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Ergodic limits for inhomogeneous evolution equations
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Abstract. Let u satisfy an inhomogeneous wave equation such as

u′′(t) + A2u(t) = h(t), u(0) = f , u′(0) = g.

We show that in many cases, the limit as t → ∞ of 1
t
∫ t

0 u(s)ds exists, and can be
calculated explicitly.
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1 Introduction

The mean ergodic theorem (MET) deals with the asymptotic behavior of semigroups govern-
ing

du
dt

= Au, u(0) = f (1.1)

and cosine functions governing

d2u
dt2 = A2u, u(0) = f , u′(0) = 0. (1.2)

The conclusion is that the unique mild solution u of (1.1) and of (1.2) both satisfy

lim
t→∞

1
t

∫ t

0
u(s)ds (1.3)
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exists and equals P f , where P is a suitable projection onto the null space of A. Of course, some
hypotheses are necessary, including the uniform boundedness of the solution semigroup or
cosine function.

Our goal here is to obtain analogous results for solutions of the corresponding inhomoge-
neous problems

du
dt

= Au + h(t), u(0) = f , (1.4)

d2u
dt2 = A2u + h(t), u(0) = f ,

du
dt

(0) = g. (1.5)

For (1.5) the ergodic limits do not always exist.

2 First order equations

Let A generate a uniformly bounded strongly continuous (or (C0)) group {etA : t ∈ R} ⊂
L(X) on a Banach space X. For f ∈ X and h ∈ L1(R, X), the unique mild solution of (1.4) is
given by the strongly continuous function

u(t) = etA f +
∫ t

0
e(t−s)Ah(s)ds, t ∈ R. (2.1)

For background on semigroups and cosine functions, see e.g. Goldstein [4]. The mild solution
u is a strong solution in C1(R, X) provided f ∈ D(A) and either h ∈ C1(R, X) or both h and
Ah belong to C(R, X). We will assume h ∈ L1(R, X) (or maybe h ∈ L1(R+, X), R+ = [0, ∞)

since we study (1.3)).
Let X0 := N(A) + R(A), with N and R denoting null space and range, respectively. For

f ∈ N(A), etA f = f for all t ∈ R, while for f = Ag ∈ R(A),

1
t

∫ t

0
esA f ds =

1
t

∫ t

0

d
ds

(esAg)ds =
etAg− g

t
→ 0

as t → ∞, whence N(A) ∩ R(A) = {0}. Then the MET says that 1
t

∫ t
0 esA f ds → P f (strong

convergence) as t → ∞, for all f = f1 + f2 ∈ N(A) + R(A) =: X0 and P f = f1 where P is the
projection of X0 onto N(A) = N(A) along R(A).

Note that P is bounded because

‖P‖ ≤ sup
t∈R

‖etA‖ = M < ∞.

Also, X0 = X if X is reflexive. Moreover P is an orthogonal projection if X = H is a Hilbert
space and M = 1, i.e., {etA : t ∈ R} is a (C0) unitary group. For the final term in (2.1),∫ t

0
e(t−s)Ah(s)ds = etA

∫ t

0
e−sAh(s)ds,

k(t) :=
∫ t

0
e−sAh(s)ds→

∫ ∞

0
e−sAh(s)ds =: k0 (2.2)

as t→ ∞, and

∥∥∥∥etA
[∫ t

0
e−sAh(s)ds− k0

]∥∥∥∥ =

∥∥∥∥etA
∫ ∞

t
e−sAh(s)ds

∥∥∥∥→ 0 (2.3)
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as t→ ∞ by the uniform boundedness of {etA} and (2.2). Thus

1
τ

∫ τ

0

(∫ t

0
e(t−s)Ah(s)ds

)
dt =

1
τ

∫ τ

0
etAk0dt + o(1)

converges as τ → ∞ to Pk0 by the MET and (2.3).
This proves

Theorem 2.1. Let {etA : t ∈ R} be a uniformly bounded (C0) group on X, let X0 = N(A) + R(A),
and P0 be the (bounded) projection of X0 onto N(A) along R(A). Let h ∈ L1(R, X). Let u, given by
(2.1), be the unique mild solution of (1.4). Then

lim
t→∞

1
t

∫ t

0
u(s)ds = P( f + k0)

where P is the projection of X0 onto N(A) along R(A) and

k0 =
∫ ∞

0
e−sAh(s)ds.

3 Second order case

In 1963, W. Littman [6] showed that the initial value problem for the wave equation ∂2u
∂t2 = ∆u

for t ∈ R and x ∈ Rn is wellposed (in the sense of existence, uniqueness and continuous
dependence on the initial conditions) on a space based on Lp(Rn) iff p = 2 when n ≥ 2.
Earlier, K. Friedrichs had pointed out that wave propagation was intimately related to energy
considerations, so again, Hilbert space was the optimal context for the study of waves. Still,
some special equations can be studied in an Lp context, so we start this section in Hilbert
space and later consider Banach spaces as well.

Let B generate a uniformly bounded (C0) group on a Hilbert space H1 = (H, 〈·, ·〉). Then
there is as equivalent inner product 〈〈·, ·〉〉 such that on H2 = (H, 〈〈·, ·〉〉), B is a skewadjoint
operator. This 1947 result is due to B. Sz.-Nagy [7]; cf. also [4]. Thus there is a bijective
bounded linear operator V : H1 → H2 with bounded inverse such that

etB|H1 = V−1(etB|H2)V

and {etB|H2 : t ∈ R} is a (C0) unitary group on H2. Then the P in Theorem 2.1 is an orthogonal
projection in the H2 context.

The selfadjoint operator L = iB on H2 determines the cosine function C given by

C(t) = cos(tL) =
1
2
(eitL + e−itL), t ∈ R (3.1)

(see p.118 of [4]). The corresponding sine function can be defined by

sin(tL) =
1
2i
(eitL − e−itL), t ∈ R.

By a (now commonly accepted) abuse of notation, we define the modified sine function S(t)
(and omit the adjective “modified”) by

S(t) =
1
2i
(eitL − e−itL)L−1 (3.2)
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provided L is injective. But since sin(λ)
λ → 1 as λ → 0, we can use the spectral theorem

and the functional calculus to define S(t) by (3.2) on R(L) and S(t) = tP on N(A), because
v(t) = S(t)g is the unique solution of

v′′ + L2v = 0, v(0) = 0, v′(0) = g

for g ∈ N(L). It is easy to see that

S(t) f =
∫ t

0
C(s) f ds, (3.3)

and this can be used to define S(t) ∈ L(H2) for t ∈ R. The unique mild solution of

u′′ + L2u = h(t), u(0) = f , u′(0) = g (3.4)

is given by

u(t) = C(t) f + S(t)g +
∫ t

0
S(t− s)h(s)ds. (3.5)

It is a strong C2(R, H2) solution provided f ∈ D(L2), g ∈ D(L) and h ∈ C1(R, H2).
Now suppose A = iL generates a uniformly bounded (C0) group on a Banach space X.

Then (3.1) and (3.3) define C and S, and (3.5) gives the unique mild solution of (3.4).
Now let A be as in Theorem 2.1, so that (3.4) becomes

u′′ = A2u + h(t), u(0) = f , u′(0) = g. (3.6)

We next state the analogue of Theorem 2.1 for second order equations.

Theorem 3.1. Let A, X0, P be as in Theorem 2.1. Let u, defined by (3.5), be the unique mild solution
of (3.6), where we assume (1 + t)h(t) ∈ L1(R+, X), f ∈ D(A) and g ∈ X0. Let k1 =

∫ ∞
0 Ph(s)ds ∈

N(A). If k1 6= −Pg, then

lim
t→∞

∥∥∥∥1
t

∫ t

0
u(s)ds

∥∥∥∥ = ∞,

so that the ergodic limit limt→∞
1
t

∫ t
0 u(s)ds fails to exist. If k1 = −Pg, k0 =

∫ ∞
0 sPh(s)ds and if

lim
t→∞

t
(

Pg +
∫ t

0
Ph(s)ds

)
= k2 ∈ N(A) (3.7)

exists, then

lim
t→∞

1
t

∫ t

0
u(s)ds = P f + k2 − k0.

Proof. The unique mild solution of (3.6) is

u(t) =
3

∑
j=1

uj(t) := C(t) f + S(t)g +
∫ t

0
S(t− s)h(s)ds. (3.8)

By the MET for cosine functions,

lim
t→∞

1
t

∫ t

0
u1(s)ds = P f .

Now assume (I − P)g, (I − P)h(s) ∈ R(A) for each s ≥ 0. Then

u2(t) = S(t)Ag1 =
1
2
(etA − e−tA)g1
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and
1
t

∫ t

0
u2(t)dt→ 0

as t → ∞ by the MET for semigroups. Furthermore, we can approximate (I − P)u3(t) in
L1(R+, X) by a sequence of the form∫ t

0
S(t− s)Ah̃n(s)ds

where h̃n(s) ∈ D(A) and h̃n ∈ L1(R+, X). We omit writing the subscript n. Then∫ t

0
S(t− s)Ah̃(s)ds =

∫ t

0

1
2

(
e(t−s)A − e(s−t)A

)
h̃(s)ds

=
1
2

[
etA

∫ t

0
e−sAh̃(s)ds− e−tA

∫ t

0
esAh̃(s)ds

]
=

1
2

(
etAl− − e−tAl+

)
+ o(1)

as t→ ∞ where
l± =

∫ ∞

0
e∓sAh̃(s)ds ∈ R(A).

Then

1
τ

∫ τ

0

∫ t

0
S(t− s)Ah̃(s)ds =

1
2τ

∫ τ

0

(
etAl− − e−tAl+

)
dt + o(1)

→ 0

by the MET for semigroups. This completes the portion of the proof dealing with (I − P)u(t).
Now we consider Pu(t), using (3.8). Then

Pu(t) = C(t)P f + S(t)Pg +
∫ t

0
S(t− s)Ph(s)ds

= C(t)P f + tPg +
∫ t

0
(t− s)Ph(s)ds

since S(t) = tP on N(A). Next

1
t

∫ t

0
Pu1(s)ds =

1
t

∫ t

0
C(s)P f ds→ P f

as t→ ∞, and

w(t) := Pu2(t) + Pu3(t) = tPg + t
∫ t

0
Ph(s)ds−

∫ t

0
sPh(s)ds

= t
(

Pg +
∫ t

0
Ph(s)ds

)
−
∫ ∞

0
sPh(s)ds + o(1) (3.9)

as t→ ∞. Let
k1 =

∫ ∞

0
Ph(s)ds, k0 =

∫ ∞

0
sPh(s)ds. (3.10)

If Pg + k1 6= 0, then ‖w(t)‖ → ∞ as t→ ∞, whence∥∥∥∥1
t

∫ t

0
w(s)ds

∥∥∥∥→ ∞, as t→ ∞.
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Thus ∥∥∥∥1
t

∫ t

0
u(s)ds

∥∥∥∥→ ∞, as t→ ∞.

Now suppose Pg +
∫ ∞

0 Ph(s)ds = 0 and

lim
t→∞

t
(

Pg +
∫ t

0
Ph(s)ds

)
= k2 ∈ N(A)

exists in X. Then

lim
t→∞

1
t

∫ t

0
Pu(s)ds = P( f + l) = P f + k2 − k0

by (3.9), (3.10). Theorem 3.1 now follows.

4 Examples

We conclude with some examples. The first is the Wentzell wave equation on a bounded
domain Ω in Rn.

Consider the wave equation

∂2u
∂t2 = ∆u, x ∈ Ω, t ∈ R, (4.1)

with initial conditions
u(x, 0) = f (x),

∂u
∂t

(x, 0) = g(x) (4.2)

and dynamic boundary conditions

∂2u
∂t2 − β

∂u
∂n
− γu + qβ∆LBu = 0, x ∈ Ω, t ∈ R, (4.3)

where Ω is a C2+ε bounded domain in Rn with boundary ∂Ω, ε > 0, 0 < β ∈ C1(∂Ω),
0 ≤ γ ∈ C(∂Ω), q ∈ [0, ∞), and ∆LB is the Laplace–Beltrami operator on ∂Ω. Assuming (4.1)
holds for x ∈ ∂Ω, then one can replace ∂2u

∂t2 by tr(∆u) in (4.3) and (4.3) then becomes a Wentzell
boundary condition

tr(∆u)− β
∂u
∂n
− γu + qβ∆LBu = 0

on ∂Ω. Let
X2 = L2(Ω, dx)⊕ L2(∂Ω,

dS
β(x)

),

S0 =

[
∆ 0
−β ∂

∂n −γ + qβ∆LB

]
,

D(S0) =
{

U =
[ u

tr(u)
]
=: u ∈ C2(Ω)

}
, S1 = S0. Then S1 = S∗1 ≥ εI on X2 for some ε > 0, and

∂2U
∂t2 + S1U = h(x, t)

is the inhomogeneous Wentzell wave equation corresponding to (4.1)–(4.3). See [1–3].
The operator S1 has a compact resolvent and has an orthonormal basis {ϕk}∞

k=0 of eigen-
functions corresponding to eigenvalues 0 < λ0 < λ1 ≤ λ2 ≤ · · · → ∞, with λ0 a simple eigen-
value and ϕ0 > 0 in Ω, the “ground state eigenfunction”. Now let A = i(S1 − λ0)

1
2 , so that iA
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is selfadjoint on X2 and N(A) = span{ϕ0}, a one dimensional space. For F =
[

f1
f2

]
∈ X2, PF is

the constant function with value 〈F, ϕ0〉X2 =
∫

Ω f1(x)ϕ0(x)dx +
∫

∂Ω f2(x)ϕ0(x) dS
β(x) . Theorem

3.1 applies. The initial condition ∂u
∂t (0) = g ∈ X2 is in R(A) iff 〈g, ϕ0〉X2 = 0. The ergodic

limits of Theorem 3.1 will all exist if the limit (3.7) exists, that is,

lim
t→∞

t
(
〈g, ϕ0〉X2 +

∫ t

0
〈h(s), ϕ0〉X2 ds

)
(4.4)

exists. Since
∫ ∞

0 〈h(s), ϕ0〉X2 ds exists, the existence of (4.4) means, when∫ ∞

0
〈h(s), ϕ0〉X2 ds = −〈g, ϕ0〉X2 ,

that the integral in (4.4) converges fast enough as t→ ∞.
For non Hilbert space examples, we look at the one dimensional wave equation,

∂2u
∂t2 =

∂2u
∂x2 + h(x, t), u(x, 0) = f (x), ut(x, 0) = g(x) (4.5)

for x, t ∈ R. Let w ∈ BUC(R) be a weight function which satisfies 0 < ε ≤ w(x) ≤ 1
ε < ∞ for

all x ∈ R. Let Xp = Lp(R, w(x)dx), X∞ = BUCw(R) with norm ‖ f ‖w∞ = supx∈R | f (x)|w(x).
Let A = d

dx , etA f (x) = f (x + t). The unique mild solution of (4.5) in Xp, 1 ≤ p ≤ ∞, is

u(x, t) =
1
2

(
f (x + t) + f (x− t)

)
+

1
2

∫ x+t

x−t
g(s)ds +

1
2

∫ t

0

∫ x+t−s

x−t+s
h(r, x)drds.

Then A generates a uniformly (C0) group on Xp which is not isometric if w 6= constant.
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