t)
−3
2 . (5.22)

Similarly, we have
‖c2‖L2 ≤ CεN+1(U0)(1 + t)

−3
2 . (5.23)

For L∞ rate, from the Hausdorff–Young inequality and the Hölder inequality, we have

‖c1‖L∞ ≤ C‖ĉ1‖L1 ≤ C
∫

ξ≤ε
e−(|ξ|

2+(a12−a11n∞))t|ĉ1,0|dξ

+ C
∫ t

0

∫
ξ≤ε

e−(|ξ|
2+(a12−a11n∞))(t−s)| ˆρc1|dξds

+ C
∫
|ξ|≥ε

e−(a12−a11n∞))t|ĉ1,0|dξ + C
∫ t

0

∫
|ξ|≥ε

e−(a12−a11n∞))(t−s)| ˆρc1|dξds

≤ Ce−(a12−a11n∞)t(1 + t)
−3
2 ‖c0‖L1 + C

∫ t

0
e−(a12−a11n∞)(t−s)‖ ˆρc1(s)‖L1

+ Ce−(a12−a11n∞))t
[∫
|ξ|≥ε
|ξ|−4dξ

] 1
2
[∫
|ξ|≥ε
|ξ|4|ĉ1,0|2dξ

] 1
2

+ C
∫ t

0
e−(a12−a11n∞))(t−s)

[∫
|ξ|≥ε
|ξ|−4dξ

] 1
2
[∫
|ξ|≥ε
|ξ|4| ˆρc1|2dξ

] 1
2

ds

≤ Ce−(a12−a11n∞)t(1 + t)
−3
2 ‖c0‖L1 + C

∫ t

0
e−(a12−a11n∞)(t−s)‖ρc1(s)‖L1 ds

+ Ce−(a12−a11n∞))t‖∇2c0‖L2 + C
∫ t

0
e−(a12−a11n∞)(t−s)‖∇2(ρc1(s))‖L2 ds (5.24)

Since by (5.12)
‖ρc1(s)‖L1∩Ḣ2 ≤ C‖U(s)‖2

N ≤ Cε2
N+1(U0)(1 + t)

−3
2 .

Then, (5.24) implies the slower decay estimate

‖c1‖L∞ ≤ CεN+1(U0)(1 + t)
−3
2 . (5.25)

Similarly, we have
‖c2‖L∞ ≤ CεN+1(U0)(1 + t)

−3
2 . (5.26)

So, by L2 − L∞ interpolation,

‖c1, c2‖Lq ≤ CεN+1(U0)(1 + t)
−3
2 , (5.27)

for 2 ≤ q ≤ ∞.
This completes the proof of Proposition 2.2 and hence Theorem 1.1.

6 Conclusion

We have studied a chemotaxis model where a compressible fluid model for cells and a diffu-
sive Lotka–Volterra model for chemoattractants and repellents are used. The previous results
for chemotaxis are mostly extensions of the Keller and Segel model or in the case of fluid
dynamical models, the incompressible fluid models for the cells are used. We showed the
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existence of global solutions and their asymptotic behavior in three dimensions with the ini-
tial data as a small perturbation of the constant state (n∞, 0, 0, 0). Our method is based on
the basic energy estimates used for the a priori estimates and the iterative method in solving
the Cauchy problem (1.1). Moreover, we have also shown the decay estimates of solutions
to the Cauchy problem (1.1) in R3, in which the detailed analysis of Green’s functions of
the linear system is combined with the refined energy estimates with the help of Duhamel’s
principle. We proved the decay property of solutions as time goes to infinity. Our results are
complementary to Ambrosi, Bussolino and Preziosi [2], where the modeling aspects such as
qualitative analysis and numerical simulations of the compressible fluid model for cells with
chemoattractants are examined for vasculogenesis.
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