Periodic solutions with long period for the Mackey-Glass equation

Dedicated to Professor Jeffrey R. L. Webb on the occasion of his 75th birthday

Tibor Krisztin ${ }^{\boxtimes}$
Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, Szeged, H-6720, Hungary

Received 8 November 2020, appeared 21 December 2020
Communicated by Gennaro Infante

Abstract

The limiting version of the Mackey-Glass delay differential equation $x^{\prime}(t)=$ $-a x(t)+b f(x(t-1))$ is considered where a, b are positive reals, and $f(\xi)=\xi$ for $\xi \in[0,1), f(1)=1 / 2$, and $f(\xi)=0$ for $\xi>1$. For every $a>0$ we prove the existence of an $\varepsilon_{0}=\varepsilon_{0}(a)>0$ so that for all $b \in\left(a, a+\varepsilon_{0}\right)$ there exists a periodic solution $p=p(a, b): \mathbb{R} \rightarrow(0, \infty)$ with minimal period $\omega(a, b)$ such that $\omega(a, b) \rightarrow \infty$ as $b \rightarrow a+$. A consequence is that, for each $a>0, b \in\left(a, a+\varepsilon_{0}(a)\right)$ and sufficiently large n, the classical Mackey-Glass equation $y^{\prime}(t)=-a y(t)+b y(t-1) /\left[1+y^{n}(t-1)\right]$ has an orbitally asymptotically stable periodic orbit, as well, close to the periodic orbit of the limiting equation.

Keywords: Mackey-Glass equation, periodic solution, limiting nonlinearity, discontinuous right-hand side, long period.
2020 Mathematics Subject Classification: 34K13, 34K39, 34K06.

1 Introduction

The Mackey-Glass equation

$$
y^{\prime}(t)=-a y(t)+b \frac{y(t-\tau)}{1+y^{n}(t-\tau)}
$$

with positive parameters a, b, τ, n was proposed to model blood production and destruction in the study of oscillation and chaos in physiological control systems by Mackey and Glass [13]. This simple-looking differential equation with a single delay attracted the attention of many mathematicians since its hump-shaped nonlinearity causes entirely different dynamics compared to the case where the nonlinearity is monotone. See [16] for a similar equation. There exist several rigorous mathematical results, numerical and experimental studies on the Mackey-Glass equation showing convergence of the solutions, oscillations with different

[^0]characteristics, and the complexity of the dynamics, see e.g. [1,3,6,7,9,15,17-19,22,23]. Despite the intense research, the dynamics is not fully understood yet.

The recent paper [2] studies the classical Mackey-Glass delay differential equation

$$
\begin{equation*}
y^{\prime}(t)=-a y(t)+b f_{n}(y(t-1)) \tag{n}
\end{equation*}
$$

where a, b, n are positive reals, $f_{n}(\xi)=\xi /\left[1+\xi^{n}\right]$ for $\xi \geq 0, \tau=1$ can be assumed by rescaling the time. [2] constructs stable periodic solutions of $\left(E_{n}\right)$ for some $b>a>0$ and large n. The periodic solutions can have complicated shapes, see [2]. A limiting version of (E_{n}) plays a key role in the construction. The function $f(\xi)=\lim _{n \rightarrow \infty} f_{n}(\xi)$ is given by $f(\xi)=\xi$ for $\xi \in[0,1)$, $f(1)=1 / 2$, and $f(\xi)=0$ for $\xi>1$. The equation

$$
x^{\prime}(t)=-a x(t)+b f(x(t-1))
$$

is called the limiting Mackey-Glass equation.
Let \mathbb{R}, \mathbb{C} and \mathbb{N} denote the set of real numbers, complex numbers and positive integers, respectively. Let C be the Banach space $C([-1,0], \mathbb{R})$ equipped with the norm $\|\varphi\|=$ $\max _{s \in[-1,0]}|\varphi(s)|$. For a continuous function $u: I \rightarrow \mathbb{R}$ defined on an interval I, and for $t, t-1 \in I, u_{t} \in C$ is given by $u_{t}(s)=u(t+s), s \in[-1,0]$. Introduce the subsets

$$
\begin{aligned}
& C^{+}=\{\psi \in C: \psi(s)>0 \text { for all } s \in[-1,0]\}, \\
& C_{r}^{+}=\left\{\psi \in C^{+}: \psi^{-1}(c) \text { is finite for all } c \in(0,1]\right\}
\end{aligned}
$$

of C where $\psi^{-1}(c)=\{s \in[-1,0]: \psi(s)=c\} . C^{+}$and C_{r}^{+}are metric spaces with the metric $d(\varphi, \psi)=\|\varphi-\psi\|$.

A solution of equation $\left(E_{n}\right)$ on $[-1, \infty)$ with initial function $\psi \in C^{+}$is a continuous function $y:[-1, \infty) \rightarrow \mathbb{R}$ so that $y_{0}=\psi$, the restriction $\left.y\right|_{(0, \infty)}$ is differentiable, and equation $\left(E_{n}\right)$ holds for all $t>0$. The solutions are easily obtained from the variation-of-constants formula for ordinary differential equations on successive intervals of length one,

$$
\begin{equation*}
y(t)=e^{-a(t-k)} y(k)+b \int_{k}^{t} e^{-a(t-s)} f_{n}(y(s-1)) d s \tag{1.1}
\end{equation*}
$$

where $k \in \mathbb{N} \cup\{0\}, k \leq t \leq k+1$. Hence it is well known that each $\psi \in C^{+}$uniquely determines a solution $y=y^{n, \psi}:[-1, \infty) \rightarrow \mathbb{R}$ with $y_{0}^{n, \psi}=\psi$, and $y^{n, \psi}(t)>0$ for all $t \geq 0$.

For equation (E_{∞}) with the discontinuous f, we use formula (1.1) with f instead of f_{n} to define solutions. A solution of equation (E_{∞}) with initial function $\varphi \in C^{+}$is a continuous function $x=x^{\varphi}:\left[-1, t_{\varphi}\right) \rightarrow \mathbb{R}$ with some $0<t_{\varphi} \leq \infty$ such that $x_{0}=\varphi$, the map $\left[0, t_{\varphi}\right) \ni s \mapsto$ $f(x(s-1)) \in \mathbb{R}$ is locally integrable, and

$$
\begin{equation*}
x(t)=e^{-a(t-k)} x(k)+b \int_{k}^{t} e^{-a(t-s)} f(x(s-1)) d s \tag{1.2}
\end{equation*}
$$

holds for all $k \in \mathbb{N} \cup\{0\}$ and $t \in\left[0, t_{\varphi}\right)$ with $k \leq t \leq k+1$.
It is easy to show that, for any $\varphi \in C^{+}$, there is a unique solution x^{φ} of equation (E_{∞}) on $[-1, \infty)$. However, comparing solutions with initial functions $\varphi>1, \varphi \equiv 1$, one sees that there is no continuous dependence on initial data in C^{+}. Therefore we restrict our attention to the subset C_{r}^{+}of C^{+}. The choice of C_{r}^{+}as a phase space guarantees not only continuous dependence on initial data, but also allows to compare certain solutions of equations (E_{∞}) and $\left(E_{n}\right)$ for large n. This is not used here, but it is important in [2]. [2] proves that for each $\varphi \in C_{r}^{+}$
there is a unique maximal solution $x^{\varphi}:[-1, \infty) \rightarrow \mathbb{R}$ of equation $\left(E_{\infty}\right)$. The maximal solution x^{φ} satisfies $x_{t}^{\varphi} \in C_{r}^{+}$for all $t \geq 0$; and if $t>0$ and $x^{\varphi}(t-1) \neq 1$, then x^{φ} is differentiable at t, and equation $\left(E_{\infty}\right)$ holds at t.

One of the main results of [2] is as follows.
Theorem 1.1. If the parameters $b>a>0$ are given so that
(H) equation $\left(E_{\infty}\right)$ has an ω-periodic solution $p: \mathbb{R} \rightarrow \mathbb{R}$ with the following properties:
(i) $p(0)=1, p(t)>1$ for all $t \in[-1,0)$,
(ii) $(p(t), p(t-1)) \neq(1, a / b)$ for all $t \in[0, \omega]$
holds then there exists an $n_{*} \geq 4$ such that, for all $n \geq n_{*}$, equation (E_{n}) has a periodic solution $p^{n}: \mathbb{R} \rightarrow \mathbb{R}$ with period $\omega^{n}>0$ so that the periodic orbits

$$
\mathcal{O}^{n}=\left\{p_{t}^{n}: t \in\left[0, \omega^{n}\right]\right\}
$$

are hyperbolic, orbitally stable, exponentially attractive with asymptotic phase, moreover, $\omega^{n} \rightarrow \omega$, dist $\left\{\mathcal{O}^{n}, \mathcal{O}\right\} \rightarrow 0$ as $n \rightarrow \infty$, where $\mathcal{O}=\left\{p_{t}: t \in[0, \omega]\right\}$.
[2] shows that in case b is large comparing to a, namely $b>\max \left\{a e^{a}, e^{a}-e^{-a}\right\}$, then (H) is satisfied. In addition, by using a rigorous computer-assisted technique, [2] gives parameter values a, b such that (H) is valid, and the obtained stable periodic orbits for the Mackey-Glass equation may have complicated structures.
[2] remarks that (H) holds if $b>a>0$ and b is sufficiently close to a, and refers to this work for the proof. The aim of this paper is to prove this fact, namely the following result.

Theorem 1.2. For every $a>0$ there exists an $\varepsilon_{0}=\varepsilon_{0}(a)>0$ such that for the parameters a, b with $b \in\left(a, a+\varepsilon_{0}\right)$ condition (H) holds.

In particular, for the periodic solution $p=p(a, b)$ of equation $\left(E_{\infty}\right)$ the minimal period $\omega=\omega(a, b)$ satisfies $\omega>5$, and there exists a $\sigma=\sigma(a, b) \in(4, \omega-1)$ so that

$$
0<p(t)<1 \text { for all } t \in(0, \sigma) ; p(t)>1 \text { for all } t \in(\sigma, \omega) .
$$

Moreover, if $a>0$ is fixed and $\left(b_{k}\right)_{k=1}^{\infty}$ is a sequence in $\left(a, a+\varepsilon_{0}(a)\right), \lim _{k \rightarrow \infty} b_{k}=a$ then $\sigma\left(a, b_{k}\right) \rightarrow$ $\infty, \omega\left(a, b_{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$.

Theorems 1.1 and 1.2 immediately imply the following result for equation $\left(E_{n}\right)$.
Theorem 1.3. For each $a>0$ there exists an $\varepsilon_{0}=\varepsilon_{0}(a)>0$ such that for every $b \in\left(a, a+\varepsilon_{0}\right)$ there exists an $n^{*}=n^{*}(a, b) \geq 4$ so that, for all $n \geq n^{*}$, equation $\left(E_{n}\right)$ has a periodic solution $p^{n}: \mathbb{R} \rightarrow \mathbb{R}$ with minimal period $\omega^{n}(a, b)$ so that the periodic orbits

$$
\mathcal{O}^{n}=\left\{p_{t}^{n}: t \in\left[0, \omega^{n}\right]\right\}
$$

are hyperbolic, orbitally stable, exponentially attractive with asymptotic phase. Moreover, if $\left(b_{k}\right)_{k=1}^{\infty}$ is a sequence in $\left(a, a+\varepsilon_{0}(a)\right)$ with $\lim _{k \rightarrow \infty} b_{k}=a, n_{k}>n^{*}\left(a, b_{k}\right)$ then $\omega^{n}\left(a, b_{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$.

Note that the papers [8] by Karakostas et al. and [5] by Gopalsamy et al. give conditions for the global attractivity of the unique positive equilibrium of $\left(E_{n}\right)$ for $b>a>0$, and n is below a certain constant given in terms of a, b. Theorem 1.3 requires n to be large.

Section 2 contains the proof of Theorem 1.2. The proof requires the study of a special solution of a linear autonomous delay differential equation. If $\varphi \in C_{r}^{+}$is any function such
that $\varphi(s)>1$ for $s \in[-1,0)$ and $\varphi(0)=1$ then the unique solution $x=x^{\varphi}$ of equation $\left(E_{\infty}\right)$ satisfies $x(t)=e^{-a t}$ for $t \in[0,1]$. In order to find a periodic solution of $\left(E_{\infty}\right)$ as stated in Theorem 1.2 we consider the linear autonomous equation

$$
u^{\prime}(t)=-a u(t)+b u(t-1)
$$

for $t>1$ with $u(t)=e^{-a t}, t \in[0,1]$. If we find a $T>0$ such that $u(t)<1$ for $t \in(0, T)$, $u(T)=1, u(t)>1$ for $t \in(T, T+1]$, then it is straightforward to see that $x(t)=u(t)$ for all $t \in[0, T+1]$. Then, equation $\left(E_{\infty}\right)$ gives $x^{\prime}(t)=-a x(t)$ for all $t>T+1$ as long as $x(t-1)>1$. Hence there exists an $\omega>T+1$ with $x(\omega)=1$ and $x(t)>1$ for all $t \in(T, \omega)$. By the fact $f(\xi)=0$ for $\xi>1$, the solution x does not change on $[0, \infty)$ if φ is replaced by x_{ω}, and consequently $x(t)=x(t+\omega)$ follows for all $t \geq-1$. Therefore the proof of Theorem 1.2 is reduced to the existence of a $T>0$ with $u(t)<1$ for $t \in(0, T), u(T)=1, u(t)>1$ for $t \in(T, T+1]$. Property (H)(ii) is guaranteed by $u^{\prime}(T)>0$.

We remark that the use of a limiting equation in order to study nonlinear delay differential equations when the nonlinearity is close to its limiting function is not new. We refer to the papers [10-12,21,24-26] where the limiting step function reduces the search of periodic solutions to a finite dimensional problem. The limiting Mackey-Glass nonlinearity f is not a step function. The introduction of the limiting Mackey-Glass equation does not reduce the search for periodic solutions to a finite dimensional problem, nevertheless it can simplify it. The paper [14] considered the limiting Mackey-Glass nonlinearity to construct periodic solutions for an equation different from (E_{n}). The result of [14] is analogous to the case when b is large comparing to a, mentioned above for the Mackey-Glass equation.

2 The proof of Theorem 1.2

The proof is divided into eight steps. The desired periodic solution of equation (E_{∞}) will be an ω-periodic extension of a function $w:[0, \omega] \rightarrow \mathbb{R}$. We construct w in the remaining part of this section.

Step 1. Let $a>0$ be fixed, and consider the characteristic function

$$
h: \mathbb{C} \times \mathbb{R} \ni(z, \varepsilon) \mapsto z+a-(a+\varepsilon) e^{-z} \in \mathbb{C}
$$

of the linear delay differential equation $v^{\prime}(t)=-a v(t)+(a+\varepsilon) v(t-1)$. By $h(0,0)=0$, $D_{1} h(0,0)=1+a$, and $D_{2} h(0,0)=-1$, the Implicit Function Theorem can be applied to get that there are $\varepsilon_{1} \in(0, \min \{a, 1 / 4\}), r_{1} \in(0,1)$ and a C^{1}-smooth map $\lambda_{0}:\left(-\varepsilon_{1}, \varepsilon_{1}\right) \rightarrow \mathbb{C}$ such that $\lambda_{0}(0)=0, h\left(\lambda_{0}(\varepsilon), \varepsilon\right)=0$, and $\left(\lambda_{0}(\varepsilon), \varepsilon\right)$ is the unique solution of $h(z, \varepsilon)=0$ in the set $\left\{z \in \mathbb{C}:|z|<r_{1}\right\} \times\left(-\varepsilon_{1}, \varepsilon_{1}\right)$. Since a and ε are real in the equation $h(z, \varepsilon)=0,(z, \varepsilon)$ is a solution together with (\bar{z}, ε). Then, by uniqueness, it follows that $\lambda_{0}(\varepsilon) \in \mathbb{R}, \varepsilon \in\left(-\varepsilon_{1}, \varepsilon_{1}\right)$.

Chapter XI of [4] applies to get that the zeros of the characteristic function $h(z, \varepsilon)$ for $\varepsilon \in\left(-\varepsilon_{1}, \varepsilon_{1}\right)$ are $\lambda_{0}(\varepsilon) \in \mathbb{R}$ and a sequence of pairs $\left(\lambda_{j}(\varepsilon), \overline{\lambda_{j}(\varepsilon)}\right)_{j=1}^{\infty}$ with

$$
\lambda_{0}(\varepsilon)>\operatorname{Re} \lambda_{1}(\varepsilon)>\operatorname{Re} \lambda_{2}(\varepsilon)>\cdots>\operatorname{Re} \lambda_{j}(\varepsilon) \rightarrow-\infty \text { as } j \rightarrow \infty
$$

and

$$
\operatorname{Im} \lambda_{j} \in((2 j-1) \pi, 2 j \pi) \quad(j \in \mathbb{N})
$$

If $\varepsilon=0$ then $\lambda_{0}(0)=0$, and consequently $\operatorname{Re} \lambda_{1}(0)<0$. Fix $c \in(0, a)$ so that

$$
\operatorname{Re} \lambda_{1}(0)<-2 c .
$$

Notice that the choice of c depends only on a.
Differentiating the equation $h\left(\lambda_{0}(\varepsilon), \varepsilon\right)=0$ with respect to ε we obtain $\lambda_{0}^{\prime}(0)=1 /(1+a)$, and thus

$$
\lambda_{0}(\varepsilon)=\frac{\varepsilon}{1+a}+\eta(\varepsilon)
$$

with a function $\eta:\left(-\varepsilon_{1}, \varepsilon_{1}\right) \rightarrow \mathbb{R}$ satisfying $\lim _{\varepsilon \rightarrow 0} \eta(\varepsilon) / \varepsilon=0$. Applying the above representation for $\lambda_{0}(\varepsilon)$, we assume (in addition to the above properties of ε_{1}) that ε_{1} is so small that

$$
\begin{equation*}
\lambda_{0}(\varepsilon)<\frac{2 \varepsilon}{1+2 a} \quad \text { for all } \varepsilon \in\left(0, \varepsilon_{1}\right) \tag{2.1}
\end{equation*}
$$

where the equality $2 \varepsilon /(1+2 a)=\varepsilon /(1+a)+\varepsilon /[(1+a)(1+2 a)]$ shows that this is possible.
By Rouché's theorem [20] there exists an $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$ such that

$$
\operatorname{Re} \lambda_{1}(\varepsilon)<-2 c \quad \text { for all } \varepsilon \in\left[0, \varepsilon_{2}\right] .
$$

In particular, $h(z, \varepsilon) \neq 0$ on the line $\{-c+i s: s \in \mathbb{R}\}$ for all $\varepsilon \in\left[0, \varepsilon_{2}\right]$.
Step 2. For $\varepsilon \in\left(0, \varepsilon_{2}\right)$ consider the unique solution $v:[-1, \infty) \rightarrow \mathbb{R}$ of the linear equation

$$
\begin{equation*}
v^{\prime}(t)=-a v(t)+(a+\varepsilon) v(t-1) \quad(t>0) \tag{2.2}
\end{equation*}
$$

with initial function $v_{0}(s)=e^{-a(s+1)},-1 \leq s \leq 0$. Remark that v and λ_{0} depend on ε as well. Taking the Laplace transform of both sides of (2.2) and expressing the Laplace transform $\mathcal{L}(v)(z)$ of v,

$$
\mathcal{L}(v)(z)=\frac{1}{h(z, \varepsilon)}\left[e^{-a}+(a+\varepsilon) \frac{1-e^{-(z+a)}}{z+a}\right]
$$

is obtained where the right hand side can be written as $F(z, \varepsilon)=F_{1}(z)+F_{2}(z, \varepsilon)$ with

$$
F_{1}(z)=\frac{e^{-a}}{z+a}, \quad F_{2}(z, \varepsilon)=\frac{a+\varepsilon}{(z+a) h(z, \varepsilon)} .
$$

According to Chapter I of [4], by taking the inverse Laplace transform, function v can be written as

$$
v(t)=e^{\lambda_{0} t} \operatorname{Res}_{\lambda_{0}} F(z, \varepsilon)+\frac{1}{2 \pi} e^{-c t} \lim _{T \rightarrow \infty} \int_{-T}^{T} e^{i s t} F(-c+i s, \varepsilon) d s \quad(t>0) .
$$

As $F_{1}(z)$ is holomorphic in a neighborhood of λ_{0}, one finds $\operatorname{Res}_{\lambda_{0}} F(z, \varepsilon)=\operatorname{Res}_{\lambda_{0}} F_{2}(z, \varepsilon)$. By using that $h(z, \varepsilon)$ has a simple zero at λ_{0}, and $\lambda_{0}+a=(a+\varepsilon) e^{-\lambda_{0}}$, we get

$$
\operatorname{Res}_{\lambda_{0}} F(z, \varepsilon)=\frac{a+\varepsilon}{\left(\lambda_{0}+a\right) D_{1} h\left(\lambda_{0}, \varepsilon\right)}=\frac{a+\varepsilon}{\left(\lambda_{0}+a\right)\left(1+(a+\varepsilon) e^{-\lambda_{0}}\right)}=\frac{e^{\lambda_{0}}}{1+a+\lambda_{0}} .
$$

For $t \geq 1$, integration by parts leads to

$$
\int_{-T}^{T} e^{i s t} F_{1}(-c+i s) d s=\left[\frac{e^{i s t}}{i t} \frac{e^{-a}}{a-c+i s}\right]_{s=-T}^{s=T}+\int_{-T}^{T} \frac{e^{i s t}}{i t} \frac{i e^{-a}}{(a-c+i s)^{2}} d s .
$$

Thus

$$
\left|\lim _{T \rightarrow \infty} \int_{-T}^{T} e^{i s t} F_{1}(-c+i s) d s\right| \leq \int_{-\infty}^{\infty}\left|\frac{e^{i s t}}{i t} \frac{i e^{-a}}{(a-c+i s)^{2}}\right| d s \leq K_{1}
$$

with

$$
K_{1}=2 \int_{0}^{\infty} \frac{e^{-a}}{(a-c)^{2}+s^{2}} d s
$$

Let $s_{0}=2(a+1) e^{c}$. The continuous function $(s, \varepsilon) \mapsto h(-c+i s, \varepsilon) \in \mathbb{C}$ is nonzero on the set $\left[-s_{0}, s_{0}\right] \times\left[0, \varepsilon_{2}\right]$. So there exists $k>0$ such that $\left|F_{2}(-c+i s, \varepsilon)\right| \leq k$ on the compact set $\left[-s_{0}, s_{0}\right] \times\left[0, \varepsilon_{2}\right]$. If $|s| \geq s_{0}, \varepsilon \in\left[0, \varepsilon_{2}\right]$ then, by the choice of s_{0},

$$
\begin{aligned}
|h(-c+i s, \varepsilon)| & \geq|a-c+i s|-\left|(a+\varepsilon) e^{c-i s}\right| \geq\left[(a-c)^{2}+s^{2}\right]^{1 / 2}-(a+1) e^{c} \\
& \geq \frac{1}{2}\left[(a-c)^{2}+s^{2}\right]^{1 / 2}
\end{aligned}
$$

Consequently

$$
\begin{aligned}
\left|\lim _{T \rightarrow \infty} \int_{-T}^{T} e^{i s t} F_{2}(-c+i s, \varepsilon) d s\right| & \leq \int_{-\infty}^{\infty}\left|F_{2}(-c+i s, \varepsilon)\right| d s \\
& \leq 2 \int_{0}^{s_{0}} k d s+2 \int_{s_{0}}^{\infty} \frac{a+1}{(1 / 2)\left[(a-c)^{2}+s^{2}\right]} d s \\
& =K_{2}
\end{aligned}
$$

with

$$
K_{2}=2 k s_{0}+4 \int_{s_{0}}^{\infty} \frac{(a+1)}{(a-c)^{2}+s^{2}} d s
$$

Notice that both K_{1} and K_{2} are independent of $\varepsilon \in\left(0, \varepsilon_{2}\right)$.
Summarizing the above estimations we obtain that

$$
v(t)=\frac{e^{\lambda_{0}(t+1)}}{1+a+\lambda_{0}}+\hat{r}(t) \quad(t \geq 1)
$$

for some continuous function $\hat{r}:[1, \infty) \rightarrow \mathbb{R}$ satisfying

$$
|\hat{r}(t)| \leq \hat{K} e^{-c t} \quad(t \geq 1)
$$

with $\hat{K}=\left(K_{1}+K_{2}\right) /(2 \pi)$. Note that \hat{r} depends on ε, however \hat{K} and c are independent of ε.
Step 3. For $\varepsilon \in\left(0, \varepsilon_{2}\right)$ define the function $u:[0, \infty) \rightarrow \mathbb{R}$ by $u(t)=v(t-1), t \geq 0$. Then $u(t)=e^{-a t}$ for $t \in[0,1], u$ is differentiable on $(1, \infty)$ and satisfies

$$
\begin{equation*}
u^{\prime}(t)=-a u(t)+(a+\varepsilon) u(t-1) \quad(t>1) . \tag{2.3}
\end{equation*}
$$

Moreover, defining $r(t)=\hat{r}(t-1)$ for $t \geq 2, K=\hat{K} e^{c}, u$ has the representation

$$
\begin{equation*}
u(t)=\frac{e^{\lambda_{0} t}}{1+a+\lambda_{0}}+r(t) \quad(t \geq 2) \tag{2.4}
\end{equation*}
$$

with the continuous function $r:[2, \infty) \rightarrow \mathbb{R}$ satisfying

$$
\begin{equation*}
|r(t)| \leq K e^{-c t} \quad(t \geq 2) \tag{2.5}
\end{equation*}
$$

From equation (2.3)

$$
\begin{aligned}
u(t) & =e^{-a(t-1)} u(1)+\int_{1}^{t}(a+\varepsilon) e^{-a(t-s)} e^{-a(s-1)} d s \\
& =e^{-a t}\left[1+(a+\varepsilon) e^{a}(t-1)\right] \quad(t \in[1,2])
\end{aligned}
$$

and

$$
u^{\prime}(t)=e^{-a t}\left[-a-a(a+\varepsilon) e^{a}(t-1)+(a+\varepsilon) e^{a}\right] \quad(t \in(1,2]) .
$$

Define

$$
t_{0}=t_{0}(\varepsilon)=1+\frac{1}{a}-\frac{1}{(a+\varepsilon) e^{a}}
$$

Choose $\varepsilon_{3} \in\left(0, \varepsilon_{2}\right]$ so that

$$
\varepsilon_{3}<\frac{a}{1-a}\left(e^{-a}-1+a\right)
$$

provided $a \in(0,1)$, and let $\varepsilon_{3}=\varepsilon_{2}$ if $a \geq 1$.
Suppose $\varepsilon \in\left(0, \varepsilon_{3}\right)$. Then $t_{0}=t_{0}(\varepsilon) \in(1,2)$ is the unique zero of u^{\prime} in $(1,2)$, and it is easy to see that

$$
\begin{equation*}
\max _{t \in[1,2]} u(t)=u\left(t_{0}\right)=e^{-a t_{0}}\left[1+(a+\varepsilon) e^{a}\left(t_{0}-1\right)\right]=\frac{a+\varepsilon}{a} \exp \left[\frac{a e^{-a}}{a+\varepsilon}-1\right] . \tag{2.6}
\end{equation*}
$$

Step 4. In this step we show the following

CLAIM:

(i) For each $k \in \mathbb{N}$

$$
\max _{t \in[k+1, k+2]} u(t) \leq\left(1+\frac{\varepsilon}{a}\right) \max _{t \in[k, k+1]} u(t),
$$

and
(ii) for each $N \in \mathbb{N}$

$$
\max _{t \in[N+1, N+2]} u(t) \leq\left(1+\frac{\varepsilon}{a}\right)^{N} \max _{t \in[1,2]} u(t) .
$$

Let $k \in \mathbb{N}$ be given. If $\max _{t \in[k+1, k+2]} \leq \max _{t \in[k, k+1]} u(t)$ then the stated inequality obviously holds for k. If $\max _{t \in[k+1, k+2]} u(t)>\max _{t \in[k, k+1]} u(t)$, then there exists a $t_{1} \in(k+1, k+2]$ such that $u^{\prime}\left(t_{1}\right) \geq 0$ and $u\left(t_{1}\right)=\max _{t \in[k+1, k+2]} u(t)$. Equation (2.3) at $t=t_{1}$ and $u^{\prime}\left(t_{1}\right) \geq 0$ imply the inequality $-a u\left(t_{1}\right)+(a+\varepsilon) u\left(t_{1}-1\right) \geq 0$. Hence

$$
\max _{t \in[k+1, k+2]} u(t)=u\left(t_{1}\right) \leq \frac{a+\varepsilon}{a} u\left(t_{1}-1\right) \leq\left(1+\frac{\varepsilon}{a}\right) \max _{t \in[k, k+1]} u(t),
$$

that is, the stated inequality is satisfied. This proves (i).
A repeated application of (i) gives (ii):

$$
\begin{aligned}
\max _{t \in[N+1, N+2]} u(t) & \leq\left(1+\frac{\varepsilon}{a}\right) \max _{t \in[N, N+1]} u(t) \leq\left(1+\frac{\varepsilon}{a}\right)^{2} \max _{t \in[N-1, N]} u(t) \\
& \leq \cdots \leq\left(1+\frac{\varepsilon}{a}\right)^{N} \max _{t \in[1,2]} u(t) .
\end{aligned}
$$

Step 5. Choose $\xi_{0} \in\left(\exp \left(e^{-a}-1\right), 1\right)$. The function

$$
(0, \infty) \ni \varepsilon \mapsto \frac{a+\varepsilon}{a} \exp \left[\frac{a e^{-a}}{a+\varepsilon}-1\right] \in \mathbb{R}
$$

strictly increases and its limit is $\exp \left(e^{-a}-1\right)$ as $\varepsilon \rightarrow 0+$. Therefore there exists an $\varepsilon_{4} \in\left(0, \varepsilon_{3}\right)$ such that

$$
\frac{a+\varepsilon}{a} \exp \left[\frac{a e^{-a}}{a+\varepsilon}-1\right]<\xi_{0}
$$

for all $\varepsilon \in\left(0, \varepsilon_{4}\right)$.
By the equality (2.6) in Step 3 and the choice of ε_{4}, for all $\varepsilon \in\left(0, \varepsilon_{4}\right)$, the inequality $\max _{t \in[1,2]} u(t)<\xi_{0}$ holds. Then by the CLAIM in Step 4

$$
\begin{equation*}
\max _{t \in[1, N+2]} u(t)<\left(1+\frac{\varepsilon}{a}\right)^{N} \xi_{0} \tag{2.7}
\end{equation*}
$$

follows for all $N \in \mathbb{N}$.
For a given $N \in \mathbb{N}$, from (2.7) one gets

$$
\max _{t \in[1, N+2]} u(t)<1
$$

provided $\varepsilon \in\left(0, \varepsilon_{4}\right)$ is so small that

$$
\begin{equation*}
\varepsilon<a\left[\left(1 / \xi_{0}\right)^{1 / N}-1\right] . \tag{2.8}
\end{equation*}
$$

Step 6. Let $N \in \mathbb{N} \backslash\{1,2\}$ be given. We look for a condition on $\varepsilon \in\left(0, \varepsilon_{4}\right)$ to guarantee

$$
\begin{equation*}
u^{\prime}(t)>0 \quad \text { for all } t>N . \tag{2.9}
\end{equation*}
$$

Equation (2.3) gives that

$$
\begin{equation*}
a u(t)<(a+\varepsilon) u(t-1) \quad \text { for all } t>N \tag{2.10}
\end{equation*}
$$

is sufficient to yield (2.9). By the representation (2.4) condition (2.10) is equivalent to

$$
\frac{a}{1+a+\lambda_{0}} e^{\lambda_{0} t}\left[\left(1+\frac{\varepsilon}{a}\right) e^{-\lambda_{0}}-1\right]>\operatorname{ar}(t)-(a+\varepsilon) r(t-1) \quad(t>N)
$$

that is

$$
\left(1+\frac{\varepsilon}{a}\right) e^{-\lambda_{0}}-1>\frac{1+a+\lambda_{0}}{a} e^{-\lambda_{0} t}[\operatorname{ar}(t)-(a+\varepsilon) r(t-1)] \quad(t>N)
$$

From $\varepsilon<1,0<\lambda_{0}(\varepsilon)<1$ and (2.5) one obtains

$$
\begin{aligned}
& \frac{1+a+\lambda_{0}}{a} e^{-\lambda_{0} t}[a r(t)-(a+\varepsilon) r(t-1)] \\
& \quad<\frac{(a+2)(2 a+1)}{a} K e^{-c(t-1)} \\
& \quad<\frac{(a+2)(2 a+1)}{a} K e^{c} e^{-c N} \quad(t>N) .
\end{aligned}
$$

Recall that, by the choice of ε_{1} in Step 1,

$$
\lambda_{0}(\varepsilon)<\frac{2 \varepsilon}{2 a+1} .
$$

Hence

$$
e^{-\lambda_{0}(\varepsilon)}>1-\lambda_{0}(\varepsilon)>1-\frac{2 \varepsilon}{2 a+1} .
$$

Thus, by using $\varepsilon_{1}<1 / 4$ as well,

$$
\begin{aligned}
\left(1+\frac{\varepsilon}{a}\right) e^{-\lambda_{0}(\varepsilon)}-1 & >\left(1+\frac{\varepsilon}{a}\right)\left(1-\frac{2 \varepsilon}{2 a+1}\right)-1 \\
& =\frac{\varepsilon-2 \varepsilon^{2}}{a(2 a+1)}>\frac{\varepsilon}{2 a(2 a+1)} .
\end{aligned}
$$

Consequently, (2.9) holds if, in addition to $\varepsilon \in\left(0, \varepsilon_{4}\right)$,

$$
\begin{equation*}
\varepsilon>\xi_{1} e^{-c N} \tag{2.11}
\end{equation*}
$$

with $\xi_{1}=2(a+2)(2 a+1)^{2} K e^{c}$.
Step 7. In order to satisfy conditions (2.8) and (2.11) simultaneously consider $a\left[\left(1 / \xi_{0}\right)^{1 / N}-1\right]$ and $\xi_{1} e^{-c N}$. By L'Hospital's rule

$$
\lim _{N \rightarrow \infty} \frac{\xi_{1} e^{-c N}}{a\left[\left(1 / \xi_{0}\right)^{1 / N}-1\right]}=0 .
$$

Therefore there exists an integer $N_{0}>2$ such that

$$
\begin{equation*}
\frac{\xi_{1} e^{-c N}}{a\left[\left(1 / \xi_{0}\right)^{1 /(N+1)}-1\right]}<1 \quad \text { for all integers } N \geq N_{0} \tag{2.12}
\end{equation*}
$$

Define $\varepsilon_{*} \in\left(0, \varepsilon_{4}\right)$ so that

$$
\varepsilon_{*}<a\left[\left(1 / \xi_{0}\right)^{1 / N_{0}}-1\right] .
$$

Let $\varepsilon \in\left(0, \varepsilon_{*}\right)$ be fixed. By $\varepsilon<\varepsilon_{*}$ and $\lim _{N \rightarrow \infty} a\left[\left(1 / \xi_{0}\right)^{1 / N}-1\right]=0$ there exists a maximal integer $N(\varepsilon) \geq N_{0}$ so that

$$
\begin{equation*}
\varepsilon<a\left[\left(1 / \xi_{0}\right)^{1 / N(\varepsilon)}-1\right] \tag{2.13}
\end{equation*}
$$

The maximality of $N(\varepsilon) \geq N_{0}$ and inequality (2.12) imply

$$
\xi_{1} e^{-c N(\varepsilon)}<a\left[\left(1 / \tilde{\xi}_{0}\right)^{1 /(N(\varepsilon)+1)}-1\right] \leq \varepsilon
$$

Therefore, we arrive at the inequality

$$
\begin{equation*}
\xi_{1} e^{-c N(\varepsilon)}<\varepsilon<a\left[\left(1 / \xi_{0}\right)^{1 / N(\varepsilon)}-1\right] \tag{2.14}
\end{equation*}
$$

that is, for every $\varepsilon \in\left(0, \varepsilon_{*}\right)$ inequalities (2.11) and (2.8) hold with $N=N(\varepsilon)$.
Step 8. By Steps 5-7, for each $\varepsilon \in\left(0, \varepsilon_{*}\right)$ there exists an integer $N=N(\varepsilon)>2$ such that the unique continuous function $u=u(\varepsilon):[0, \infty) \rightarrow \mathbb{R}$ satisfying $u(t)=e^{-a t}$ for $t \in[0,1]$, and equation (2.3) on $(1, \infty)$ has the properties

$$
\begin{align*}
1=u(0)>u(t) & >0 \quad \text { for all } t \in(0, N+2), \\
u^{\prime}(t) & >0 \text { for all } t>N, \tag{2.15}\\
u(t) & \rightarrow \infty \text { as } t \rightarrow \infty .
\end{align*}
$$

The last property is clear from $\lambda_{0}(\varepsilon)>0$, (2.4) and (2.5).
From (2.15) it follows that there exits a unique $\sigma(\varepsilon)>N(\varepsilon)+2>4$ so that $u(\sigma(\varepsilon))=1$ and $u^{\prime}(\sigma(\varepsilon))>0$. From $u^{\prime}(\sigma(\varepsilon))>0$ it is clear that $u(\sigma(\varepsilon)-1) \neq a /(a+\varepsilon)$. The maximality of $N(\varepsilon)$ in inequality (2.13) implies that $N(\varepsilon) \rightarrow \infty, \sigma(\varepsilon) \rightarrow \infty$ as $\varepsilon \rightarrow 0+$.

Let $\omega(\varepsilon)=\sigma(\varepsilon)+1+(1 / a) \log u(\sigma(\varepsilon)+1)>5$. Define the function $w:[0, \omega(\varepsilon)] \rightarrow \mathbb{R}$ by

$$
w(t)= \begin{cases}u(t) & \text { if } t \in[0, \sigma(\varepsilon)+1] \\ u(\sigma(\varepsilon)+1) e^{-a(t-\sigma(\varepsilon)-1)} & \text { if } t \in[\sigma(\varepsilon)+1, \omega(\varepsilon)]\end{cases}
$$

Then $w(t)>1$ for all $t \in(\sigma, \omega)$, and $w(\omega)=1$. Let $p: \mathbb{R} \rightarrow \mathbb{R}$ be the $\omega(\varepsilon)$-periodic extension of w to \mathbb{R}.

For the fixed $a>0$ set $\varepsilon_{0}=\varepsilon_{*}$. Observe that c, K, and consequently ξ_{0}, ξ_{1}, depend only on a. Then relation (2.12) shows that N_{0} is also a function of a. Therefore, ε_{0} depends only on a.

If $b \in\left(a, a+\varepsilon_{0}\right)$ then the above constructed $p(\varepsilon)$ with $\varepsilon=b-a \in\left(0, \varepsilon_{*}\right)$ is clearly an $\omega(\varepsilon)$ periodic solution of equation $\left(E_{\infty}\right)$ satisfying (H). Setting $\omega(a, b)=\omega(\varepsilon)$ and $\sigma(a, b)=\sigma(\varepsilon)$, we see that all statements of Theorem 1.2 are satisfied, and the proof is complete.

The typical shape of the periodic solutions obtained in this paper for $\left(E_{\infty}\right)$ is shown in Figure 2.1 with $a=9, b=9.7$.

Figure 2.1: The periodic solution of $\left(E_{\infty}\right)$ for $a=9, b=9.7$

Acknowledgements

This research was supported by the grants NKFIH-K-129322, NKFIH-1279-2/2020 of the Ministry for Innovation and Technology, Hungary, and by the EU-funded Hungarian Grant EFOP-3.6.2-16-2017-0015.

The author thanks the reviewer for the relevant comments that contributed to improving the paper.

References

[1] P. Amil, C. Cabeza, A. C. Marti, Exact discrete-time implementation of the MackeyGlass delayed model, IEEE Transactions on Circuits and Systems II: Express Briefs 62(2015), 681-685. https://doi.org/10.1109/TCSII.2015.2415651
[2] F. Á. Bartha, T. Krisztin, A. Vígh, Stable periodic orbits for the Mackey-Glass equation, preprint.
[3] J. B. van den Berg, C. Groothedde, J.-P. Lessard, A general method for computerassisted proofs of periodic solutions in delay differential problems, J. Dynam. Differential Equations (2020). https://doi.org/10.1007/s10884-020-09908-6
[4] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel, H.-O. Walther, Delay equations. Functional, complex, and nonlinear analysis, Applied Mathematical Sciences, Vol. 110, Springer-Verlag, New York, 1995. https://doi.org/10.1007/978-1-4612-4206-2; MR1345150
[5] K. Gopalsamy, S. I. Trofimchuk, N. R. Bantsur, A note on global attractivity in models of hematopoiesis, Ukraïn. Mat. Zh. 50(1998), 5-12; reprinted in Ukrainian Math. J. 50(1998), 3-12. https://doi.org/10.1007/BF02514684; MR1669243
[6] U. an der Heiden, H.-O. Walther, Existence of chaos in control systems with delayed feedback, J. Differential Equations 47(1983), 273-295. https://doi.org/10.1016/ 0022-0396(83)90037-2; MR688106
[7] L. Junges, J. A. C. Gallas, Intricate routes to chaos in the Mackey-Glass delayed feedback system, Phys. Lett. A 376(2012), 2109-2116. https://doi.org/10.1016/j.physleta. 2012.05.022
[8] G. Karakostas, Ch. G. Philos, Y. G. Sficas, Stable steady state of some population models, J. Dynam. Differential Equations 4(1992), 161-190. https://doi.org/10.1007/ BF01048159; MR1150401
[9] G. Kiss, G. Röst, Controlling Mackey-Glass chaos, Chaos 27(2017), 114321. https ://doi. org/10.1063/1.5006922; MR3716183
[10] T. Krisztin, M. Polner, G. Vas, Periodic solutions and hydra effect for delay differential equations with nonincreasing feedback, Qual. Theory Dyn. Syst. 16(2017), 269-292. https: //doi.org/10.1007/s12346-016-0191-2; MR3671725
[11] T. Krisztin, G. Vas, Large-amplitude periodic solutions for differential equations with delayed monotone positive feedback, J. Dynam. Differential Equations 23(2011), 727-790. https://doi.org/10.1007/s10884-011-9225-2; MR2859940
[12] T. Krisztin, G. Vas, The unstable set of a periodic orbit for delayed positive feedback, J. Dynam. Differential Equations 28(2016), 805-855. https://doi.org/10.1007/ s10884-014-9375-0; MR3537356
[13] M. C. Mackey, L. Glass, Oscillation and chaos in physiological control systems, Science 197(1977), 278-289. https://doi.org/10.1126/science. 267326
[14] M. C. Mackey, C. Ou, L. Pujo-Menjouet, J. Wu, Periodic oscillations of blood cell population in chronic myelogenous leukemia, SIAM J. Math. Anal. 38(2006), 166-187. https://doi.org/10.1137/04061578X; MR2217313
[15] B. Lani-Wayda, Erratic solutions of simple delay equations, Trans. Am. Math. Soc. 351(1999), 901-945. https://doi.org/10.1090/S0002-9947-99-02351-X; MR1615995
[16] A. Lasota, Ergodic problems in biology, Astérisque 50(1977), 239-250. MR0490015
[17] E. Liz, G. Röst, Dichotomy results for delay differential equations with negative Schwarzian derivative, Nonlinear Anal. Real World Appl. 11(2010), 1422-1430. https: //doi.org/10.1016/j .nonrwa.2009.02.030; MR2646558
[18] E. Liz, E. Trofimchuк, S. Trofimchuк, Mackey-Glass type delay differential equations near the boundary of absolute stability, J. Math. Anal. Appl. 275(2002), 747-760. https: //doi.org/10.1016/S0022-247X (02) 00416-X; MR1943777
[19] G. Röst, J. Wu, Domain-decomposition method for the global dynamics of delay differential equations with unimodal feedback, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463(2007), 2655-2669. https://doi. org/10.1098/rspa.2007.1890; MR2352875
[20] W. Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto, Ont.London, 1966. MR0210528
[21] A. L. Skubachevskit, H.-O. Walther, On the Floquet multipliers of periodic solutions to non-linear functional differential equations, J. Dynam. Differential Equations 18(2006), 257-355. https://doi.org/10.1007/s10884-006-9006-5; MR2229980
[22] R. Szczelina, A computer assisted proof of multiple periodic orbits in some first order non-linear delay differential equations, Electron. J. Qual. Theory Differ. Equ. 2016, No. 83, 1-19. https://doi.org/10.14232/ejqtde.2016.1.83; MR3547459
[23] R. Szczelina, P. Zgliczynski, Algorithm for rigorous integration of delay differential equations and the computer-assisted proof of periodic orbits in the MackeyGlass equation, Found. Comput. Math. 18(2018), 1299-1332. https://doi.org/10.1007/ s10208-017-9369-5; MR3875841
[24] G. VAs, Configurations of periodic orbits for equations with delayed positive feedback, J. Differential Equations 262(2017), 1850-1896. https://doi.org/10.1016/j . jde. 2016.10. 031; MR3582215
[25] H.-O. Walther, Contracting return maps for some delay differential equations, in: T. Faria, P. Freitas (eds.), Topics in functional differential and difference equations (Lisbon, 1999), Fields Inst. Commun., Vol. 29, Amer. Math. Soc., Providence, RI, 2001, pp. 349360. MR1821790
[26] H.-O. Walther, Contracting return maps for monotone delayed feedback, Discrete Contin. Dyn. Syst. 7(2001), 259-274. https://doi.org/10.3934/dcds.2001.7.259; MR1808399

[^0]: ${ }^{\boxtimes}$ Email: krisztin@math.u-szeged.hu

