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Abstract. In this paper, we study the following quasilinear Schrödinger equation

−∆u + V(x)u− κu∆(u2) + µ
h2(|x|)
|x|2 (1 + κu2)u

+ µ

(∫ +∞

|x|

h(s)
s

(2 + κu2(s))u2(s)ds
)

u = f (u) in R2,

where κ > 0, µ > 0, V ∈ C1(R2, R) and f ∈ C(R, R). By using a constraint mini-
mization of Pohožaev–Nehari type and analytic techniques, we obtain the existence of
ground state solutions.
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1 Introduction

In this paper, we are interested in the existence of ground state solutions for the following
nonlocal quasilinear Schrödinger equation

−∆u + V(x)u− κu∆(u2) + µ
h2(|x|)
|x|2 (1 + κu2)u

+ µ

(∫ +∞

|x|

h(s)
s

(2 + κu2(s))u2(s)ds
)

u = f (u) in R2,
(1.1)

where u : R2 → R is a radially symmetric function, κ, µ are positive constants, h(s) =∫ s
0 u2(l)ldl (s ≥ 0) and the nonlinearity f : R → R satisfies the following suitable assump-

tions:
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( f1) lim|s|→0
f (s)

s = 0 and there exist constants C > 0 and q ∈ (2,+∞) such that

| f (s)| ≤ C(1 + |s|q−1), ∀s ∈ R;

( f2) there exists a constant p ∈ (6, 8) such that lim|s|→+∞
F(s)
|s|p = +∞, where F(s) =

∫ s
0 f (t)dt;

( f3)
[ f (s)s−(8−p)F(s)]

|s|p−1s is nondecreasing on both (−∞, 0) and (0,+∞).

Moreover, we assume that potential V : R2 → R verifies:

(V1) V ∈ C1(R2, R) and V∞ := lim|y|→+∞ V(y) > V0 := minx∈R2 V(x) > 0 for all x ∈ R2;

(V2) t → t6α−2[(2α− 2)V(tx)−∇V(tx) · (tx)
]

is nondecreasing on (0,+∞) for any x ∈ R2,
where α := 2

8−p > 1, which is inspired by [6] where Kirchhoff-type problems were
studied.

If κ = 0, (1.1) turns into the following nonlocal elliptic problem

− ∆u + V(x)u + µ
h2(|x|)
|x|2 u + 2µ

(∫ +∞

|x|

h(s)
s

u2(s)ds
)

u = f (u) in R2. (1.2)

(1.2) appears in the study of the following Chern–Simons–Schrödinger system
iD0φ + (D1D1 + D2D2)φ + f (φ) = 0,

∂0A1 − ∂1A0 = −Im(φD2φ),

∂0A2 − ∂2A0 = −Im(φD1φ),

∂1A2 − ∂2A1 = − 1
2 |φ|2,

(1.3)

where i denotes the imaginary unit, ∂0 = ∂
∂t , ∂1 = ∂

∂x1
, ∂2 = ∂

∂x2
for (t, x1, x2) ∈ R1+2, φ :

R1+2 → C is the complex scalar field, Aµ : R1+2 → R is the gauge field, Dµ = ∂µ + iAµ is
the covariant derivative for µ = 0, 1, 2. Model (1.3) was first proposed and studied in [12, 13],
which described the non-relativistic thermodynamic behavior of large number of particles in
an electromagnetic field. In [1], the authors considered the standing waves of system (1.3)
with power type nonlinearity, that is, f (u) = λ|u|p−1u, and established the existence and
nonexistence of positeve solutions for (1.3) of type

φ(t, x) = u(|x|)eiwt, A0(t, x) = k(|x|),

A1(t, x) =
x2

|x|2 h(|x|), A2(t, x) = − x1

|x|2 h(|x|), (1.4)

where w > 0 is a given frequency, λ > 0 and p > 1, u, k, h are real valued functions depending
only on |x|. The ansatz (1.4) satisfies the Coulomb gauge condition ∂1A1 + ∂2A2 = 0. Byeon
et al. [1] got the following nonlocal semi-linear elliptic equation

− ∆u + wu +
h2(|x|)
|x|2 u +

(∫ +∞

|x|

h(s)
s

u2(s)ds
)

u = λ|u|p−1u in R2. (1.5)

Later, based on the work of [1], the results for the case p ∈ (1, 3) have been extended by
Pomponio and Ruiz in [20]. They investigated the geometry of the functional associated with
(1.5) and obtained an explicit threshold value for w. The existence and properties of ground
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state solutions of (1.5) have also been studied widely by many researchers, see, e.g., [2,7,10,11,
14,19,21,29,31,33,35] and references therein. If we replace w > 0 with the radially symmetric
potential V and more general nonlinearity f , then (1.5) will turns into (1.2). Very recently,
by using variational methods, Chen et al. in [4] studied the existence of sign-changing multi-
bump solutions for (1.2) with deepening potential. In [25], when f satisfied more general
6-superlinear conditions, Tang et al. proved the existence and multiplicity results of (1.2). For
more related work about the problem (1.2), we refer to [9, 15, 28, 35] and references therein.

If µ = 0, (1.1) reduces to the following quasilinear elliptic problem

− ∆u + V(x)u− κu∆(u2) = f (u) in R2. (1.6)

(1.6) is obtained from the quasilinear Schrödinger equation

iφ̂t + ∆φ̂−W(x)φ̂ + κφ̂∆(|φ̂|2) + ĥ(|φ̂|2)φ̂ = 0 in R2,

by setting φ̂ = e−iwtu(x), V(x) = W(x) − w, where w ∈ R, W is a given potential, ĥ is a
suitable function. The existence and properties of ground state solutions of (1.6) as well as the
stability of standing wave solutions have also been studied widely in [16, 32] and references
therein.

Motivated by [3, 8], we try to establish the existence of positive ground state solutions for
(1.1) involving radially symmetric variable potential V and more general nonlinearity f than
[8]. Compared to [3], the equation (1.1) has appearance the Chern–Simons terms(∫ +∞

|x|

h(s)
s

u2(s)ds +
h2(|x|)
|x|2

)
u,

so that the equation (1.1) is no longer a pointwise identity. This nonlocal term causes some
mathematical difficulties that make the study of it is rough and particularly interesting. To
overcome these difficulties, we adopted a constraint minimization of the Pohožaev–Nehari
type as in [5, 8] and establish some new inequalities.

In order to state our main theorem, let us define the metric space

χ =

{
u ∈ H1

r (R
2) :

∫
R2

u2|∇u2|dx < +∞
}

=
{

u ∈ H1
r (R

2) : u2 ∈ H1
r (R

2)
}

,

endowed with the distance

dχ(u, v) = ‖u− v‖+ ‖∇(u2)−∇(v2)‖L2 .

We will show that (1.1) can obtain the following energy functional: I : χ→ R,

I(u) =
1
2

∫
R2

[
(1 + 2κu2)|∇u|2 + V(x)u2]dx +

µ

2

∫
R2

u2(x)
|x|2

(∫ |x|
0

su2(s)ds
)2

dx

+
µ

4
κ
∫

R2

u4(x)
|x|2

(∫ |x|
0

su2(s)ds
)2

dx−
∫

R2
F(u)dx, ∀u ∈ χ.

(1.7)

Similarly to [1,8,16,22,29], any weak solution u of (1.1) satisfies the Pohožaev identity, that
is, P(u) = 0. For the nice properties of the generalized Nehari manifold, we refer to previous
works in [17, 18, 34] and references therein. Inspired by this fact, we define the following
Pohožaev–Nehari functional Γ(u) = αN(u)− P(u) and the Pohožaev–Nehari manifold of I

M :=
{

u ∈ χ\{0} : Γ(u) = 0
}

.
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Although χ is not a vector space (it is not close with the respect to the sum), it is easy to check
that I is well-defined and continuous on χ. For any ϕ ∈ C∞

0,r(R
2), u ∈ χ and u + ϕ ∈ χ, we

can compute the Gateaux derivative

〈I′(u), ϕ〉 =
∫

R2

{
(1 + 2κu2)∇u · ∇ϕ + 2κu|∇u|2ϕ + V(x)uϕ + µ

h2(|x|)
|x|2 (1 + κu2)uϕ

}
dx

+ µ
∫

R2

(∫ +∞

|x|

h(s)
s

(2 + κu2(s))u2(s)ds
)

uϕdx−
∫

R2
f (u)ϕdx. (1.8)

Then u ∈ χ is a weak solution of (1.1) if and only if the Gateaux derivative of I along any
direction ϕ ∈ C∞

0,r(R
2) vanishes (see Proposition 2.2 below). A radial weak solution is called

a radial ground state solution if it has the least energy among all nontrivial radial weak
solutions.

Our main result is the following theorem.

Theorem 1.1. Assume that (V1)–(V2) and ( f1)–( f3) are satisfied. Then (1.1) has a positive ground
state solution u ∈ χ\{0} ∩ C2(R2), such that I(u) = infu∈M I(u) = infu∈χ\{0}maxt>0 I(ut) where
ut = (u)t := tαu(tx).

Remark 1.2. Theorem 1.1 can be viewed as a partial extension to the counterpart of the result
and method in [8]. The assumptions on f in this paper are from the reference [5]. Furthermore,
by [5, Remark 1.4],

f (u) = (|u|p−2 − a|u|q−2)u,

satisfies ( f1)–( f3) when a > 0 and 2 < q < p ∈ (6, 8].

To prove the Theorem 1.1, by using some new techniques and inequalities related to I(u),
I(ut) and Γ(u), as performed in [3, 5, 24], we prove that a minimizing sequence {un} ⊂ χ of
infu∈M I(u) weakly converges to some nontrivial u in χ (after a translation and extraction of
a subsequence ) and u ∈ M is a minimizer of infu∈M I(u).

Notations. Throughout this paper, we make use of the following notations:

• V∞ is a positive constant;

• C, C0, C1, C2,. . . denote positive constants, not necessarily the same one;

• Lr(R2) denotes the Lebesgue space with norm ‖u‖Lr =
(∫

R2 |u|rdx
)1/r, where 1 ≤ r <

+∞;

• H1(R2) denotes a Sobolev space with norm ‖u‖ =
(∫

R2 u2 + |∇u|2dx
)1/2;

• H1
r (R

2) := {u ∈ H1(R2) : u is radially symmetric};

• C∞
0,r(R

2) := {u ∈ C∞
0 (R2) : u is radially symmetric};

• For any x ∈ R2 and r > 0, Br(x) = {y ∈ R2 : |y− x| < r};

• “ ⇀ ” and “→ ” denote weak and strong convergence, respectively.
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2 Variational framework and preliminaries

In this section, we will give the variational framework of (1.1) and some preliminaries. Now
we find that if u ∈ χ is a solution of (1.1), then it solves Q(u) = 0, where

Q(u) = divA(u,∇u) + B(x, u,∇u),

with

A(u,∇u) = (1 + 2κu2)∇u,

B(x, u,∇u) = −
(

2κ|∇u|2 + V(x) + µK1(x)(1 + κu2) + µK2(x)
)

u + f (u),
(2.1)

and

K1(x) =

{
h2(|x|)
|x|2 , x 6= 0,

0, x = 0,
K2(x) =

∫ +∞

|x|

h(s)
s

(
2 + κu2(s)

)
u2(s)ds.

We observe from (2.1) that (1.1) is a quasilinear elliptic equation with principal part in
divergence form and it satisfies all the structure conditions in [19] or [26].

In order to show that any weak solutions of (1.1) are classical ones, we introduce the
following lemma.

Lemma 2.1 ([8]). Let us fix u ∈ χ. We have:

(i) K1, K2 are nonnegative and bounded;

(ii) if we suppose further that u ∈ C(R2), then K1, K2 ∈ C1(R2).

Arguing as in [1, 8], standard computations show that

Proposition 2.2. The functional I in (1.7) is well-defined and continuous in χ and if the Gateaux
derivative of I evaluated in u ∈ χ is zero in every direction ϕ ∈ C∞

0,r(R
2), then u is a weak solution of

(1.1). Furthermore, the weak solution of (1.1) belongs to C2(R2), so the weak solution u is a classical
solution of (1.1).

Lemma 2.3. Any weak solution u of (1.1) satisfies the Nehari identity N(u) = 0 and the Pohožaev
identity P(u) = 0, where

N(u) =
∫

R2

[
(1 + 4κu2)|∇u|2 + V(x)u2 + µ

h2(|x|)
|x|2 (3 + 2κu2)u2

]
dx−

∫
R2

f (u)udx, (2.2)

P(u) =
∫

R2

[
V(x)u2 +

1
2
∇V(x) · x|u|2 + µ

h2(|x|)
|x|2 (2 + κu2)u2

]
dx− 2

∫
R2

F(u)dx. (2.3)

Proof. By a density argument, we can use u ∈ χ as a test function in (1.8), we have∫
R2

[
(1 + 2κu2)|∇u|2 + 2κu2|∇u|2 + V(x)u2 − f (u)u

]
dx

+ µ
∫

R2

h2(|x|)
|x|2 (1 + κu2)u2 + µ

∫
R2

(∫ +∞

|x|

h(s)
s

(2 + κu2(s))u2(s)ds
)

u2dx = 0. (2.4)

We claim that: for β = 2 or β = 4, we have
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∫
R2

h2(|x|)
|x|2 uβdx =

∫
R2

(∫ +∞

|x|

uβ(s)h(s)
s

ds
)

u2dx.

Now we using the integration by parts to prove the claim. A simple computation yields that

∫
R2

[
uβh(|x|)
|x|2

(∫ |x|
0

su2(s)ds
)]

dx =
∫ 2π

0

[∫ +∞

0

uβh(r)
r2

(∫ r

0
su2(s)ds

)
rdr
]

dθ

=
∫ 2π

0

∫ +∞

0

(∫ +∞

r

uβ(s)h(s)
s

ds
)

u2rdrdθ

=
∫

R2

(∫ +∞

|x|

uβ(s)h(s)
s

ds
)

u2dx.

Then, we conclude that the identity N(u) = 0 holds.
Next, let u ∈ χ ∩ C2(R2) be a solution of (1.1). Then multiplying by ∇u · x and integrating

by parts on BR. Arguing as in [1, 8], we get the following identities:

∫
BR

∆u(∇u · x)dx =
∫

∂BR

∂u
∂−→n

(∇u · x)dSx −
∫

BR

∇u · ∇(∇u · x)dx

= R
∫

∂BR

(
∂u

∂−→n

)2

dSx −
R
2

∫
∂BR

|∇u|2dSx

=
R
2

∫
∂BR

|∇u|2dSx =: I,

∫
BR

u∆(u2)(∇u · x)dx =
∫

∂BR

∂u2

∂−→n
u(∇u · x)dSx −

∫
BR

∇u2 · ∇(u(∇u · x))dx

=
R
2

∫
∂BR

(
∂u2

∂−→n

)2

dSx −
1
2

∫
BR

∇u2 · ∇(∇u2 · x)dx

=
R
4

∫
∂BR

|∇u2|2dSx =: II,

∫
BR

V(x)u(∇u · x)dx =
∫

BR

V(x)
(
∇
(1

2
u2
)
· x
)

dx

= −
∫

BR

V(x)u2dx− 1
2

∫
BR

(
∇V(x) · x

)
u2dx +

R
2

∫
∂BR

V(x)u2dSx

=: −
∫

BR

V(x)u2dx− 1
2

∫
BR

(
∇V(x) · x

)
u2dx + III,

∫
BR

f (u)(∇u · x)dx =
∫

BR

∇(F(u)) · xdx

= −2
∫

BR

F(u)dx + R
∫

∂BR

F(u)dSx

=: −2
∫

BR

F(u)dx + IV.

We note that if f (x) ≥ 0 is integrable on R2, then lim infR→+∞ R
∫

∂BR
f dS = 0. Since u ∈ χ,

then u2 ∈ H1(R2) and the integrands in the terms I, II, III and IV are all nonnegative and
contained in L1(R2), one can take a sequence {Rj} such that the terms I, II, III and IV with Rj
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replacing R converge to 0 as j→ +∞. Moreover, for β = 2 or β = 4, we have

4
β

∫
BRj

(∫ +∞

|x|

h(s)
s

uβ(s)ds
)

u(∇u · x)dx +
∫

BRj

h2(|x|)
|x|2 uβ−1(∇u · x)dx

=
∫

BRj

h2(|x|)
|x|2 uβ−1(∇u · x)dx +

4
β

∫
BRj

uβ(x)
|x|2

(∫ |x|
0

su2(s)ds
)(∫ |x|

0
s2u(s)u′(s)ds

)
dx

− 4
β

∫
BRj

uβ(x)
|x|2

(∫ |x|
0

su2(s)ds
)(∫ |x|

0
s2u(s)u′(s)ds

)
dx

+
4
β

∫
BRj

(∫ +∞

|x|

h(s)
s

uβ(s)ds
)

u(∇u · x)dx

=
1
β

d
dt

∣∣∣∣
t=1

∫
BRj

uβ(tx)
|x|2

(∫ |x|
0

su2(ts)ds
)2

dx

− 4
β

∫
BRj

uβ(x)
|x|2

(∫ |x|
0

su2(s)ds
)(∫ |x|

0
s2u(s)u′(s)ds

)
dx

+
4
β

∫
BRj

(∫ +∞

|x|

h(s)
s

uβ(s)ds
)

u(∇u · x)dx

= − 4
β

∫
BRj

uβ(x)
|x|2

(∫ |x|
0

su2(s)ds
)2

dx +
Rj

β

∫
∂BRj

uβ(x)
|x|2

(∫ |x|
0

su2(s)ds
)2

dSx

+
4
β

(∫
(R2\BRj )

uβ(x)h(|x|)
|x|2 dx

) ∫ Rj

0
s2u(s)u′(s)ds

= − 4
β

∫
BRj

uβ(x)
|x|2

(∫ |x|
0

su2(s)ds
)2

dx + on(1).

Then, from (1.1), we get∫
BRj

[
V(x)u2 +

1
2
∇V(x) · x|u|2 + µ

h2(|x|)
|x|2 (2 + κu2)u2

]
dx− 2

∫
BRj

F(u)dx + on(1) = 0.

This implies that P(u) = 0 holds. The proof is completed.

Remark 2.4. From (2.2) and (2.3), by Lemma 2.3, any weak solution of (1.1) belongs toM.

For functionals D(u), E(u) (see Section 3 below), we have the following compactness
lemma:

Lemma 2.5 ([8]). Suppose that a sequence {un} converges weakly to a function u in H1
r (R

2) as
n→ +∞. Then for each ψ ∈ H1

r (R
2), D(un), D′(un)ψ and D′(un)un, E(un), E′(un)ψ and E′(un)un

converges up to a subsequence to D(u), D′(u)ψ and D′(u)u, E(u), E′(u)ψ, and E′(u)u, respectively,
as n→ +∞.

3 Existence of ground state solutions

Throughout this section, for any u ∈ χ, we denote

A(u) =
∫

R2
|∇u|2dx, B(u) =

∫
R2

V(x)u2dx, C(u) =
∫

R2
u2|∇u|2dx,
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D(u) =
∫

R2

u2(x)
|x|2

(∫ |x|
0

su2(s)ds
)2

dx,

E(u) =
∫

R2

u4(x)
|x|2

(∫ |x|
0

su2(s)ds
)2

dx.

To complete the proof of Theorem 1.1, we prepare several lemmas.

Lemma 3.1. Assume that ( f1) and ( f3) hold. Then

g1(t, $) := t−2F(tα$)− F($) +
1− t8α−4

4(2α− 1)
[
α f ($)$− 2F($)

]
≥ 0, ∀t > 0, $ ∈ R, (3.1)

and

f ($)$− (8α− 2)
α

F($) ≥ 0, ∀$ ∈ R. (3.2)

Proof. It is easy to see that g1(t, 0) ≥ 0. For $ 6= 0, by ( f3), we have

d
dt

g1(t, $) = t8α−5|$| 8α−2
α

[
α f (tα$)tα$− 2F(tα$)

|tα$| 8α−2
α

− α f ($)$− 2F($)

|$| 8α−2
α

]

=
2t

5p−24
8−p |$|p
8− p

[
f (t

2
8−p $)t

2
8−p $− (8− p)F(t

2
8−p $)

|t
2

8−p $|p
− f ($)$− (8− p)F($)

|$|p

]
,

and this expression is greater than or equal to zero for t ≥ 1 and less than or equal to zero for
0 < t < 1. Together with the continuity of g1(·, $), this implies that g1(t, $) ≥ g1(1, $) = 0 for
all t ≥ 0 and $ ∈ R\{0}. This shows that (3.1) holds. By ( f1) and (3.1), we have

lim
t→0

g1(t, $) =
1

4(2α− 1)
[
α f ($)$− (8α− 2)F($)

]
≥ 0, ∀$ ∈ R,

which implies that (3.2) holds.

Lemma 3.2. Assume that (V1)–(V2) hold. Then

g2(t, x) := V(x)− t2α−2V(t−1x)− 1− t8α−4

4(2α− 1)
[
(2α− 2)V(x)−∇V(x) · x

]
≥ 0, ∀ t ≥ 0, x ∈ R2 \ {0},

(3.3)

and
(6α− 2)V(x) +∇V(x) · x ≥ 0, ∀x ∈ R2. (3.4)

Proof. For any x ∈ R2, by (V1) and (V2), we have

d
dt

g2(t, x) = t8α−5
{
(2α− 2)V(x)−∇V(x) · x

− t−(6α−2)[(2α− 2)V(t−1x)−∇V(t−1x) · (t−1x)
]}

,

and this expression is greater than or equal to zero for t ≥ 1 and less than or equal to zero for
0 < t < 1. Together with the continuity of g2(·, x), this implies that g2(t, x) ≥ g2(1, x) for all
t ≥ 0 and x ∈ R2. This shows that (3.3) holds. By (3.3), one has

lim
t→0

g2(t, x) =
(6α− 2)V(x) +∇V(x) · x

4(2α− 1)
≥ 0,

which implies that (3.4) holds.
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For t ≥ 0, let

τ1(t) = αt8α−4 − (4α− 2)t2α + 3α− 2, (3.5)

τ2(t) = αt8α−4 − (2α− 1)t4α + α− 1 , (3.6)

τ3(t) = (3α− 2)t8α−4 − (4α− 2)t6α−4 + α. (3.7)

Since α > 1, for all t ∈ (0, 1) ∪ (1,+∞),

τ1(t) > τ1(1) = 0, τ2(t) > τ2(1) = 0, τ3(t) > τ3(1) = 0. (3.8)

Lemma 3.3. Assume that (V1)–(V2), ( f1) and ( f3) hold. Then for all u ∈ H1(R2) and t > 0,

I(u) ≥ I(ut) +
1− t8α−4

4(2α− 1)
Γ(u) +

τ1(t)
4(2α− 1)

A(u) +
τ2(t)

(2α− 1)
C(u). (3.9)

Proof. Note that

I(ut) =
t2α

2
A(u) +

t2α−2

2

∫
R2

V(t−1x)u2dx + t4ακC(u)

+
t6α−4

2
µD(u) +

t8α−4

4
µκE(u)− 1

t2

∫
R2

F(tαu)dx, ∀u ∈ H1(R2).
(3.10)

Since Γ(u) = αN(u)− P(u) for u ∈ χ, then (1.7) and (1.8) imply that

Γ(u) = αA(u) +
1
2

∫
R2

[
(2α− 2)V(x)−∇V(x) · x

]
u2dx

+ 4ακC(u) + (3α− 2)µD(u) + (2α− 1)µκE(u) +
∫

R2

[
2F(u)− α f (u)u

]
dx.

(3.11)

Then, it follows from (1.7), (3.1)–(3.7), (3.10)–(3.11) that

I(u)− I(ut)

=
1− t2α

2
A(u) +

1
2

∫
R2

[
V(x)− t2α−2V(t−1x)

]
u2dx + (1− t4α)κC(u)

+

(
1− t6α−4

2

)
µD(u) +

(
1− t8α−4

4

)
µκE(u) +

∫
R2

[
t−2F(tαu)− F(u)

]
dx

=
1− t8α−4

4(2α− 1)

{
αA(u) +

1
2

∫
R2

[
(2α− 2)V(x)−∇V(x) · x

]
u2dx

+ 4ακC(u) + (3α− 2)µD(u) + (2α− 1)µκE(u) +
∫

R2

[
2F(u)− α f (u)u

]
dx
}

+

[
1− t2α

2
− α(1− t8α−4)

4(2α− 1)

]
A(u) +

[(
1− t6α−4

2

)
− (1− t8α−4)(3α− 2)

4(2α− 1)

]
µD(u)

+
1
2

∫
R2

{
V(x)− t2α−2V(t−1x)− 1− t8α−4

4(2α− 1)
[
(2α− 2)V(x)−∇V(x) · x

]}
u2dx

+

[
1− t4α − 4α(1− t8α−4)

4(2α− 1)

]
κC(u)

+
∫

R2

{
t−2F(tαu)− F(u) +

1− t8α−4

4(2α− 1)
[
α f (u)u− 2F(u)

]}
dx

≥ 1− t8α−4

4(2α− 1)
Γ(u) +

τ1(t)
4(2α− 1)

A(u) +
τ2(t)

(2α− 1)
C(u),

for all u ∈ H1(R2) and t > 0. This implies that (3.9) holds.
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From Lemma 3.3, we have the following corollary.

Corollary 3.4. Assume that (V1)–(V2), ( f1) and ( f3) hold. Then for all u ∈ M,

I(u) = max
t>0

I(ut).

Lemma 3.5. Assume that (V1)–(V2), ( f1)–( f3) hold. Then for any χ\{0}, there exists a unique
tu > 0, such that (u)tu ∈ M.

Proof. Inspired by [3, 5], we let u ∈ χ\{0} be fixed and define the function γ(t) := I(ut) on
(0,+∞). Clearly by (3.10), (3.11), we have

γ′(t) = 0⇐⇒ αA(u)t2α−1 +
t2α−3

2

∫
R2

[
2(α− 1)V(t−1x)−∇V(t−1x) · (t−1x)

]
u2dx

+ 4ακC(u)t4α−1 + (3α− 2)µD(u)t6α−5 + (2α− 1)µκE(u)t8α−5

+ t−3
∫

R2

[
2F(tαu)− α f (tαu)tαu

]
dx = 0

⇐⇒ Γ(ut) = 0⇐⇒ ut ∈ M.

From (V1) and (V2), ( f1) and (3.10), it follows that limt→0 γ(t) = 0, γ(t) > 0 for t > 0 small.
Moreover, from ( f1) and ( f2), for every θ > 0, there exists Cθ > 0 such that

F($) ≥ θ|$|p − Cθ$2, ∀$ ∈ R. (3.12)

We note from Lemma 2.1 and Hölder inequality that for some C0 > 0,

h(s) =
∫ s

0
u2(r)rdr =

∫
Bs

1
2π

u2(y)dy ≤ C0s‖u‖2
L4 , (3.13)

then

D(u) =
∫

R2

u2(x)
|x|2

(∫ |x|
0

su2(s)ds
)2

dx ≤ C0‖u‖4
L4‖u‖2

L2 , (3.14)

E(u) =
∫

R2

u4(x)
|x|2

(∫ |x|
0

su2(s)ds
)2

dx ≤ C0‖u‖8
L4 . (3.15)

By (V1), we have Vmax:= maxx∈R2 V(x) > 0 and by (3.10), (3.12) and (3.14), (3.15), we have

I(ut) ≤
t2α

2
A(u) +

t2α−2

2
Vmax‖u‖2 + t4ακC(u)

+
t6α−4

2
µC0‖u‖4

L4‖u‖2
L2 +

t8α−4

4
µκ‖u‖8

L4 − θt8α−4‖u‖p
Lp

+ t2α−2Cθ‖u‖2
L2 .

(3.16)

Let θ be large enough in (3.16), then γ(t) < 0 for t large. Therefore, maxt>0 γ(t) is achieved at
some tu > 0, so that γ′(tu) = 0 and (u)tu ∈ M.

Next, we claim that tu > 0 is unique for any u ∈ χ\{0}. If there exist two positive constants
t1 6= t2, such that both ut1 , ut2 ∈ M, that is, Γ(ut1) = Γ(ut2) = 0, then (3.5)–(3.7), (3.10) imply

I(ut1) > I(ut2) +
t6α−4
1 − t6α−4

2

4(2α− 1)t6α−4
1

Γ(ut1) = I(ut2)

> I(ut1) +
t6α−4
2 − t6α−4

1

4(2α− 1)t6α−4
2

Γ(ut2) = I(ut1).

This contradiction shows that tu > 0 is unique for any u ∈ χ\{0}.
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Arguing as in [5], standard computations show that

Lemma 3.6. Assume that (V1)–(V2) hold. Then there exist constants C1, C2 > 0, such that

(2α− 2)V(x)−∇V(x) · x ≥ C1, ∀x ∈ R2. (3.17)

and
(6α− 2)V(x) +∇V(x) · x ≥ C2, ∀x ∈ R2. (3.18)

Lemma 3.7. Assume that (V1) and (V2), ( f1)–( f3) hold. Then

(i) there exists ρ0 > 0 such that ‖u‖ ≥ ρ0, ∀u ∈ M;

(ii) m := infu∈M I(u) = infu∈χ\{0}max I(ut) > 0.

Proof. (i) Since Γ(u) = 0 for u ∈ M, it follows from ( f1), (3.11), (3.17) and Sobolev embedding
inequality, there exists a constant C3 > 0, such that

αA(u) + 4ακC(u) +
1
2

C1‖u‖2
L2

≤ αA(u) + 4ακC(u) +
1
2

∫
R2

[
(2α− 2)V(x)−∇V(x) · x

]
u2dx

≤
∫

R2

[
α f (u)u− 2F(u)

]
dx

≤ 1
4

C1‖u‖2
L2 + C3‖u‖p,

for all u ∈ M. This implies that there exists ρ0 > 0 such that

‖u‖ ≥ ρ0 :=
(

min{4α, C1}
4C3

) 1
p−2

, ∀u ∈ M. (3.19)

(ii) From Corollary 3.4 and Lemma 3.5, we have

M 6= ∅ and m = inf
u∈χ\{0}

max I(ut).

Next, we prove that m > 0. Let

Ψ(u) := I(u)− 1
4(2α− 1)

Γ(u)

=
3α− 2

4(2α− 1)
A(u) +

1
8(2α− 1)

∫
R2

[
(6α− 2)V(x) +∇V(x) · x

]
u2dx

+
α− 1

(2α− 1)
κC(u) +

α

4(2α− 1)
µD(u)

+
1

4(2α− 1)

∫
R2

[
α f (u)u− (8α− 2)F(u)

]
dx, ∀u ∈ H1(R2).

(3.20)

Since Γ(u) = 0 for all u ∈ M, then it follows from (3.2), (3.4), (3.18) and (3.19), (3.20) that

I(u) ≥ 3α− 2
4(2α− 1)

A(u) +
1

8(2α− 1)

∫
R2

[
(6α− 2)V(x) +∇V(x) · x

]
u2dx

≥ min{2(3α− 2), C2}
8(2α− 1)

‖u‖2 ≥ min{2(3α− 2), C2}
8(2α− 1)

ρ2
0 := ρ1 > 0, ∀u ∈ M.

This shows that m = infu∈M I(u) ≥ ρ1 > 0.
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Next, we establish the following lemma.

Lemma 3.8. Assume that (V1)–(V2) and ( f1)–( f3) hold. If u ∈ M and I(u) = m, then u is a radial
ground state solution of (1.1). Moreover, it is positive (up to a change of sign).

Proof. We argue as in [8, 22]. Suppose by contradiction that u is not a weak solution of (1.2).
Then, we can choose ϕ ∈ C∞

0,r(R
2) such that

〈I′(u), ϕ〉 < −1.

Hence, we fix ε > 0 sufficiently small such that

〈I′(ut + ϑϕ), ϕ〉 ≤ −1
2

, for |t− 1|, |ϑ| ≤ ε, (3.21)

and introduce ζ ∈ C∞
0 (R) be a cut-off function 0 ≤ ζ ≤ 1 such that ζ(t)=1 for |t− 1| ≤ ε

2 and
ζ(t) = 0 for |t− 1| ≥ ε. For t ≥ 0, we construct a path σ : R+ → χ defined by

σ(t) =

{
ut, if |t− 1| ≥ ε,

ut + εζ(t)ϕ, if |t− 1| < ε.

Note that η is continuous on the metric space (χ, dχ) and eventually, choosing a smaller ε, if
necessary, we obtain that dχ(σ(t), 0) > 0 for |t− 1| < ε.

We claim that
sup
t≥0

I(σ(t)) < m. (3.22)

Indeed, if |t− 1| ≥ ε, from Corollary 3.4, we have I(σ(t)) = I(ut) < I(u) = m. If |t− 1| < ε,
by using the mean value theorem, we get

I(σ(t)) = I(ut + εζ(t)ϕ) = I(ut) +
∫ ε

0
〈I′(ut + ϑζ(t)ϕ), ζ(t)ϕ〉dτ

≤ I(ut)−
1
2

εζ(t) < m,

where in the first inequality we have used (3.21).
To conclude that Γ(σ(1 + ε)) < 0 and Γ(σ(1− ε)) > 0. By the continuity of the map t →

Γ(σ(t)), there exists t0 ∈ (1− ε, 1 + ε) < 0 such that Γ(σ(t0)) = 0. This implies that σ(t0) =

ut0 + εζ(t0)ϕ ∈ M and I(σ(t0)) < m. By Lemma 3.7, this gives the desired contradiction,
hence u is a weak solution of (1.2). By Remark 2.4, we conclude that u is a radial ground state
solution. Moreover, if u ∈ M is a minimizer of I|M, then |u| is also a minimizer and a solution.
So we can assume that u is nonnegative. By Proposition 2.2, we know that u ∈ C2(R2) and by
the Harnack inequality [27], we know that u > 0. This completes the proof.

Lemma 3.9. Assume that (V1)–(V2) and ( f1)–( f3) hold. Then m is achieved.

Proof. Let {un} ⊂ M be such that I(un)→ m, then by (3.20),

m + o(1) = I(un) ≥
3α− 2

4(2α− 1)
A(un) +

C2

8(2α− 1)
‖un‖2

L2 +
α− 1

(2α− 1)
κC(un),

which implies that {un} and {u2
n} are bounded in H1

r (R
2). Therefore, by the compactness

result due to [23], there exists u ∈ χ such that, up to a subsequence,
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un ⇀ u in H1
r (R

2),

u2
n ⇀ u2 in H1

r (R
2),

un → u in Lq(R2) for any q > 2,

un → u a.e. in R2.

There are two possible cases (i) u = 0 and (ii) u 6= 0. Next, we prove that u 6= 0.
Arguing by contradiction, suppose that u = 0, that is un ⇀ 0 in H1

r (R
2) and u2

n ⇀ 0 in
H1

r (R
2). Then un → 0 in Lq(R2) for q > 2 and un → 0 a.e. in R2. From Γ(un) = 0, (3.17) and

(3.19), one has

min{α,
1
2

C1}ρ0
2 ≤ min

{
α,

1
2

C1

}
‖un‖2

≤ αA(u) +
1
2

C1‖un‖2
L2

≤ αA(un) +
1
2

∫
R2

[
(2α− 2)V(x)−∇V(x) · x

]
u2

ndx

+ 4ακC(un) + (3α− 2)µD(un) + (2α− 1)µκE(un)

=
∫

R2

[
α f (un)un − 2F(un)

]
dx + o(1).

(3.23)

Using ( f1), ( f2), clearly, (3.23) contradicts with un → 0 in Lq(R2) for q > 2, therefore u 6= 0.
Let vn = un − u. Then by Lemma 2.5 and the Brezis–Lieb Lemma (see [22, 24, 30]), yield

I(un) = I(u) + I(vn) + o(1), (3.24)

and
Γ(un) = Γ(u) + Γ(vn) + o(1). (3.25)

Since I(un)→ m, Γ(un) = 0, then it follows from (3.20), (3.24) and (3.25), we have

Ψ(vn) := I(vn)−
1

4(2α− 1)
Γ(vn)

= m−Ψ(u) + o(1)

= m−
[

I(u)− 1
4(2α− 1)

Γ(u)
]
+ o(1),

(3.26)

and
Γ(vn) = −Γ(u) + o(1). (3.27)

If there eixsts a subsequence {vni} of {vn} such that vni = 0, then

I(u) = m, Γ(u) = 0, (3.28)

which implies that the conclusion of Lemma 3.9 holds. Next, we assume that vn 6= 0. In view
of Lemma 3.5, there exists tn > 0 such that (vn)tn ∈ M for large n, we claim that Γ(u) ≤ 0,
otherwise, if Γ(u) > 0, then (3.27) implies that Γ(vn) < 0 for large n. From (1.7), (3.9) and
(3.26), we obtain

m−Ψ(u) + o(1) = Ψ(vn) = I(vn)−
1

4(2α− 1)
Γ(vn)

≥ I((vn)tn)−
t8α−4
n

4(2α− 1)
Γ(vn) +

τ1(tn)

4(2α− 1)
A(vn) +

τ2(tn)

(2α− 1)
C(vn)

≥ I((vn)tn)−
t8α−4
n

4(2α− 1)
Γ(vn) ≥ m for large n ∈N,
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which implies that Γ(u) ≤ 0 due to Ψ(u) > 0. Applying Lemma 3.5, there exists t > 0 such
that ut ∈ M. From (1.7), (3.5), (3.6) and (3.9), the weak semicontinuity of norm and Fatou’s
Lemma, one has

m = lim
n→∞

Ψ(un)

= lim
n→∞

[
I(un)−

1
4(2α− 1)

Γ(un)

]
≥ I(u)− 1

4(2α− 1)
Γ(u)

≥ I(ut)−
t8α−4

4(2α− 1)
Γ(u) +

τ1(t)
4(2α− 1)

A(u) +
τ2(t)

(2α− 1)
C(u)

≥ m− t8α−4

4(2α− 1)
Γ(u) ≥ m,

which implies that (3.28) holds.

Proof of Theorem 1.1. In view of Lemmas 3.7, 3.8, 3.9, there exists u ∈ M such that I′(u) = 0,
I(u) = m = infu∈χ\{0}max I(ut), we can conclude that, actually, u is a positive radial ground
state solution of (1.1). This completes the proof.
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