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Abstract. For more than 20 years, the Korteweg—de Vries equation has been intensively
explored from the mathematical point of view. Regarding control theory, when adding
an internal force term in this equation, it is well known that the Korteweg—de Vries
equation is exponentially stable in a bounded domain. In this work, we propose a weak
forcing mechanism, with a lower cost than that already existing in the literature, to
achieve the result of the global exponential stability to the Korteweg—de Vries equation.
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1 Introduction

1.1 Historical review

In 1834 John Scott Russell, a Scottish naval engineer, was observing the Union Canal in Scot-
land when he unexpectedly witnessed a very special physical phenomenon which he called
a wave of translation [35]. He saw a particular wave traveling through this channel without
losing its shape or velocity, and was so captivated by this event that he focused his attention
on these waves for several years, not only built water wave tanks at his home conducting prac-
tical and theoretical research into these types of waves, but also challenged the mathematical
community to prove theoretically the existence of his solitary waves and to give an a priori
demonstration a posteriori.

A number of researchers took up Russell’s challenge. Boussinesq was the first to ex-
plain the existence of Scott Russell’s solitary wave mathematically. He employed a variety
of asymptotically equivalent equations to describe water waves in the small-amplitude, long-
wave regime. In fact, several works presented to the Paris Academy of Sciences in 1871 and
1872, Boussinesq addressed the problem of the persistence of solitary waves of permanent
form on a fluid interface [4-7]. It is important to mention that in 1876, the English physicist
Lord Rayleigh obtained a different result [31].
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After Boussinesq theory, the Dutch mathematicians D. J. Korteweg and his student
G. de Vries [22] derived a nonlinear partial differential equation in 1895 that possesses a
solution describing the phenomenon discovered by Russell,
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in which 7 is the surface elevation above the equilibrium level, [ is an arbitrary constant

related to the motion of the liquid, g is the gravitational constant, and f = é - % with

surface capillary tension T and density p. The equation (1.1) is called the Korteweg—de Vries
equation in the literature, often abbreviated as the KdV equation, although it had appeared
explicitly in [7], as equation (283bis) in a footnote on page 360"

Eliminating the physical constants by using the following change of variables

t— 1 it X — . u— — ! + 1oc
2\ 18" B’ 2173
one obtains the standard Korteweg—-de Vries (KdV) equation

Ut + 6UUy + Uyyy =0 (1.2)

which is now commonly accepted as a mathematical model for the unidirectional propagation
of small-amplitude long waves in nonlinear dispersive systems. It turns out that the equation
is not only a good model for some water waves but also a very useful approximation model in
nonlinear studies whenever one wishes to include and balance a weak nonlinearity and weak
dispersive effects [27].

1.2 Motivation and setting of the problem

Consider the KdV equation (1.2). Let us introduce a source term in this equation as follows:
th + 6M1/lx + uxxx +f - 0, (1.3)

where f will be defined as

f = Gu(x,t) =1, (u (x,t) — Tl /wu (x,t) dx) . (1.4)

1

|w
Here, 1,, denotes the characteristic function of the set w. Notice that this term can be seen
as a damping mechanism, which helps the energy of the system to dissipate. In fact, let us

consider w subset of a domain M := T or M := R and the total energy of the linear equation
associated to (1.3), in this case, is given by

El(f) = ;/M uf? (x, ) dox. (15)

Then, we can (formally) verify that

;t/M ‘M‘Z (x,£) dx = — HGMH%Z(M), for any t € R.

*The interested readers are referred to [18,30] for history and origins of the Korteweg—de Vries equation.
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The inequality above shows that the term G plays the role of feedback mechanism and, con-
sequently, we can investigate whether the solutions of (1.3) tend to zero as t — co and under
what rate they decay.

Inspired by this, in our work we will study the full KdV equation from a control point of
view posed in a bounded domain (0,L) C R with a weak forcing term Gh added as a control
input, namely:

U+ Uy +UUy + Uy +CGh =0 in (0,L) x (0,T),
w(0,8) =u(Lt) = ug (L,t) =0, in (0,T), (1.6)
u(x,0) =uo(x), in (0,L).

Here, G is the operator defined by

Gh (x,£) = 1, (h (x, 1) — ‘j,‘ [nen dx) , (17)

where /1 is considered as a new control input with w C (0, L) and 1,, denotes the characteristic
function of the set w.

Thus, we are interested in proving the stability for solutions of (1.6), which can be ex-
pressed in the following natural issue.

Stabilization problem: Can one find a feedback control law h so that the resulting closed-loop system
(1.6) is asymptotically stable when t — co?

1.3 Previous results

The study of the controllability and stabilization to the KdV equation started with the works
of Russell and Zhang [37] for a system with periodic boundary conditions and an internal
control. Since then, both the controllability and the stabilization have been intensively studied.
In particular, the exact boundary controllability of KdV on a finite domain was investigated
in e.g. [10,11,14-16,32,33,39].

Most of these works deal with the following system

(1.8)

Ut + Uy + Uy + Uy =0 in (0,T) x (0,L),
u(t,0) = hy(t), u(t,L) = ho(t), ux(t,L) = h3(t) in (0, T),

in which the boundary data h, hy, h3 can be chosen as control inputs.

The boundary control problem of the KdV equation was first studied by Rosier [32] who
considered system (1.8) with only one boundary control input i3 (i.e., h1 = hy = 0) in action.
He showed that the system (1.8) is locally exactly controllable in the space L2(0, L). Precisely,
the result can be read as follows:

Theorem A ([32]). Let T > 0 be given and assume

_
LN = {271\/]”3“1:]',1611\1*}. (1.9)

There exists a 6 > 0 such that if ¢, P € L? (0, L) satisfies

¢l 20,0) + 1Pl 20,y < 6,
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then one can find a control input hy € L? (0, T) such that the system (1.8), with hy = hy = 0, admits
a solution

ue C([0,T];L2(0,L)) N L2 (0, T; H' (o,L))

satisfying
u(x,0)=¢(x), ulxT)=9(x).

Theorem A was first proved for the associated linear system using the Hilbert Unique-
ness Method due ].-L. Lions [24] without the smallness assumption on the initial state ¢ and
the terminal state ¢. The linear result was then extended to the nonlinear system to obtain
Theorem A by using the contraction mapping principle.

Still regarding the KdV equation in a bounded domain, Chapouly [12] studied the exact
controllability to the trajectories and the global exact controllability of a nonlinear KdV in a
bounded interval. Precisely, first, she introduced two more controls as follows
Up 4+ Uy + Ully + U = g (1), xe (0,L), t>0, (1.10)
u(0,t) = hy (t), u(L,t) = ho(t), uy (L,t) =0, t>0, '

where ¢ = ¢(t) is independent of the spatial variable x and is considered as a new control
input. Then, Chapouly proved that, thanks to these three controls, the global controllability
to the trajectories, for any positive time T, holds. Finally, she introduced a fourth control on
the first derivative at the right endpoint, namely,

Up + e + Uty + ey = g (1), xe (0,L), t>0,
w(0,8) = hy (t), u(L,t) = ha(t), uy (L, t) = ha(t), >0,

where ¢ = g(t) has the same structure as in (1.10). With this equation in hand, she showed
the global exact controllability, for any positive time T.
Considering now a periodic domain T, Laurent et al. in [23] worked with the following
equation:
U+ Uy + Uy =0, x€T,t€R. (1.11)

Equation (1.11) is known to possess an infinite set of conserved integral quantities, of which
the first three are

0 :/Tu (x,t)dx, L (f) :/Tuz (x,) dx
and

)= [ <u§ (x,1) — %Lﬁ (x,t)> dx.

From the historical origins [4,22,27] of the KdV equation, involving the behavior of water
waves in a shallow channel, it is natural to think of I; and I, as expressing conservation of
volume (or mass) and energy, respectively. The Cauchy problem for equation (1.11) has been
intensively studied for many years (see [3,19,21,38] and the references therein).

With respect to control theory, Laurent et al. [23] studied the equation (1.11) from a control
point of view with a forcing term f = f(x,t) added to the equation as a control input:

Us + UU + Uxxx = f, X € T, t € :[R, (1.12)
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where f is assumed to be supported in a given open set w C T. However, in the periodic
domain, control problems were first studied by Russell and Zhang in [36,37]. In their works,
in order to keep the mass I (t) conserved, the control input f(x,t) is chosen to be of the form

(5,0 = [6H] (3,0) 1= g () (W) = [ 50 h w1} dy), 113)

where h is considered as a new control input, and g(x) is a given non-negative smooth func-
tion such that {g > 0} = w and

27 [g] :/Tg(x)dle.

For the chosen g, it is easy to see that

d
a/jru(x,t)dx— /Tf(x,t)dx =0, foranyte R
for any solution 1 = u(x,t) of the system
Ut + Uy + Uyyr = Gh. (1.14)

Thus, the mass of the system is indeed conserved. Therefore, the following results are due to
Russell and Zhang.

Theorem B ([37]). Let s > 0 and T > 0 be given. There exists a & > 0 such that for any ug, u; €
H*(T) with [ug] = [u1] satisfying

luollps <6, ]l <6,

one can find a control input h € L2(0,T; H*(T)) such that the system (1.14) admits a solution u €
C([0, T]; H*(T)) satisfying u(x,0) = ug(x), u(x, T) = up(x).

Note that one can always find an appropriate control input  to guide system (1.12) from a
given initial state 1 to a terminal state 11 so long as their amplitudes are small and [uo] = [u1].
With this result the two following questions arise naturally, which have already been cited in
this work.

Question 1: Can one still guide the system by choosing appropriate control input h from a given initial
state ug to a given terminal state uy when ug or uy have large amplitude?

Question 2: Do the large amplitude solutions of the closed-loop system (1.12) decay exponentially as
t — o0?
Laurent et al. gave the positive answers to these questions:

Theorem C ([23]). Let s > 0, R > 0 and u € R be given. There exists a T > 0 such that for any
ug,u; € H%(T) with [ug] = [u1] = p are such that

lluol| s < R, urllgs <R,

then one can find a control input h € L*(0, T; H*(T)) such that the system (1.12) admits a solution
u € C([0, T]; H*(T)) satisfying

u(x,0) =uo(x) and u(x,T) = ui(x).
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Theorem D ([23]). Let s > 0, R > 0 and u € R be given. There exists a k > 0 such that for any
ug € H*(T) with [ug] = u the corresponding solution of the system (1.12) satisfies

e () = [uo]ll s < asu (lltto = [tt0] [l 10) €™ I|t0 — [uto] | s~ for all £ >0,
where &gy, : RY — R is a nondecreasing continuous function depending on s and p.

These results are established with the aid of certain properties of propagation of
compactness and regularity in Bourgain spaces for the solutions of the associated linear sys-
tem. Finally, with Slemrod’s feedback law, the resulting closed-loop system is shown to be
locally exponentially stable with an arbitrarily large decay rate.

Still with respect to problems of stabilization, Pazoto [28] proved the exponential decay
for the energy of solutions of the Korteweg—de Vries equation in a bounded interval with a
localized damping term, precisely, with a term a = a(x) satisfying

{a € L°(0,L) and a(x) > ap > O a.e. in w, (1.15)

where w is a nonempty open subset of (0, L).
With this mechanism the author showed that

dE L 2 1 2
= | et Pdx = S 0,0
with
1 /L
E(t) = - / lu(x, 1) |2dx.
2 Jo
This indicates that the term a(x)u in the equation plays the role of a feedback damping mech-
anism. Finally, following the method in Menzala et al. [26] which combines energy estimates,

multipliers and compactness arguments, the problem is reduced to prove the unique continu-
ation of weak solutions. The result proved by the author can be read as follows.

Theorem & ([28]). For any L > 0, any damping potential a satisfying (1.15) and R > 0, there exist
c=c(R) > 0and u = u(R) > 0 such that

E(t) < oz 7,
holds for all t > 0 and any solution of

Up+ Uy + Utly + Uyyy +a(x)u=0 in (0,T) x (0,L),
u(t,0) =u(t,L) =uy(t,L) =0 in (0,T), (1.16)
u(0,x) = up(x) in (0,L),

with ug € L*(0, L) such that ||ugl| 2y < R.

Massarolo et al. showed in [25] that a very weak amount of additional damping stabilizes
the KdV equation. In particular, a damping mechanism dissipating the L?—norm as a() does is
not needed. Dissipating the H~!—norm proves to be. For instance, one can take the damping
term Bu instead of a(x)u, where Bu is defined by

dz\ !



Weak damping for the Korteweg—de Vries equation 7

where 1, denotes the characteristic function of the set w, (—dz/ dxz) 1 is the inverse of the
Laplace operator with Dirichlet boundary conditions (on the boundary of w C (0,L)). Under
the above considerations, they observed that (formally) the operator B satisfies

/OL uBudx = /OL u [—LUA’lu] dx = — /w (A’lu) A (A’lu) dx

<ol o o] o

=87 = o7l

Hp ()
Consequently, the total energy E(t) associated with (1.16) with Bu instead of a(x)u, satisfies

2

2w) = el )-

d L
| e P = 20,6 — ul g,

where L
E(t) = / lu(x, t)|*dx.
0

This indicates that the term Bu plays the role of a feedback damping mechanism. Conse-
quently, they investigated whether E(f) tends to zero as f — oo and the uniform rate at which
it may decay, showing the similar result as in Theorem &.

To finish that small sample of the previous works, let us present another result of controlla-
bility for the KdV equation posed on a bounded domain. Recently, the author in collaboration
with Pazoto and Rosier, showed in [9] results for the following system,

Up+ Uy + Utly + Uyyy = 1o f(£,x)  in (0,T) x (0, L),
u(t,0) =u(t,L) =uy(t,L) =0 in (0,7T), (1.17)
u(0,x) = up(x) in (0,L),
considering f as a control input and 1, is a characteristic function supported on w C (0,L).
Precisely, when the control acts in a neighborhood of x = L, they obtained the exact

controllability in the weighted Sobolev space L?, 4, defined as
T—x4X

L 2
2 — 1 ) lu(x)|
Lﬁdx T {u € Lloc(ol L)’/O ﬁdx < oo}

More precisely, they proved the following result:

Theorem F [9]: Let T > 0, w = (I1,lp) = (L — v, L) where 0 < v < L. Then, there exists 6 > 0
such that for any ug, uy € L, with
I—x

luoll 2, <6 and |Jmll2 <9,
mdx mdx

one can find a control input f € L*(0,T; H (0

, L
solution u € C°([0,L],L?(0,L)) N L2(0, T, H'(0, L)
u e Co,T], L%, 1) Furthermore, f € L% 0,
L—x

)) with supp(f) C (0,T) x w such that the
) of (1.17) satisfies u(T,.) = uy in (0,L) and

a0, T,12(0, L)),

We caution that this is only a small sample of the extant works in this field. Now, we are
able to present our result in this manuscript.
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1.4 Main result and heuristic of the paper

The aim of this manuscript is to address the stabilization issue for the KdV equation on a
bounded domain with a weak source (or forcing) term, as a distributed control, namely

Up + Uy + Ully + Uyyy + Gh =0, in (0,L) x (0,T),
u(0,t) =u(L,t) =uy(L,t)=0, in (0,T), (1.18)
u(x,0) =up(x), in (0,L),

where G is the operator defined by (1.7).
Notice that with a good choose of GF, that is,

Gh = Gu (x,t) =1, (u (x,t) — Tl /w u(x,t) dx> , (1.19)

1
|w

the energy associate

verify that
a
dt

at least for the linear system

L
/0 u? (x,t)dx < — HGuH%Z(O,L) , foranyt >0,

U+ Uy + Uy + Gh =0, in (0,L>X{t>0}.

Consequently, we can investigate whether the solutions of this equation tend to zero as t — oo
and under what rate they decay. To be precise, the main result of the work, give us an answer
to the stabilization problem for the system (1.6)-(1.7), proposed on the beginning of this paper,
and will be state in the following form.

Theorem 1.1. Let T > 0. Then, for every Ry > O there exist constants C > 0 and k > 0, such that,
for any ug € L? (0, L) with
H”OHLZ(O,L) < Ry,

the corresponding solution u of (1.6) satisfies
[|lu ('rt)HLZ(o,L) < Ce M H”OHLZ(O,L) , Vt>0.

Note that our goal in this work is to give an answer for the stabilization problem that
was mentioned at the beginning of this introduction. Is important to point out that a similar
teedback law was used in [37] and, more recently, in [23] for the Korteweg—de Vries equation,
to prove a globally uniform exponential result in a periodic domain. In [23,37] the damping
with a null mean was introduced to conserve the integral of the solution, which for KdV
represents the mass (or volume) of the fluid.

In the context presented in this manuscript, our result improves earlier works on the
subject, for example, [28]. Roughly speaking, differently from what was proposed by [23,37],
in this work, the weak damping (1.7) is to have a lower cost than the one presented in [28] in
the sense of that we can remove a medium term in the mechanisms proposed in these works
and still have positive result of stabilization of the KdV equation.
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Observe that the control used in [28], is formally the first part of the following forcing
term:

Gh (x,t) = 1, <h (x,1) — ‘;‘ /wh (x,1) dx) ,

where w C (0,L). In fact, to see this, in [28], define a(x) := —1,, in the above equality and
just forget the remaining term. Thus, due to these considerations, we do not need a strong
mechanism acting as control input. Surely, of what was shown in this article, to achieve
the stability result for the KdV equation, is that the forcing operator Gh can be taken as a
function supported in w removing the medium term associated to the first term of the control
mechanism.

Here, it is important point out that, the week damping mechanism is related with respect
to the cost of the stabilization, as mentioned previously, which is different in the context
of [25], where the authors proves that the energy of the system dissipates in the H !-norm
instead of L2-norm.

Concerning to the stabilization problem, the main ingredient to prove Theorem 1.1 is the
Carleman estimate for the linear problem proved by Capistrano-Filho et al. in [9]. This estimate
together with the energy estimate and compactness arguments reduces the problem to prove
the Unique Continuation Property (UCP) for the solutions of the nonlinear problem, precisely,
the following result is showed.

UCP: Let L > O and T > 0 be two real numbers, and let w C (0,L) be a nonempty open set. If
ve L®(0,T;H' (0,L)) solves

Ut + Uy + Uxxx + 00y =0, in (0,L) x (0,T),
v(0,t) =v (L, t) =0, in (0,T),

v=c, inw x (0,T),

for some ¢ € R. Thus, v =cin (0,L) x (0,T), where c € R.

It is important to point out here that the previous UCP was first proved by Rosier and
Zhang in [34]. In this way, to sake of completeness, we revisited this result now using the
Carleman estimate proved by the author in [9].

1.5 Structure of the work

To end our introduction, we present the outline of the manuscript: In Section 2, we present
some estimates for the KdV equation which will be used in the course of the work. Section 3
is devoted to present the proof of Theorem 1.1, that is, give the answer to the stabilization
problem. Comments of our result as well as some extensions for other models are presented
in Section 4. Finally, on the Appendix A, we will give a sketch how to prove the unique
continuation property (UCP) presented above.

2  Well-posedness for KAV equation

In this section, we will review a series of estimates for the KdV equation, namely,
U+ Uy + Ully + Usxx = f, in (0,L)x(0,T),
u(0,t) =u(L,t) =uy (L, t)=0, in (0,T), (2.1)
u(x,0) =up(x), in (0,L),
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which will be borrowed of [32]. Here f = f(f, x) is a function which stands for the control of
the system.

2.1 The linearized KdV equation

The well-posedness of the problem (2.1), with f = 0, was proved by Rosier [32]. He notice

93
s

that operator A = - % with domain
D(A)={weH (0,L);w(0) =w (L) =wy (L) =0} C L*(0,L)

is the infinitesimal generator of a strongly continuous semigroup of contractions in L? (0, L).

Theorem 2.1. Let ug € L2 (0, L) and f = 0. There exists a unique weak solution u = S () ug of (2.1)
such that
u € C([0,T]; L*(0,L)) N H*(0,T; H2(0,L)). (2.2)

Moreover, if ug € D (A), then (2.1) has a unique (classical) solution u such that
u € C([0,T]; D(A))NCY(0,T;L*(0,L)). (2.3)

An additional regularity result for the weak solutions of the linear system associated to
system (2.1) was also established in [32]. The result can be read as follows.

Theorem 2.2. Let ug € L?(0,L), Gw = 0 and u = S (-) ug the weak solution of (2.1). Then, u €
L%(0,T; HY(0, L)) and there exists a positive constant co such that

2]l 20,730 (0,0)) < €0 l[t0][ 20,1 - (2.4)
Moreover, there exist two positive constants ¢y and co such that
2
[Jx (- 0) 172 0,7y < 1 lluoll 2o 1) (2.5)
and

1, 2 2
o]l 20,0y < T [l L2002 (0,) + €2 118x ( 0) 720,17 - (2.6)

2.2 The nonlinear KdV equation

In this section we prove the well-posedness of the following system

U + Uy + Ully + Uy = G, in (0,L) x(0,T),
u(0,t) =u(L,t) =uy(L,t) =0, in (0,T), (2.7)
u(x,0) =u’(x), in (0,L).

To solve the problem we write the solution of (2.7) as follows
u:S(t)uo+u1+u2,

where (S (t)),>, denotes the semigroup associated with the operator Au = —u"" —u’ with
domain D (A) dense in L? (0, L) defined by

D(A)={veH*(0,L);v(0)=v(L) =0 (L) =0},
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and u; and u; are (respectively) solutions of two non-homogeneous problems

Ut + Uiy + U = G, inwx(0,T),
u1 (0,t) =uy (L) =u1x (L,t) =0, in (0, T), (2.8)
up (x,0) =0, in (0,L),
and
Us + Uy + Uy = f, in (0, L) X (0, T) ,
uy (0,¢) =up (L, t) = upx (L,t) =0, in (0, T), (2.9)
up (x,0) =0, in (0,L),
where f = —ujuy, and w is solution of the following adjoint system
—Wf — Wy — Wyyy =0, in (0,L) x (0,T),
w(0,t) =w (L, t) =wy(0,t) =0, in(0,T), (2.10)
w(x, T)=0(x), in (0,L).

Let us define the following map
¥ :we L2(0,T;L2(0,L)) —> uy € C ([0, T];L2(0,L)) N L2 (0, T; H! (o,L)) —: B,

endowed with norm
r , :
Jiallg = sup s DMz + () I €Oy o)
te[0,T] 0

be the map which associates with w the weak solution of (2.8). Observe that, by using The-
orem 2.2 the map up € L?(0,L) — S(-)u® € B is continuous. Furthermore, the following
proposition holds true.

Proposition 2.3. The function ¥ is a (linear) continuous map.

Proof. Indeed, let us divide the proof in two parts.
First part.
Notice that in (2.8) w is the solution of (2.10), thus,

g(x,t) = Gw(x,t) € C' ([0, T];L* (0,L))

and from classical results concerning such non-homogeneous problems (see [29]) we obtain a
unique solution
u € C([0,T];D(A))NC ([0, T];L? (0, L)) (2.11)

of (2.8). Additionally, the following estimate can be proved:
T
|| 16l < €T July,, 212)

where,
Yor = C([0,T}; L*(0, T)) N L*([0, T}; H'(0,L)).
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In fact, by a direct computation, we have

/ ||Gu||L20L / (/uzdx—|w|_l(/ udx)z)l/zdt
w w
T L
g/ (/ w2dx) "2t < T|[ul]y,,.
o “Jo ’

Thus, (2.12) follows.
Second part.

Now, we will prove some estimates by multipliers method. Consider 1 (x) € D (A). Let
w € L?(0,T;L2(0,L)) and g € C* ([0, T] x [0, L]). Multiplying (2.8) by qu;, we obtain

S (L S /L
/ / quq (U1t + Uy + Uiy ) dxdt = / / quq (Gw) dxdt, (2.13)
0 Jo 0 Jo

where S € [0, T]. Using (2.8) (and Fubini’s theorem) we get:

ot uj L qud
_/O /0 (qf_‘_Qx‘i‘Qxxx) 7dth+/O (2> (X,S) dx

3 7S (L ) 1 7S ) S L (2.14)
—|—§/ / qxulxdxdt—l—i/ (quiy) (0,t) dt :/ / (qu1) (Gw) dxdt.
0 Jo 0 0 Jo
Choosing g = 1 it follows that
L s S /L
/0 Uy (x,S)zdx—i—/O Uty (O,t)2dt=/0 /0 uq (Gw) dxdt
< % [l 20,5120 + 5 HGwH%Z(O,S;LZ(O,L)) :

Then, we get

lu1lleqo, iz oy < CNGW 20,1200, (2.15)
which yields

1l 20,1y % (0,0)) < CNIGWII 12075120, (2.16)
and

12 (0, M 20,7y < CIGWII 20,7020, - (2.17)

Now take g (x,t) = x and S = T, (2.14) gives,

T L2 Ly 3 T /L T (L
—/ / —1dxdt+/ “ul (x,T)dx—Ff/ / u%xdxdt:/ / xup (Gw) dxdt.  (2.18)
o Jo 2 0o 2 2Jo Jo 0o Jo
Hence
T L T L 5
//ulxdxdt< <// dxdt+L{/ / uzdde—/ / (Gw) dxdt})
0o Jo o Jo

and then, using (2.16),
w1l 20,12 0,0)) < C (T, L) 1Gwl| 120, 7,02(0,1.)) - (2.19)

Using (2.15), (2.19), (2.12) and the density of D (A) in L? (0, L), we deduce that ¥ is a linear
continuous map, proving thus the proposition. O
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The next result, proved in [32, Proposition 4.1], give us that nonlinear system (2.9) is well-
posed.

Proposition 2.4. The following items can be proved.
1. Ifu € L2(0,T; H' (0,L)), uuy € L' (0, T; L* (0, L)) and u — uu, is continuous.
2. For f € L' (0, T; L? (0, L)) the mild solution uy of (2.9) belongs to B. Moreover, the linear map
O:f—u
is continuous.

Remark 2.5. Recall that for f € L' (0, T; L? (0,L)) the mild solution u; of (2.9) is given by
t
up (-, t) = / S(t—s)f(-s)ds. (2.20)
0

3 Stabilization of KdV equation

In this section we study the stabilization of the system

Up+ Uy + Ully + Uy + Gu=0, in (0,L) x {t >0},
u(0,t) =u(L,t) =uy (L t)=0, t>0, (3.1)
u(x,0) =ug(x), in (O,L).

Here, Gu is defined by (1.19). Precisely, the issue in this section is the following one:

Stabilization problem: Can one find a feedback control law h so that the resulting closed-loop system
(3.1) is asymptotically stable when t — oco?

The answer to the stability problem is given by the theorem below.

Theorem 3.1. Let T > 0. Then, there exist constants k > 0, Ro > 0 and C > 0, such that for any
up € L2 (0, L) with

H”OHL2(0,L) < Ry,

the corresponding solution u of (3.1) satisfies
I o) a0y < Ce ™ ol ooy, Wt 20 (32)

As usual in the stabilization problem, Theorem 3.1 is a direct consequence of the following
observability inequality.

Proposition 3.2. Let T > 0 and Ry > 0 be given. There exists a constant C > 1, such that, for any
ug € L2 (0, L) satisfying
H“OHLZ(O,L) < Ry,

the corresponding solution u of (3.1) satisfies

T
lwollfary < € [ IGulExz ©3)
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Indeed, if (3.3) holds, then it follows from the energy estimate that

T
H”('/T)Hé(o,L) < H”OHiZ(o,L) _/0 HGuH%Z(O,L) dt, (34)

or, more precisely,
4 (Do) < (1=C7) luollEzqo.y -
Thus,
e ComT) a0y < (1= C71) " uollEzo.y

which gives (3.2) by the semigroup property. In (3.2), we obtain a constant k independent of
Ro by noticing that for ¢ > ¢( ||uo|| 12(0,L) ), the L2norm of u (-, t) is smaller than 1, so that we
can take the k corresponding to Ro = 1.

Proof of Proposition 3.2. We prove (3.3) by contradiction. Suppose that (3.3) does not occurs.
Thus, for any n > 1, (3.1) admits a solution u, € C([0,T];L?(0,L)) NL*(0,T; H* (0,L))
satisfying

[t4n (O)ll 20,1y < Ro,

and
T 2 1 2
/0 1Gutn| 2,y dt < o [0, T2(0,L) - 3.5)
where 1o, = 1y, (0). Since ay := |[uig,n[[;2(9) < Ro, one can choose a subsequence of {a,},
still denoted by {a,}, such that
Iim a, = «a.
n— 00

There are two possible cases: i. « > 0 and 7. « = 0.
ia>0.

Note that the sequence {u,} is bounded in L* (0, T; L? (0, L)) N L? (0, T; H (0,L)). On the
other hand,

Upjt= — <un,x + %ax (U2) + U pex — Gun> ,
is bounded in L? (0, T; H 2 (0,L)). As the first immersion of
H'(0,L) = L*(0,L) — H > (0,L),
is compact, exists a subsequence, still denoted by {u,}, such that

u, —u in L*(0,T;L*(0,L)),

(3.6)
—%ax (u2) — —%ax (?) in1?(0,T;HT' (0,L)).
It follows from (3.5) and (3.6) that
r 2 n—oo T 2
/0 1Gtn 120,y At — A 1Gu|l12(0,) = O, (3.7)

which implies that
Gu =0,
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ie.,
1 1
ux,t——/u x,H)dx=0=u x,t:—/u x,t)dx.
(et) = pr [ u ) (0) = o [ u )

Consequently,
u(x,t)=c(t) inwx(0,7T),

for some function c (f). Thus, letting n — oo, we obtain from (3.1) that

ut+ux+uxxx :f, 11’1 <0, L) X <0, T),
u=c(t), inwx(0,T).

Let w, = u, —u and f, = —39x (u3) — f — Gu,. Note first that,
T 2
| IGwnl g at

T T T
- /0 |Gt |22 1 dt + /0 |G|y, dt — 2 /0 (Gitn, Gtt) 20 1)t — 0. (3.9)

Since w, — 01in L2 (0, T; H' (0,L)), we infer from Rellich’s Theorem that fOL wy (y,t)dy — 0
strongly in L? (0, T). Combining (3.6) and (3.9), we have that

T L 2
/ / ’wn| — 0.
0 Jo

Thus,
Wyt + Wiy + Wi yxx = fnr
fy—0 inL? (0, T, H! (o,L)) )
and,
w, — 0 inL*(0,T;L*(0,L)),
S0,

Oy (wfl) — w2

in the sense of distributions. Therefore, f = —%ax (uz) eucl? (O, T; L2 (0, L)) satisfies

Ut + Uy + Uyyxyx + % (uz)x =0, in (O,L) X (0/ T)/
u=c(t), inwx(0,T).

The first equation gives ¢’ (t) = 0 which, combined with unique continuation property (see
Appendix A), yields that u (x,t) = ¢ for some constant ¢ € R. Since u(L,t) = 0, we deduce
that

0=u(L,t)=c¢

and u, converges strongly to 0 in 12 (O, T; L2 (0, L)) We can pick some time ty € [0, T] such
that u, (tp) tends to 0 strongly in L? (0, L). Since

to
1t (0) 120, < Nt (0) 17201 +/0 1Gun 720, dt,

it is inferred that a, = ||u, (O)HLZ(O,L) — 0, as 1 — oo, which is in contradiction with the
assumption a > 0.
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ii. « = 0.
First, note that «;,, > 0, for all n. Set v, = u,/«,, for all n > 1. Then,

Unt + Onx + Opxxx — Goy + — (?Jn)x =0

2
and
T ’ 1
Since
lon (0)ll12(0,0) = 1, (3.11)

the sequence {v,} is bounded in L?0, T; L*(0, L) N L?(0, T; H'(0, L)), and, therefore, {9x(v2)}
is bounded in L? (0, T; L? (0, L)). Then, a,0x (v2) tends to 0 in this space. Finally,

T 2
|| 162l at =o0.

Thus, v is solution of
Ut + 0y +0xxx =0, in (0,L) x (0,T),
v=c(t), inwx(0,T).
We infer that v (x,t) = ¢ (t) = ¢, thanks to Holmgren’s Theorem, and that ¢ = 0 due the fact
that v (L,t) = 0.
According to the previous fact, pick a time ty € [0, T] such that v, (t;) converges to 0
strongly in L? (0, L). Since

fo
o Oz < llow (to)liExony + [ I1GoulEzory ot

we infer from (3.10) that [[vn (0)][;2(,1) — O, which contradicts to (3.11). The proof is complete.
U

4 Comments and extensions for other models

In this section we intend to analyze the results obtained in this manuscript as well as to present
some extensions of these results for other models.

4.1 Comments of the results

In this work we deal with the KdV equation from a control point of view posed in a bounded
domain (0, L) C R with a forcing term Gh added as a control input, namely:

Up + Uy + Ully + Uyey + Gh =0, in (0,L) x (0,T),
u(0,t) =u(L,t) =uy(L,t)=0, in (0,T), (4.1)
u(x,0) =up(x), in (0,L).

Here G is the operator defined by (1.4).

The result presented in this manuscript gives us a new “weak” forcing mechanism that en-
sures global stability to the system (4.1). In fact, Theorem 1.1 guarantees a lower cost to control
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the system proposed in this work and, consequently, to derive a good result related with the
stabilization problem as compared with existing results in the literature.

The interested readers can look at the following article [28], related to what we call “strong”
forcing mechanism. Indeed, in this article, the author proposed the source term as 1,,1(x, t), that
is, the mechanism proposed does not remove a medium term as seen in Gh defined by (1.4).

Finally, observe that the approach used to prove our main result as well as the weak
mechanism can be extended for KdV-type equation and for a model of strong interaction between
internal solitary waves. Let us breviary describe these systems and the results that can be
derived by using the same approach applied in this work.

4.2 KdV-type equation

Fifth-order KdV type equation can be written as
U+ uy + ﬁuxxx + Klyyyxx T Uy = 0/ (4-2)

where 1 = u(t, x) is a real-valued function of two real variables t and x, « and B are real
constants. When we consider, in (4.2), B = 1 and « = —1, T. Kawahara [20] introduced a
dispersive partial differential equation which describes one-dimensional propagation of small-
amplitude long waves in various problems of fluid dynamics and plasma physics, the so-called
Kawahara equation.

With the damping mechanism proposed in this manuscript, we can investigate the
stabilization problem, already mentioned in this article, for the following system

Us + Uy —‘I— Ul + Uxxx — Uxxxxx + Gh - 0, il’l (0, T) X (0, L),
u(t,0) = u(t,L) = uy(£,0) = ux(t,L) = uxx(t,L) =0, in (0,T), (4.3)
u(0,x) = up(x) in (0,L),

and G as in (1.7).

In fact, a similar result can be obtained with respect to global stabilization. Obviously,
we need to pay attention to the unique continuation property for this case (for our case see
Appendix A). However, due the Carleman estimate provided by Chen in [13], it is possible to
show the unique continuation property for the Kawahara operator.

4.3 Model of strong interaction between internal solitary waves

We can consider a model of two KdV equations types. Precisely, in [17], a complex sys-
tem of equations was derived by Gear and Grimshaw to model the strong interaction of
two-dimensional, long, internal gravity waves propagating on neighboring pycnoclines in a
stratified fluid. It has the structure of a pair of Korteweg—de Vries equations coupled through
both dispersive and nonlinear effects and has been the object of intensive research in recent
years. In particular, we also refer to [2] for an extensive discussion on the physical relevance
of the system.

An interesting possibility now presents itself is the study of the stability properties when
the model is posed on a bounded domain (0, L), that is, to study the Gear—Grimshaw system
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with only a weak damping mechanism, namely,

Ut + Utly + Uyxx + A30xxx + 01005 + a2(uv)y = 0, in (0,L) x (0,00),
cvt + 10y + U0y + azbolyry + Uyxx + a2bouttiy + a1by(uv)y + Go =0, in (0,L) x (0,00),
u(x,0) =u’(x), o(x,0)=1"(x), in (0,L),

(4.4)

satisfying the following boundary conditions

{u(O,t) =0, u(L,t) =0, ux(L,t) =0, in (0,0), (45)

v(0,t) =0, v(L,t) =0, vx(L,t) =0, in (0,00),

where a1, a5, a3, by, ¢, r are constants in IR assuming physical relations. Here, as in all work, Gv
is the weak forcing term defined in (1.7).

The stabilization problem for the system (4.4)—(4.5) was addressed in [8]. The author
showed that the total energy associated with the model decay exponentially when t tends
to oo, considering two damping mechanisms Gu and Gv acting in both equations of (4.4).
However, even though the system (4.4) has the structure of a pair of KdV equations, it cannot
be decoupled into two single KdV equations™ and, in this case, the result shown in this work
is not a consequence of the results proved in [8].

Lastly, Barcena-Petisco et al. in a recent work [1], addressed the controllability problem
for the system (4.5), by means of a control 1,f(x,t), supported in an interior open subset
of the domain and acting on one equation only. The proof consists mainly on proving the
controllability of the linearized system, which is done by getting a Carleman estimate for the
adjoint system. With this result in hand, by using Gv as a control mechanism, instead of
1o f(x,t), it is possible to prove the global stabilization for the model (4.5). As in the KdV
(see Appendix A) and Kawahara cases, we need to prove a unique continuation property to
achieve the stabilization problem, however with the Carleman estimate [1, Proposition 3.2],
we are able to derive this property for the Gear-Grimshaw operator.

4.4 About exact controllability results

Now, we will discuss the exact controllability property of the KdV system

Up + Uy + Uy + Uy = GW, in (0,L) x(0,T),
u(0,t) =u(L,t) =uy(L,t)=0, in(0,T), (4.6)
u(x,0) =uo(x), in (0,L).

with weak source term G defined by

Gw (x,t) = 1o (w(x,t)—’i)|/ww(x,t)dx>,

where w C (0,L) and 1,, denotes the characteristic function of the set w. We raise the follow-
ing open question:

Control problem: Given an initial state ug and a terminal state uy in L2(0,L), can one find an
appropriate control input w € L2(w x (0,T)) so that the equation (4.6) admits a solution u which
satisfies u (-,0) = upand u (-, T) = u1?

“Remark that the uncoupling is not possible in (4.4) unless r = 0.
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It is important to point out that we do not expect that system (4.6) has the exact control
property as above mentioned when we consider the control w in L?(w x (0,T)). Roughly
speaking, (large) negative waves propagate from the right to the left. Therefore, a negative
wave cannot be generated by a left control, that means, when the control is acting far from
the endpoint x = L, i.e. in some interval w = (I3,l) with 0 < I; < I < L, then there is no
chance to control exactly the state function on (I, L), (see e.g. [33]). However, we believe that
using the techniques proposed in [9] (or in [15]), i.e., considering the weight Sobolev spaces
(or control more regular), there is a chance to get positive answer for exact control problem in
the right hand side of the domain, precisely, considering w = (L — ¢, L), with the weak control
as defined in (1.19).

4.5 A natural damping mechanism

When we consider the boundary condition of (4.1) with G = 0, a natural feedback law is

revealed as we can see below 4
E

1
a?—w—ihgmjﬂz 4.7)

with
1 /L 2
HO:7/|MLde
2 Jo

The energy dissipation law (4.7) shows that the boundary value problem under consideration
is dissipated through the extreme x = 0 and leads one to guess that any solution of (4.1),
with G = 0, may decay to zero as t — co. In order to answer this question, a really nonlinear
method is needed, and the method applied here can not be addressed to solve it.

A Unique continuation property

This appendix aims to provide a sketch of how to obtain the unique continuation property
through a Carleman estimate.

A.1 Carleman inequality

Pick any function ¥ € C3([0, L]) with

$>0 in|0,L], l¥'| >0, ¢ <0, and ¢'¢” <0 in|0,L], (A1)
y'(0) <0,  ¢'(L)>0, and max ¥(x) = p(0) = ¢(L). (A2)
Set
¢@@zﬂﬁﬂy (A.3)
For f € L?(0,T;L?*(0,L)) and g € L?(0,L), let g denote the solution of the system

Qt+qx+q:cxx:f/ tE(O,T),XG(O,L),

q(t,0) =q(t,L) = qx(t,L) =0 t € (0,T), (A4)
q(0,x) = qo(x), in (0,L).

Thus, the following result is a direct consequence of the Carleman estimate proved by [9].
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Proposition A.1. Pick any T > 0. There exist two constants C > 0 and sy > 0 such that any
f € L2(0,T;L*(0,L)), any qo € L?(0,L) and any s > sy, the solution q of (A.4) fulfills

T L T L
L tsolansl (o lasf + sPlale Beasar < ([ [ ippeBoanar), (as)
0 JO 0 JO

where ¢ is defined by (A.4) and  satisfies (A.1)—(A.2).

Actually, Proposition A.1 will play a great role in establishing the unique continuation
property describes below.

Corollary A.2. Let L > 0 and T > 0 be two real numbers, and let w C (0,L) be a nonempty open
set. Ifv € L (0, T; H' (0, L)) solves

Ut + Uy + Uxxx + 00, =0, in (0,L) x (0,T),
v(0,t) =0, in (0,T),
v=c, in (I',L) x(0,T),
with0 <1" < Landc € R, thenv =cin (0,L) x (0, T).
Proof. We do not expect that v belongs to

L2 (0,T; H*(0,1)) N H' (0, T; L*(0,1)) .

In this way, we have to smooth it. For any function v = v(x, t) and any & > 0, let us consider
ol"(x,t) defined by

t+h
ol (x, 1) := }11/ v(x,s)ds.
t

Remember that if v € LP(0,T; V), where 1 < p < 400 and V denotes any Banach space, we
have that
ol e WYP(0, T — ; V)

HUW < ||UHLP(0,T,-V),

LP(0,T—H;V)

and
o v inLP(0,T;V) ash— 0,

forp <ocoand T < T.
Choose any T" < T. Thus, for a small enough number &,

ol ¢ VVL“’(O,I”;Ifg(o,Z))
and 0" is solution of
vyl] +ol 4ol + (vo )" =0 in (0,1) x (0,T'), (A.6)

o"(0,) =0 in (0,T) (A7)

and
=c in (I1) x (0, T, (A.8)
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for some ¢ € R. Since v € L (0, T; H'(0,1)) and vv, € L™ (0, T;L?(0,1)), therefore, it follows
from (A.6), that
ol € L (0, T; 12(0,1))

and thus
ol e L= (0, T, H3(0,1)) .

Thanks to the Carleman estimate (A.5), we get that
ot (]2 31,02 51,01 27,2
/0 /O [s@loxx|” + (s@)’|ox |” + (s¢@) |U[ ]| le”*?dxdt

r L 2 —2s
gc( /0 /0 1P ‘dedt> o)

<2C, /0 : /0 l ool }2 e 29dxdt + 2C, /O r /0 l (oo — ool 2 =250 4y dt
=: 5+ I,
for any s > sp and ¢(t, x) defined by (A.3).
Claim 1: I is bounded and can be absorbed by the left-hand side of (A.9).
In fact, since v € L® (0, T; L*(0,1)), we have

T 2
L<C / / (UL’”\ o259 dxdt, (A.10)
0 0

for some constant C > 0 which does not depend on h. Comparing the powers of s in the
right-hand side of (A.10) with those in the left-hand side of (A.9) we deduce that the term I;
in (A.9) may be dropped by increasing the constants Cyp and sy in a convenient way, getting
Claim 1.

Claim 2: [ — 0,as h — 0.

From now on, fix s, which means, to the value syp. Thanks to the fact that e 20? < 1, it is
sufficient to prove that

(00)" — oo, in L2 (0, T L2(0,1)) (A.11)
and
voll! 5 vo, in L2 (0, T;L2(0,1)). (A.12)

In fact, since
vox € L? (0, T';L%(0,1))

(A.11) holds and, from the fact that v € L* (0, T"; L*(0,1)) N L? (0, T'; HY(0, l)), (A.12) follows,
showing the Claim 2.
By Claims 1 and 2, as i — 0, the integral term

Tk [h],2 31,12 5,121 ,—2s
| sololl P + s+ (s9)° ol e 7dxat — o,

On the other hand, v/"l — v in L2 (0,T';L?(0,1)). It follows that v = c in (0,1) x (0, T"), for
¢ € R. As T" may be taken arbitrarily close to T, we infer that v = ¢ in (0,1) x (0, T), for some
¢ € R. This completes the proof of Corollary A.2. O

As a consequence of Corollary A.2, we give below the unique continuation property.
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Corollary A.3. Let L > 0, T > 0 be real numbers, and w C (0,L) be a nonempty open set. If
v e L® (0,T; H' (0,L)) is solution of

V¢ + Uy + Uxxx + 00, =0, in (0,L) x (0,T),
v(0,t) =v(L,t) =0, in (0,T),

v=c¢, inwx(O,T),
where c € R, then v = cin (0,L) x (0, T).

Proof. Without loss of generality we may assume that w = (I1,l) with 0 <[; < I, < L. Pick
I = (I1 + o) /2. First, apply Corollary A.2 to the function v(x,t) on (0,1) x (0,T). After that,
we use the following change of variable v(L — x, T —t) on (0,L —1) x (0, T), to conclude that
v=con (0,L) x (0,T), achieving the result. O
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