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Abstract. We consider a nonlocal discrete nonlinear Schrödinger equation with delays.
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1 Introduction

Discrete Schrödinger equations are widely used as models in Physics and other branches
of science (see, e.g., [3, 6, 11, 12, 14, 19] and the references therein). These discrete equations
belong to a large class of lattice dynamical systems which has been the object of extensive
research (see, for example, [4,5,7,9,12,13,19,22] and the references therein). Various properties
related to the dynamics of such systems have been studied. Among them, the existence of
global attractors is a theme which attracts a great deal of attention. However, most of the
contributions in this line of research addressed to discrete Schrödinger models are concerned
the discrete nonlinear Schrödinger equation (DNLS). In this paper, our main aim is to prove
the existence of a pullback attractor for a nonlocal discrete nonlinear Schrödinger equation
when delay terms are considered. The model is written as follows

iu̇n(t) +
+∞

∑
m=−∞

J(n−m)um(t) + gn(t, unt) + iγun(t) = fn(t), t > τ, n ∈ Z,

un(s) = ψn(s− τ), ∀s ∈ [τ − h, τ],

(1.1)

where τ, h, and γ are real numbers with h > 0 and γ > 0. In (1.1), un(t), fn(t), and ψn

are complex functions and unt denotes the translation of un at time t, defined by unt(s) =

un(t + s), ∀s ∈ [−h, 0]. The dispersive coupling parameters J(m) are assumed to be real
numbers, symmetric (i.e., J(−m) = J(m), for all positive integer m) and ∑+∞

m=1 |J(m)| < +∞.
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This includes important special cases as J(m) = J0e−β|m| and J(m) = J0|m|−s, where J0, β, and
s are positive real constants suitably chosen [8].

We assume that the nonlinear term gn(t, unt) in (1.1) includes delay terms as follows

gn(t, unt) = g0,n(un(t)) + g1,n(un(t− ρ(t)) +
∫ 0

−h
bn(s, un(t + s)) ds. (1.2)

Appropriate hypotheses on the functions ρ : R → [0, h], gi,n : C → C, i = 0, 1, bn :
[0, h]×C→ C, and fn(t) are stated in Section 2.

Specific deterministic cases of equation (1.1) have been used in the study of physical phe-
nomena in which long-range dispersive interactions cannot be disregarded (see the physical
discussions in [8]). An example is the model proposed in [17] for the description of the non-
linear dynamics of the DNA molecule.

A class of discrete Schrödinger equations of great importance is

iu̇n(t) + ∆p
dun(t) + gn(t, unt) + iγun(t) = fn(t), (1.3)

where ∆p
d = ∆d ◦ · · · ◦ ∆d, p times, and ∆d is the one-dimensional discrete Laplace operator

defined by ∆dun = un+1 + un−1 − 2un. Equation (1.3) can be derived from (1.1) by choosing
the coupling parameters J(m) as

J(m) =
2p

∑
j=0

(
2p
j

)
(−1)jδm,j−p,

where p is any positive integer and δm,k is the Kronecker delta.
Many contributions on existence and properties of solutions of the DNLS equation (i.e,

(1.3) with p = 1, g1,n = bn = 0) and fn independent of time can be found in the literature
(see, e.g., [3, 4, 11, 19] and references therein). For example, the existence and approximation
of attractors for the DNLS equation were investigated in [11] while the existence of attractors
for the DNLS with retarded terms was studied in [4]. Concerning equation (1.1), in [19],
the authors studied the existence of localized solutions for the homogeneous case without
delays. Later, also for the autonomous deterministic model, the existence of a global attractor
in weighted spaces was established in [20]. For the existence of attractors for some non-
autonomous lattice dynamical systems with retarded terms of the type (1.2) and references
about related works we refer the reader to the article [2]. Still concerning lattice models with
nonlocal terms, we would like to mention the papers [1, 10, 15, 18, 21].

In this paper, under suitable conditions on the functions ρ, gi,n, i = 0, 1, bn, and fn, we
prove the existence of a pullback attractor for the process associated with problem (1.1). As a
consequence of our discussion, the existence of a global attractor for the autonomous model
is derived.

The paper is organized as follows. In Section 2, we prove that the initial value problem
(1.1) is globally well posed. In Section 3, we establish the existence of a pullback attractor
for the process associated with problem (1.1) using the results in [16]. Finally, in Section 4,
we briefly show how the same ideas of the previous sections can be adapted to prove the
existence of a global attractor for the autonomous model.
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2 Existence of solutions

In this section, we discuss the existence of solutions for the problem (1.1). We denote by `p

the usual space of complex sequences u = (un)n∈Z such that ‖u‖`p < ∞, where

‖u‖`p =

(
+∞

∑
n=−∞

|un|p
) 1

p

, if 1 ≤ p < ∞ and ‖u‖`∞ = sup
n∈Z

|un|, if p = ∞.

When p = 2, `2 is a Hilbert space with the inner product given by

(u, v)`2 =
+∞

∑
n=−∞

unvn, u, v ∈ `2,

and, in this case, we denote by ‖ · ‖ the corresponding norm.
For 1 ≤ p < ∞, Lp(−h, 0) denotes the usual Banach space of (class of ) real functions f

defined on [−h, 0] such that | f |p is integrable in sense of Lebesgue and we recall that for the
`p spaces the following embedding relation holds:

`q ⊂ `p, ‖u‖`p ≤ ‖u‖`q , 1 ≤ q ≤ p ≤ ∞.

Regarding the functions gi,n : C → C, i = 0, 1, bn : [−h, 0]×C → C , f = ( fn(t))n∈Z, and
ρ(t) in (1.1) and (1.2) we assume that

(A1) zg0,n(z) is real for all z ∈ C and n ∈ Z.

(A2) There exist a function κ ∈ L2(−h, 0) and functions b0,n : C→ C such that

|bn(s, z1)− bn(s, z2)| ≤ κ(s)|b0,n(z1)− b0,n(z2)|,

∀s ∈ [−h, 0] and ∀z1, z2 ∈ C. We set κ2
0 :=

∫ 0
−h |κ(s)|

2 ds.

(A3) For every R > 0 there exist positive constants Lj(R), j = 1, 2, such that

|gi,n(z1)− gi,n(z2)| ≤ L1(R) |z1 − z2|, i = 0, 1,

|b0,n(z1)− b0,n(z2)| ≤ L2(R) |z1 − z2|,

for any n ∈ Z and any z1, z2 ∈ C such that |zj| ≤ R, j = 1, 2. Moreover, (g0,n(0))n∈Z ∈ `2.

(A4) There exist sequences of real numbers k1 = (k1,n)n∈Z ∈ `∞, k2 = (k2,n)n∈Z ∈ `2 and
non-negative real functions β1,n(·) ∈ L2(−h, 0) and β2,n(·) ∈ L1(−h, 0) such that

|g1,n(z)| ≤ k1,n|z|+ k2,n and |bn(s, z)| ≤ β1,n(s)|z|+ β2,n(s),

for all n ∈ Z, s ∈ [−h, 0], and z ∈ C. We set K1 = ‖k1‖`∞ , K2 = ‖k2‖, and

B1 = sup
n∈Z

(∫ 0

−h
β2

1,n(s) ds
)1/2

< ∞, B2 =

[
+∞

∑
n=−∞

(∫ 0

−h
b2,n(s) ds

)2
]1/2

< ∞.

(A5) f ∈ C(R; `2).

(A6) ρ ∈ C(R; [0, h]).

(A7)
∫ t
−∞ ‖ f (s)‖2 ds < ∞, ∀t ∈ R.



4 J. M. Pereira

Example 2.1. Let 0 6= χ = (χn)n∈Z ∈ `p, for some 1 ≤ p ≤ ∞, and ϕ1 : R → R defined by
ϕ1(t) = t2

a+bt2 , where a and b are positive real constants. Also define the functions g1,n : C→ C,
b0,n : C→ C and bn : [−h, 0]×C→ C by

g1,n(z) = b0,n(z) = χn ϕ1(|z|) z,

bn(s, z) = χn ϕ1(|z|) z
1
h
(s + h), ∀n ∈ Z, s ∈ [−h, 0] and z ∈ C.

Then, the hypotheses (A2)–(A4) are satisfied with

L1(R) = L2(R) =
(

1
b
+

R√
ab

)
‖χ‖`p ,

κ(s) =
1
h
(s + h), k1,n =

1
b
|χn|, k2,n = 0, β1,n(s) =

1
bh
|χn|(s + h), and β2,n = 0.

Conditions (A1) and (A3) concerning g0,n are satisfied, for example, if g0,n(z) = χn ϕ2(|z|)z,
with χn as before and any ϕ2 ∈ C1(R+; R), such that ϕ2(0) = 0.

Now let us write (1.1) as an evolution equation with a retarded term in `2. For any
u = (un)n∈Z we define (Au)n = ∑+∞

m=−∞ J(n−m)um, ∀n ∈ Z.

Lemma 2.2. A : `2 → `2 is a bounded operator and ‖Au‖ ≤ 4‖J‖`1‖u‖, ∀u ∈ `2.

Proof. See Lemma 2.1 in [20].

We consider the space Eh = C([−h, 0]; `2) with the usual norm given by ‖u‖Eh =

maxs∈[−h,0] ‖u(s)‖ and define the map g : R × Eh → `2 by (g(t, v))n∈Z = gn(t, vn), where
v(s) = (vn(s))n∈Z, for any s ∈ [−h, 0], and

gn(t, vn) = g0,n(vn(0)) + g1,n(vn(−ρ(t))) +
∫ 0

−h
bn(s, vn(s)) ds.

If we set ut = (unt)n∈Z for any t ≥ τ, then we can write the initial value problem (1.1) in
`2 as

iu̇(t) + Au(t) + g(t, ut) + iγu(t) = f (t), t > τ,

u(s) = ψ(s− τ), ∀s ∈ [τ − h, τ],
(2.1)

where ψ(s) = (ψn(s))n∈Z, for any s ∈ [−h, 0].
We now define the map B : R× Eh → `2 by

B(t, v) = −i
[
Av(0) + g(t, v) + iγv(0)− f (t)

]
.

Then, problem (2.1) can be rewritten as the following functional equation in `2

du
dt

+ B(t, ut) = 0, t > τ

uτ = ψ.
(2.2)

The following two lemmas are sufficient to ensure the existence of a local solution for (2.1).
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Lemma 2.3. Assume that (A2)–(A6) hold. Then the map B is continuous and satisfies the local
Lipschitz condition: For any v, w ∈ Eh, with ‖v‖Eh ≤ R and ‖w‖Eh ≤ R, there exists a positive
constant L = L(R) such that

‖B(t, v)−B(t, w)‖ ≤ L ‖v− w‖Eh , ∀t ∈ R.

Proof. Using (A2)–(A6) we see that B is well defined. Fix (t, v) ∈ R× Eh and consider tm → t
in R and vm → v in Eh. We have that

‖B(tm, vm)−B(t, v)‖ ≤ ‖A(vm(0)− v(0))‖+ ‖g(tm, vm)− g(t, v)‖
+ γ‖vm(0)− v(0)‖+ ‖ f (tm)− f (t)‖.

(2.3)

Since the sequence (vm)m∈N is bounded in Eh, then using the assumptions (A2), (A3), and
(A6) we can find a positive constant L depending only on ‖v‖Eh such that

‖g(tm, vm)− g(t, v)‖2 ≤ 4
+∞

∑
n=−∞

|g0,n(vm
n (0))− g0,n(vn(0))|2

+ 4
+∞

∑
n=−∞

|g1,n(vm
n (−ρ(tm)))− g1,n(vn(−ρ(t)))|2

+ 4
+∞

∑
n=−∞

(∫ 0

−h
|bn(s, vm

n (s))− bn(s, vn(s))| ds
)2

≤ 8 L2‖vm − v‖2
Eh
+ 4 L2

+∞

∑
n=−∞

(∫ 0

−h
|κ(s)| |vm

n (s)− vn(s)| ds
)2

.

(2.4)

Using the Cauchy–Schwarz inequality and the fact that ‖vm − v‖Eh < ∞ we can estimate
the last term in (2.4) as follows

+∞

∑
n=−∞

(∫ 0

−h
|κ(s)| |vm

n (s)− vn(s)| ds
)2

ds ≤ κ2
0

+∞

∑
n=−∞

∫ 0

−h
|vm

n (s)− v(s)|2 ds

≤ κ2
0

∫ 0

−h

+∞

∑
n=−∞

|vm
n (s)− v(s)|2 ds ≤ κ2

0‖vm − v‖2
Eh

h.

(2.5)

From (2.3), (2.4), (2.5), (A5), and Lemma 2.2 we deduce the continuity of B. In a similar
manner we prove the Lipschitz condition.

Lemma 2.4. Assume that (A2)–(A6) hold. Then the map B is bounded, i.e., it takes bounded subsets
of R× Eh onto bounded subsets of `2.

Proof. Let O be a bounded subset of R× Eh. Then, there exists a positive constant R such that
|t|2 + ‖v‖2

Eh
≤ R2, ∀(t, v) ∈ O. Using Lemma 2.3 we find a positive constant L = L(R) such

that

‖B(t, v)‖ ≤ ‖B(t, v)−B(t, 0)‖+ ‖B(t, 0)‖
≤ LR + max

|t|≤R
‖B(t, 0)‖ < ∞, ∀(t, v) ∈ O.

Using Lemmas 2.3, 2.4 and applying the Theory of Functional Equations to problem (2.2)
we deduce the following result of existence of local solution for (2.1).
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Theorem 2.5. Assume that (A2)–(A6) hold. Then, for each ψ ∈ Eh, the initial value problem (2.1)
has a unique solution u = u(t) defined in [τ − h, T) such that u ∈ C([τ − h, T); `2) ∩ C1([τ, T); `2).
Moreover, if T < ∞ then limt→T− ‖u(t)‖ = ∞.

Next let us show that the local solution obtained in Theorem 2.5 can be extended globally.

Lemma 2.6. Assume that (A1)–(A6) hold. Then the solution u of (2.1) with uτ = ψ ∈ Eh satisfies

1
2

d
dt
‖u(t)‖2 +

γ

2
‖u(t)‖2 ≤ 1

2γ
‖ f (t)‖2 + (K1‖u(t− ρ(t))‖+ K2)‖u(t)‖

+

[
B1

(∫ 0

−h
‖u(t + s)‖2 ds

)1/2

+ B2

]
‖u(t)‖, τ ≤ t < T.

(2.6)

Proof. Taking the imaginary part of the inner product of equation (2.1) with u in `2, we obtain

1
2

d
dt
‖u(t)‖2 + Im(Au(t), u(t))`2 + γ‖u(t)‖2 + Im(g(t, ut), u(t))`2 = Im( f (t), u(t))`2 ,

for all τ ≤ t < T. Since

Im( f (t), u(t))`2 ≤ 1
2γ
‖ f (t)‖2 +

γ

2
‖u(t)‖2,

(Au(t), u(t))`2 = J(0)‖u(t)‖2 + 2
+∞

∑
m=1

+∞

∑
n=−∞

J(m)Re(un+m(t)un(t)),

then, using (A1), we get the inequality

1
2

d
dt
‖u(t)‖2 +

γ

2
‖u(t)‖2 ≤ 1

2γ
‖ f (t)‖2 − Im

+∞

∑
n=−∞

g1,n(un(t− ρ(t)))un

− Im
+∞

∑
n=−∞

∫ 0

−h
bn(s, un(t + s)) ds un, τ ≤ t < T.

(2.7)

Let us estimate the last two terms in (2.7) using the assumption (A4) and the fact that
‖ut‖Eh < ∞, ∀τ ≤ t < T. We have that

− Im
+∞

∑
n=−∞

g1,n(un(t− ρ(t)))un ≤
+∞

∑
n=−∞

[k1,n|un(t− ρ(t))|+ k2,n]|un|

≤ (K1‖u(t− ρ(t))‖+ K2)‖u‖,
(2.8)

− Im
+∞

∑
n=−∞

∫ 0

−h
bn(s, un(t + s)) ds un ≤

+∞

∑
n=−∞

∫ 0

−h
[β1,n(s)|un(t + s)|+ β2,n(s)] ds|un|

≤
[

+∞

∑
n=−∞

(∫ 0

−h
β2

1,n(s) ds
)(∫ 0

−h
|un(t + s)|2 ds

)]1/2

‖u‖+ B2‖u‖

≤
[

B1

(∫ 0

−h
‖u(t + s)‖2 ds

)1/2

+ B2

]
‖u‖.

(2.9)

From (2.7)–(2.9) we obtain (2.6).
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We now make the following assumptions on the constants B1, K1, γ, h, and a suitable
positive parameter µ, which will be used in Section 3 to define the universe where the pullback
attractor will lie in.

(A8) We assume that there exists a positive real number µ such that

(i) If K1 > 0 and B1 ≥ 0 then

4B2
1h < e−µhγ

(γ

2
− µ

)
(2.10)

and
µ > 2K1eµh. (2.11)

(ii) If K1 = 0 and B1 > 0 then

µ <
γ

2
and µ >

4
γ

B2
1e2µhh. (2.12)

(iii) If K1 = B1 = 0 then µ = γ
2 and h is arbitrary.

Remark 2.7. Conditions in (A8) will be used in the next theorem to prove an estimate for the
solution of (2.1) that allows us to extend it globally and that will be used in the proofs of
Lemmas 3.1, 3.2 and 3.3 in Section 3. It is clear from (2.10) that µ < γ

2 . We also observe that
(2.11) holds if and only if 0 < 2K1 < 1

he , where 1
he is the maximum value of the real function

φ(s) = se−hs, s ≥ 0. From this we see that 2K1eh < 1 and µ ∈ (µ1, µ2), where µj, j = 1, 2, are
the two positive solutions of the equation µe−µh = 2K1.

Theorem 2.8. Assume that (A1)–(A8) hold. Then, the solution u = u(t) of (2.1) with uτ = ψ ∈ Eh
exists globally. Moreover, for each τ < T < ∞, the map I : Eh → C([τ, T]; Eh), defined by I(ψ)(t) =
ut, ∀τ ≤ t ≤ T, is continuous.

Proof. Assume that (A8)(i) holds. Multiplying (2.6) by eµt and integrating the resulting in-
equality over [τ, t] we have, for any positive real constants ε and ε′,

eµt‖u(t)‖2 ≤ eµτ‖ψ‖2
Eh
+ (µ− γ + ε + ε′)

∫ t

τ
eµs‖u(s)‖2 ds +

1
γ

∫ t

τ
eµs‖ f (s)‖2 ds

+

(
2B2

2
ε

+
K2

2
ε′

)
eµt

µ
+ 2K1

∫ t

τ
eµs‖us‖2

Eh
ds

+
2B2

1
ε

∫ t

τ

∫ 0

−h
eµt′‖u(t′ + s)‖2 ds dt′.

(2.13)

Let us estimate the last term in (2.13) using the initial condition in (2.1). We have∫ t

τ

∫ 0

−h
eµt′‖u(t′ + s)‖2 ds dt′ =

∫ 0

−h

∫ t

τ
e−µseµ(t′+s)‖u(t′ + s)‖2 dt′ ds

≤ eµh
∫ 0

−h

∫ t

τ−h
eµσ‖u(σ)‖2dσ ds

= eµhh
[∫ τ

τ−h
eµσ‖u(σ)‖2dσ +

∫ t

τ
eµσ‖u(σ)‖2dσ

]
≤ eµ(τ+h)h

µ
‖ψ‖2

Eh
+ eµhh

∫ t

τ
eµσ‖u(σ)‖2dσ.

(2.14)
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Substituting (2.14) into (2.13) we get

eµt‖u(t)‖2 ≤ eµτ‖ψ‖2
Eh
+

(
µ− γ + ε + ε′ +

2B2
1eµhh
ε

) ∫ t

τ
eµs‖u(s)‖2 ds

+
2B2

1eµhh
µε

eµτ‖ψ‖2
Eh
+

(
2B2

2
ε

+
K2

2
ε′

)
eµt

µ

+
1
γ

∫ t

τ
eµs‖ f (s)‖2 ds + 2K1

∫ t

τ
eµs‖us‖2

Eh
ds.

(2.15)

Using (2.10) we can choose ε = γ
2 and

ε′ =
γ

2
− µ− 4B2

1eµhh
γ

(2.16)

in (2.15) to obtain

eµt‖u(t)‖2 ≤ eµτ

(
1 +

4B2
1eµhh
µγ

)
‖ψ‖2

Eh
+

(
4B2

2
γ

+
K2

2
ε′

)
eµt

µ

+
1
γ

∫ t

τ
eµs‖ f (s)‖2 ds + 2K1

∫ t

τ
eµs‖us‖2

Eh
ds.

(2.17)

Since ‖u(s)‖ ≤ ‖ψ‖Eh , ∀s ∈ [τ − h, τ], then we can replace t in (2.17) by t + σ, with
σ ∈ [−h, 0], to deduce that

eµt‖ut‖2
Eh
≤ M(t) + L

∫ t

τ
eµs‖us‖2

Eh
ds,

where L = 2K1eµh and

M(t) = eµ(τ+h)

(
1 +

4B2
1eµhh
µγ

)
‖ψ‖2

Eh
+

(
4B2

2
γ

+
K2

2
ε′

)
eµ(t+h)

µ
+

eµh

γ

∫ t

τ
eµs‖ f (s)‖2 ds.

The above inequality implies that

eµt‖ut‖2
Eh
≤ eL(t−τ)M(τ) + eLt

∫ t

τ
e−Ls M′(s) ds. (2.18)

Performing the calculations in (2.18) using M(t) above and the fact that µ > L by (2.11),
we find the following estimate for the solution of (2.1)

‖ut‖2
Eh
≤ c1‖ψ‖2

Eh
e(L−µ)te(µ−L)τ +

2µ− L
µ− L

c2 +
eµh

γ

∫ t

−∞
‖ f (s)‖2 ds, (2.19)

where

c1 = eµh

(
1 +

4B2
1eµhh
µγ

)
and c2 =

(
4B2

2
γ

+
K2

2
ε′

)
eµh

µ
. (2.20)

Now, assume that (A8)(ii) holds. For this case we replace (2.14) by

eµt‖u(t)‖2 ≤ eµτ‖ψ‖2
Eh
+ (µ− γ + ε + ε′)

∫ t

τ
eµs‖u(s)‖2 ds

+
2B2

1eµhh
µε

eµτ‖ψ‖2
Eh
+

(
2B2

2
ε

+
K2

2
ε′

)
eµt

µ

+
1
γ

∫ t

τ
eµs‖ f (s)‖2 ds +

2B2
1eµhh
ε

∫ t

τ
eµs‖us‖2

Eh
ds.

(2.21)
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Since that µ < γ
2 , then we can choose ε = γ

2 and ε′ = γ
2 − µ in (2.21) and proceed as before

to obtain

eµt‖u(t)‖2 ≤ eµ(τ+h)

(
1 +

4B2
1eµhh
µγ

)
‖ψ‖2

Eh
+

(
4B2

2
γ

+
K2

2
ε′

)
eµ(t+h)

µ

+
eµh

γ

∫ t

τ
eµs‖ f (s)‖2 ds + L

∫ t

τ
eµs‖us‖2

Eh
ds,

(2.22)

where L = 4
γ B2

1e2µhh. By (2.12) we see that µ > L. Therefore, we can deduce the estimate
(2.19) with c1 and c2 as in (2.20), with ε′ = γ

2 − µ. Similarly, we can treat the case (A8)(iii) to
obtain the estimate

‖ut‖2
Eh
≤ c′1‖ψ‖2

Eh
e−µteµτ + 2c′2 +

eµh

γ

∫ t

−∞
‖ f (s)‖2 ds, (2.23)

where

c′1 = 2eµh and c′2 =
eµh

µ2

(
B2

2 + K2
2
)

. (2.24)

From (2.19) or (2.23) and Theorem 2.5 we conclude that the solution of (2.1) exists globally.
Next, let us prove that the map I is continuous. Fix τ < T < ∞, ψ ∈ Eh and consider
ψ1 ∈ Eh such that ‖ψ− ψ1‖Eh < 1. Let us denote by v = v(t) the solution of (2.1) with initial
condition v(s) = ψ1(s− τ), ∀s ∈ [τ − h, τ]. Using the estimate (2.19) or (2.23) we can find a
positive constant K0 depending on ‖ψ‖Eh and T such that ‖ut‖Eh ≤ K0 and ‖vt‖Eh ≤ K0, for all
τ ≤ t ≤ T. Then, using the integral representations of u and v and Lemma 2.3 it follows that

‖u(t)− v(t)‖ ≤ ‖ψ(0)− ψ1(0)‖+
∫ t

τ
‖B(s, us)−B(s, vs)‖ ds

≤ ‖ψ− ψ1‖Eh + L(K0)
∫ t

τ
‖us − vs‖Eh ds.

(2.25)

Replacing t in (2.25) by t + σ, with σ ∈ [−h, 0], taking into account that ‖u(t + σ) −
v(t + σ)‖Eh ≤ ‖ψ− ψ1‖Eh if t + σ ≤ τ, we obtain

‖ut − vt‖Eh ≤ ‖ψ− ψ1‖Eh + L(K0)
∫ t

τ
‖us − vs‖Eh ds, ∀τ ≤ t ≤ T.

Then, by Gronwall’s inequality, we conclude that ‖ut − vt‖Eh ≤ eL(K0)(T−τ)‖ψ − ψ1‖Eh ,
which implies the continuity of I.

3 Existence of a pullback attractor

By Theorem 2.8 we can associate to the initial value problem (2.1) a process {U(t, τ)}t≥τ of
continuous maps U(t, τ) in Eh defined by U(t, τ)ψ = ut, where τ ≤ t and u = u(t) is the
global solution of (2.1). In this section, we establish the existence of a pullback attractor for
the process {U(t, τ)}t≥τ using the results obtained in [16]. We are interested in the existence
of a pullback attractor for a family of sets depending on time (see [16, Section 3]). Motivated
by the estimate (2.19) we consider the set Rµ of all functions r : R→ (0, ∞) such that

lim
t→−∞

e(µ−L)tr2(t) = 0. (3.1)
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Let us denote by Dµ the class of all families D̂ = {D(t); t ∈ R} of nonempty subsets of Eh such
that D(t) ⊂ BEh [0; rD̂(t)] := {ψ ∈ Eh; ‖ψ‖Eh ≤ rD̂(t)}, for some radius rD̂ ∈ Rµ. For the case
(A8)(iii) we consider in (3.1) L = 0. In what follows, we will assume that (A8)(i) or (A8)(ii)
holds. Suitable modifications will be indicated for the case (A8)(iii). We will also consider L
as in the proof of Theorem 2.8 and the constants c1, c2, c′1 and c′2 given by (2.20) and (2.24).

Lemma 3.1. Assume that (A1)–(A8) hold. Then, the family B̂µ of closed balls Bµ(t) = BEh [0; Rµ(t)],
where for each t ∈ R, the radius Rµ(t) is defined by

R2
µ(t) =

2µ− L
µ− L

c2 +
eµh

γ

∫ t

−∞
‖ f (s)‖2 ds + 1, (3.2)

is pullback Dµ-absorbing for the process {U(t, τ)}t≥τ.

Proof. Since µ > L, then using (A7), we have

lim
t→−∞

e(µ−L)tR2
µ(t) = lim

t→−∞
e(µ−L)t

(
2µ− L
µ− L

c2 +
eµh

γ

∫ t

−∞
‖ f (s)‖2 ds + 1

)
= 0,

which shows that B̂µ ∈ Dµ. Now, fixed t ∈ R and D̂ ∈ Dµ, there exists a τ0 = τ0(t, D̂) ≤ t
such that

e(µ−L)τr2
D̂(τ) < c−1

1 e(µ−L)t,

for any τ ≤ τ0. Then, for any ψ ∈ D(τ), using (2.19) we obtain

‖U(t, τ)ψ‖2
Eh
≤ c1r2

D̂(τ)e
(µ−L)τe(L−µ)t +

2µ− L
µ− L

c2 +
eµh

γ

∫ t

−∞
‖ f (s)‖2 ds

≤ R2
µ(t).

Therefore, U(t, τ)D(τ) ⊂ Bµ(t), for all τ ≤ τ0, which proves that the family B̂µ is pullback
Dµ-absorbing for the process {U(t, τ)}t≥τ.

In Lemma 3.1, in the case (A8)(iii), we take L = 0 and replace c2 by c′2 in (3.2). Next, let
us prove an estimate for the tails of the solutions u = u(t) of (2.1) when the initial conditions
uτ = ψ belong to Bµ(τ).

Lemma 3.2. Assume that (A1)–(A8) hold. Let B̂µ be the pullback Dµ-absorbing family defined in
Lemma 3.1. Then, for any ε > 0 and any t′ < T, there exist τ0 = τ0(ε, t′, T, B̂µ) and a positive integer
k = k(ε, T, B̂µ), such that

max
s∈[−h,0]

∑
|n|>2k

|un(t + s)|2 < ε, ∀τ ≤ τ0, t ∈ [t′, T],

for any solution u = u(t) of (2.1) with initial condition uτ ∈ Bµ(τ).

Proof. Assume that (A8)(i) holds. Similarly, we treat the case (A8)(ii). Let uτ = ψ ∈ Bµ(τ) and
consider the corresponding solution u = u(t) of (2.1) defined in [τ, ∞). Let θ ∈ C1(R+; R)

be a function such that θ ≡ 0 on [0, 1], θ ≡ 1 on [2, ∞), 0 ≤ θ ≤ 1, and |θ′(t)| ≤ 2, ∀t ≥ 0.
Let v = (vn(t))n∈Z, where vn(t) = θ( |n|k )un(t), with k > 0 fixed in Z. In order to simplify
notation, we will write θn = θ

( |n|
k

)
, ‖w‖θ = ∑+∞

n=−∞ θn|wn|2 and ‖ut‖2
Eh,θ

= maxs∈[−h,0] ‖ut(s)‖2
θ .

Taking the imaginary part of the inner product of equation (2.1) with v in `2 we find

1
2

d
dt
(u, v)`2 + γ(u, v)`2 = Im( f , v)`2 − Im(Au, v)`2 − Im(g(t, ut), v)`2 , ∀t ≥ τ. (3.3)
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Let us estimate the terms on the right-hand side of (3.3). Since ψ ∈ Bµ(τ) then, using
(2.19), we see that

‖u(t)‖ ≤ r0, ∀t ∈ [τ, T],

with r0 = (c1 + 1)Rµ(T). Moreover, by the definition of θ, we have that |θn+m − θn| ≤ 2
k m and

|θn+m − θn| ≤ 2. Then,

− Im(Au(t), v(t))`2 = − Im

{
J(0)‖u(t)‖2

θ +
+∞

∑
n=−∞

+∞

∑
m=1

J(m)(θn+m − θn)un+m(t)un(t)

}

≤
+∞

∑
n=−∞

+∞

∑
m=1
|J(m)| |θn+m − θn| |un+m(t)| |un(t)| ≤ ν(T, k, l),

where ν(T, k, l) =
( 2

k ∑l
m=1 m|J(m)|+ 2 ∑+∞

m=l+1 |J(m)|
)
r2

0, l ≥ 1.
Using the hypotheses (A1) and (A4) and proceeding as in the proof of Lemma 2.6 we

obtain the estimate

− Im(g(t, ut), v(t))`2 ≤
+∞

∑
n=−∞

θn|g1,n(t, un(t− ρ(t)))| |un(t)|

+
+∞

∑
n=−∞

θn

∫ 0

−h
|bn(s, un(t + s))| ds|un(t)|

≤ (K1‖u(t− ρ(t))‖θ + K2,θ)‖u‖θ

+

[
B1

(∫ 0

−h
‖u(t + s)‖2

θ ds
)1/2

+ B2,θ

]
‖u‖θ ,

where B2,θ =
[

∑+∞
n=−∞ θn

( ∫ 0
−h β2,n(s) ds

)2]1/2 and K2,θ =
(

∑+∞
n=−∞ θnk2

2,n
)1/2.

In addition, we know that

− Im( f (t), v(t))`2 ≤ 1
2γ
‖ f (t)‖2

θ +
γ

2
‖u(t)‖2

θ .

Therefore,

d
dt
‖u(t)‖2

θ + γ‖u(t)‖2
θ ≤

1
γ
‖ f ‖2

θ + 2 (K1‖u(t− ρ(t))‖θ + K2,θ) ‖u(t)‖θ

+ 2

[
B1

(∫ 0

−h
‖u(t + s)‖2

θ ds
)1/2

+ B2,θ

]
‖u(t)‖θ + 2ν(T, k, l),

(3.4)

for all τ ≤ t ≤ T.
Now, we multiply (3.4) by eµt and use the inequalities

2

[
B1

(∫ 0

−h
‖u(t + s)‖2

θ ds
)1/2

+ B2,θ

]
‖u‖θ ≤

4B2
1

γ

∫ 0

−h
‖u(t + s)‖2

θ ds +
4B2

2,θ

γ
+

γ

2
‖u‖2

θ ,

2 (K1‖u(t− ρ(t))‖θ + K2,θ) ‖u(t)‖θ ≤ 2K1‖ut‖2
Eh,θ

+
K2

2,θ

ε′
+ ε′‖u‖2

θ ,
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where ε′ > 0, to find

d
dt
(
eµt‖u(t)‖2

θ

)
≤
(

µ− γ

2
+ ε′

)
eµt‖u(t)‖2

θ +
1
γ

eµt‖ f (t)‖2
θ + 2K1eµt‖ut‖2

Eh,θ

+

(
4B2

2,θ

γ
+

K2
2,θ

ε′

)
eµt + 2ν(T, k, l)eµt

+
4B2

1eµt

γ

∫ 0

−h
‖u(t + s)‖2

θ ds, ∀τ ≤ t ≤ T.

(3.5)

Integrating (3.5) over [τ, t] and using the following estimate analogous to (2.14)

∫ t

τ

∫ 0

−h
eµt′‖u(t + s)‖2

θ ds dt′ ≤ eµ(τ+h)h
µ

‖ψ‖2
Eh
+ eµhh

∫ t

τ
eµs‖u(s)‖2

θ ds,

we obtain

eµt‖u(t)‖2
θ ≤ eµτ

(
1 +

4B2
1eµhh
µγ

)
‖ψ‖2

Eh
+

(
µ− γ

2
+ ε′ +

4B2
1eµhh
γ

) ∫ t

τ
eµs‖u(s)‖2

θ ds

+

(
4B2

2,θ

γ
+

K2
2,θ

ε′
+ 2ν(T, k, l)

)
eµt

µ
+ 2K1

∫ t

τ
eµs‖us‖2

Eh,θ
ds

+
1
γ

∫ t

τ
eµs‖ f (s)‖2

θ ds.

By condition (2.10) we can choose ε′ as in (2.16) in the above inequality to obtain

eµt‖u(t)‖2
θ ≤ eµτ

(
1 +

4B2
1eµhh
µγ

)
‖ψ‖2

Eh
+

(
4B2

2,θ

γ
+

K2
2,θ

ε′
+ 2ν(T, k, l)

)
eµt

µ

+ 2K1

∫ t

τ
eµs‖us‖2

Eh,θ
ds +

1
γ

∫ t

τ
eµs‖ f (s)‖2

θ ds.

(3.6)

Replacing t by t + σ, with σ ∈ [−h, 0] in (3.6) and using the inequality ‖u(t + σ)‖ =

‖ψ(t + σ)‖ ≤ ‖ψ‖Eh , valid for t + σ < τ, we deduce that

eµt‖ut‖2
Eh,θ
≤ Mθ(t) + L

∫ t

τ
eµs‖us‖2

Eh,θ
ds, (3.7)

where L = 2K1eµh and

Mθ(t) = eµ(τ+h)

(
1 +

4B2
1eµhh
µγ

)
‖ψ‖2

Eh
+

(
4B2

2,θ

γ
+

K2
2,θ

ε′
+ 2ν(T, k, l)

)
eµ(t+h)

µ

+
eµh

γ

∫ t

τ
eµs‖ f (s)‖2

θ ds.

We know that µ > L. Then, from (3.7) and ψ ∈ Bµ(τ), we obtain

‖ut‖2
Eh,θ
≤ c1R2

µ(τ)e
(L−µ)te(µ−L)τ +

2µ− L
µ− L

c2,θ +
2(2µ− L)
µ(µ− L)

eµhν(T, k, l)

+
eµh

γ

∫ t

−∞
‖ f (s)‖2

θ ds, ∀t ≥ τ,
(3.8)
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where c2,θ =
( 4B2

2,θ
γ +

K2
2,θ
ε′
) eµh

µ . Similarly, if (A8)(ii) holds, we obtain (3.8) with L = 4
γ B2

1e2µhh.

To conclude the proof, let ε > 0 be given. Since B̂µ ∈ Dµ and ∑∞
m=1 |J(m)| < ∞, then there

exist τ0 = τ0(t′, T, ε, B̂µ) < t′ and a positive integer l(ε) such that

c1R2
µ(τ)e

(L−µ)te(µ−L)τ <
ε

4
, ∀τ ≤ τ0, t ∈ [t′, T],

and
4(2µ− L)eµh

µ(µ− L)
r2

0

+∞

∑
m=l(ε)+1

|J(m)| < ε

4
.

Then, from (3.8) we have

‖ut‖2
Eh,θ

<
ε

2
+

2µ− L
µ− L

c2,θ +
4(2µ− L)eµh

µ(µ− L)
r2

0
k

l(ε)

∑
m=1

m|J(m)|+ eµh

γ

∫ T

−∞
‖ f (s)‖2

θ ds,

for all τ ≤ τ0 and t′ ≤ t ≤ T. Observe that the hypothesis (A7) and the Lebesgue Dominated
Convergence Theorem imply that

lim
k→+∞

∫ T

−∞
∑
|n|>k
| fn(s)|2 ds = 0.

Using this fact and also ∑∞
n=−∞

(∫ 0
−h β2,n(s) ds

)2
< ∞ and ∑∞

−∞ k2
2,n < ∞ we can find a positive

integer k = k(ε, T, B̂µ) such that

2µ− L
µ− L

c2,θ +
4(2µ− L)eµh

µ(µ− L)
r2

0
k

l(ε)

∑
m=1

m|J(m)|+ eµh

γ

∫ T

−∞
‖ f (s)‖2

θ ds <
ε

2
.

Therefore,

max
s∈[−h,0]

∑
|n|>2k

|un(t + s)|2 ≤ ‖ut‖2
Eh,θ

< ε, if τ ≤ τ0, t′ ≤ t ≤ T.

In the case A(8)(iii), in (3.8), we take L = 0, replace c1 by c′1 and c2,θ and R2
µ(τ) by

c′2,θ =
eµh

µ2

(
B2

2,θ + K2
2,θ
)

and R2
µ(τ) = c′2 +

eµh

2µ

∫ t

−∞
‖ f (s)|2 ds.

Lemma 3.3. Under the assumptions (A1)–(A8), the process {U(t, τ)}t≥τ is pullbackD-asymptotically
compact.

Proof. Fixed t ∈ R and D̂µ ∈ Dµ, consider the sequences (τm)m∈N and (um
t )m∈N, such that

τm → −∞ and um
t = U(t, τm)ψm, with ψm ∈ D(τm). We want to prove that (um

t )m∈N has
a subsequence which is relatively compact in Eh. Given ε > 0, by Lemma 3.2, there exist
τ = τ(ε, t, B̂µ) < t− h and a positive integer n1 = n1(ε, t, B̂µ) such that

max
s∈[−h,0]

∑
|n|>n1

|un(t + s)|2 <
ε2

8
, (3.9)

where u = u(t) = (un(t)) is any solution of the initial value problem (2.1) with uτ ∈ Bµ(τ).
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Since B̂µ is pullback Dµ-absorbing and τm → −∞, without loss of generality, we can
assume that

U(τ, τm)ψ
m ∈ Bµ(τ), ∀m ≥ 1. (3.10)

Also, by the definition of a process, we know that

U(t′, τ)U(τ, τm)ψ
m = U(t′, τm)ψ

m, ∀τ ≤ t′ ≤ t. (3.11)

Using (3.10), (3.11), and the estimate (2.19) we see that

‖U(t′, τm)ψ
m‖Eh ≤ K, ∀τ ≤ t′ ≤ t, (3.12)

where K = K(t) = (c1 + 1)R2
µ(t). In particular, the sequence (um

t (s))m∈N is bounded in `2, for
any s ∈ [−h, 0]. Therefore, for any fixed s ∈ [−h, 0], there exists a subsequence, which we will
still denote by (um

t (s))m∈N and ζ(s) ∈ `2, such that

um(t + s) ⇀ ζ(s) weakly in `2. (3.13)

Let us show that the convergence in (3.13) is strong in `2. Since ζ(s) ∈ `2, then there exists
a positive integer n2 such that

∑
|n|>n2

|ζn(s)|2 <
ε2

8
. (3.14)

Moreover, using the weak convergence (3.13), we can find a positive integer m1 = m1(ε, t, B̂µ)

such that

∑
|n|≤n0

|um
n (t + s)− ζn(s)|2 <

ε2

2
, ∀m ≥ m1, (3.15)

where n0 = max{n1, n2}. From (3.14) and (3.15), for any m ≥ m1, we have that

‖um(t + s)− ζ(s)‖2 ≤ ∑
|n|≤n0

|um
n (t + s)− ζn(s)|2 + 2 ∑

|n|>n0

|um
n (t + s)|2

+ 2 ∑
|n|>n0

|ζn(s)|2 <
3ε2

4
+ 2 ∑

|n|>n0

|um
n (t + s)|2.

(3.16)

Using the estimate (3.9) with uτ = U(τ, τm)ψm, m ≥ m1, from (3.16) we conclude that

‖um(t + s)− ζ(s)‖2 < ε2.

Therefore, (um
t (s))m∈N is relatively compact in `2 for each s ∈ [−h, 0].

Next, let us show that (um
t )m∈N is equicontinuous in [−h, 0]. Using the integral represen-

tation of the solution of (2.1) we obtain

‖um(t + s1)− um(t + s2)‖ ≤
∫ t+s2

t+s1

‖B(r, um
r )‖ dr, (3.17)

for any −h ≤ s1 ≤ s2 ≤ 0. Using (3.12) in (3.17) and Lemma 2.4, we deduce the existence
of a positive constant L(K) such that ‖um(t + s1) − um(t + s2)‖ ≤ L(K)(s2 − s1), ∀m ∈ N,
which implies the equicontinuity. By the Ascoli–Arzelà Theorem, we conclude that (um

t )m∈N

is relatively compact in Eh. This completes the proof of Lemma 3.3.

As consequence of Lemmas 3.1, 3.3 and of Theorem 18 in [16] we obtain the main result
of this section.
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Theorem 3.4. Assume that (A1)–(A8) hold. Then, the process {U(t, τ)}t≥τ possesses a unique pull-
back Dµ-attractor Â in Dµ.

Proof. By Lemmas 3.1, 3.3 and Theorem 18 in [16] the process {U(t, τ})t≥τ possesses a pull-
back Dµ-attractor Â. Since the family Dµ is inclusion-closed and each member Bµ(t) of the
pullback family B̂µ is a closed subset of Eh, then Â ∈ Dµ and it is the unique pullback
Dµ-attractor belonging to the class Dµ.

4 The autonomous model

In this section, we consider the autonomous model

iu̇n(t) +
+∞

∑
m=−∞

J(n−m)um(t) + gn(unt) + iγun(t) = fn, t > 0, n ∈ Z,

un(s) = ψn(s), ∀s ∈ [−h, 0],

(4.1)

where f = ( fn)n∈Z and

gn(unt) = g0,n(un(t)) + g1,n(un(t− ρ)) +
∫ 0

−h
bn(s, un(t + s)) ds,

with 0 < ρ ≤ h. We assume that f ∈ `2 and the functions g0,n, g1,n, and bn satisfy the
assumptions (A1)–(A4) stated in Section 2.

Defining the map g : Eh → `2 by (g(v))n∈Z = gn(vn), where

gn(vn) = g0,n(vn(0)) + g1,n(vn(−ρ)) +
∫ 0

−h
bn(s, vn(s)) ds,

we can write (4.1) in `2 as

iu̇(t) + Au(t) + g(ut) + iγu(t) = f , t > 0

u(s) = ψ(s), ∀s ∈ [−h, 0],
(4.2)

where, as before, u(t) = (un(t))n∈Z and ψ(s) = (ψn(s))n∈Z.
Using the assumptions (A1)–(A4) and the Theory of Functional Equations we obtain a

local solution for the problem (4.2) with ψ ∈ Eh.
In what follows, we will use the same notations of Sections 2 and 3 and, as before, we will

assume that (A8)(i) or (ii) holds. Similarly, we can prove the results for (A8)(iii). Proceeding
as in the proof of Theorem 2.8 we can prove the following lemma.

Lemma 4.1. Assume that (A1)–(A4) and (A8) hold. Then, the solution u = u(t) of (4.2) with initial
condition u0 = ψ ∈ Eh, defined in the maximal interval of existence [0, T), satisfies

‖ut‖2
Eh
≤ c1‖ψ‖2

Eh
e−(µ−L)t +

2µ− L
µ− L

(
c2 +

eµh

µγ
‖ f ‖2

)
. (4.3)

As a consequence of (4.3) we conclude that the solution u = u(t) of (4.2) exists on [0, ∞)

and we can define a semigroup {S(t)}t≥0 on Eh associated with (4.2) as follows

S(t)ψ = ut, ∀t ≥ 0.
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Moreover, from (4.3) we deduce that the closed ball O0 = BEh [0; r0] in Eh, where

r0 =

[
2µ− L
µ− L

(
c2 +

eµh

µγ
‖ f ‖2

)
+ 1
]1/2

, (4.4)

is an absorbing set for {S(t)}t≥0 in Eh.
Next, let us modify the proof of Lemma 3.2 to show that {S(t)}t≥0 is asymptotically com-

pact in Eh.

Lemma 4.2. Assume that (A1)–(A4) and (A8) hold. Also, assume that ψ ∈ O0. Then, for any ε > 0,
there exist T(ε) ≥ 0 and a positive integer k(ε), such that the solution u = u(t) of (4.2) satisfies

max
s∈[−h,0]

∑
|n|>k(ε)

|un(t + s)|2 < ε, ∀t ≥ T(ε).

Proof. Since ψ ∈ O0, then by (4.3) and (4.4), we have

‖ut‖Eh ≤ r1, ∀t ≥ 0, (4.5)

where r1 = (c1 + 1)1/2r0.
Using (4.5) and proceeding as in the proof of Lemma 3.2 we can prove that

eµt‖ut‖2
Eh,θ
≤ Mθ(t) + L

∫ t

0
eµs‖us‖2

Eh,θ
ds, (4.6)

with

Mθ(t) = eµh
(

1 +
4B2

1
µγ

eµh
)
‖ψ‖2

Eh
+

(
4B2

2,θ

γ
+

K2
2,θ

ε′
+ 2ν(k, l) +

1
γ
‖ f ‖2

θ

)
eµ(t+h)

µ
,

where

ν(k, l) =
(

2
k

l

∑
m=1

m|J(m)|+ 2
+∞

∑
m=l+1

|J(m)|
)

r2
1.

From (4.6) we obtain

‖ut‖2
Eh,θ
≤ c1r2

1e−(µ−L)t +
2µ− L
µ− L

c2,θ +
2(2µ− L)
µ(µ− L)

eµhν(k, l), (4.7)

where

c2,θ =

(
4B2

2,θ

γ
+

K2
2,θ

ε′
+

1
γ
‖ f ‖2

θ

)
eµh

µ
.

Finally, from (4.7) we can conclude the proof of Lemma 4.2.

Under the hypotheses of Lemma 4.1, using Lemma 4.2 and proceeding as in the proof of
Lemma 3.3, we show that the semigroup {S(t)}t≥0 is asymptotically compact in Eh. Thus, we
can derive the desired result in this section.

Theorem 4.3. Under the same hypotheses of Lemma 4.1, the semigroup {S(t)}t≥0 possesses a unique
global attractor A in Eh.

Remark 4.4. When ρ(t) ≡ ρ and f (t) ≡ f in problem (2.1), then the constant family Â =

{A(t) = A; t ∈ R} is the pullback D-attractor from Theorem 4.3.
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