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Abstract. The limiting version of the Mackey–Glass delay differential equation x′(t) =
−ax(t) + b f (x(t − 1)) is considered where a, b are positive reals, and f (ξ) = ξ for
ξ ∈ [0, 1), f (1) = 1/2, and f (ξ) = 0 for ξ > 1. For every a > 0 we prove the
existence of an ε0 = ε0(a) > 0 so that for all b ∈ (a, a + ε0) there exists a periodic
solution p = p(a, b) : R → (0, ∞) with minimal period ω(a, b) such that ω(a, b) → ∞
as b → a+. A consequence is that, for each a > 0, b ∈ (a, a + ε0(a)) and sufficiently
large n, the classical Mackey–Glass equation y′(t) = −ay(t) + by(t− 1)/[1 + yn(t− 1)]
has an orbitally asymptotically stable periodic orbit, as well, close to the periodic orbit
of the limiting equation.
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1 Introduction

The Mackey–Glass equation

y′(t) = −ay(t) + b
y(t− τ)

1 + yn(t− τ)

with positive parameters a, b, τ, n was proposed to model blood production and destruction
in the study of oscillation and chaos in physiological control systems by Mackey and Glass
[13]. This simple-looking differential equation with a single delay attracted the attention of
many mathematicians since its hump-shaped nonlinearity causes entirely different dynamics
compared to the case where the nonlinearity is monotone. See [16] for a similar equation.
There exist several rigorous mathematical results, numerical and experimental studies on
the Mackey–Glass equation showing convergence of the solutions, oscillations with different
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characteristics, and the complexity of the dynamics, see e.g. [1,3,6,7,9,15,17–19,22,23]. Despite
the intense research, the dynamics is not fully understood yet.

The recent paper [2] studies the classical Mackey–Glass delay differential equation

y′(t) = −ay(t) + b fn(y(t− 1)) (En)

where a, b, n are positive reals, fn(ξ) = ξ/[1+ ξn] for ξ ≥ 0, τ = 1 can be assumed by rescaling
the time. [2] constructs stable periodic solutions of (En) for some b > a > 0 and large n. The
periodic solutions can have complicated shapes, see [2]. A limiting version of (En) plays a key
role in the construction. The function f (ξ) = limn→∞ fn(ξ) is given by f (ξ) = ξ for ξ ∈ [0, 1),
f (1) = 1/2, and f (ξ) = 0 for ξ > 1. The equation

x′(t) = −ax(t) + b f (x(t− 1)) (E∞)

is called the limiting Mackey–Glass equation.
Let R, C and N denote the set of real numbers, complex numbers and positive inte-

gers, respectively. Let C be the Banach space C([−1, 0], R) equipped with the norm ‖ϕ‖ =

maxs∈[−1,0] |ϕ(s)|. For a continuous function u : I → R defined on an interval I, and for
t, t− 1 ∈ I, ut ∈ C is given by ut(s) = u(t + s), s ∈ [−1, 0]. Introduce the subsets

C+ = {ψ ∈ C : ψ(s) > 0 for all s ∈ [−1, 0]} ,

C+
r =

{
ψ ∈ C+ : ψ−1(c) is finite for all c ∈ (0, 1]

}
of C where ψ−1(c) = {s ∈ [−1, 0] : ψ(s) = c}. C+ and C+

r are metric spaces with the metric
d(ϕ, ψ) = ‖ϕ− ψ‖.

A solution of equation (En) on [−1, ∞) with initial function ψ ∈ C+ is a continuous function
y : [−1, ∞)→ R so that y0 = ψ, the restriction y|(0,∞) is differentiable, and equation (En) holds
for all t > 0. The solutions are easily obtained from the variation-of-constants formula for
ordinary differential equations on successive intervals of length one,

y(t) = e−a(t−k)y(k) + b
∫ t

k
e−a(t−s) fn(y(s− 1)) ds (1.1)

where k ∈ N ∪ {0}, k ≤ t ≤ k + 1. Hence it is well known that each ψ ∈ C+ uniquely
determines a solution y = yn,ψ : [−1, ∞)→ R with yn,ψ

0 = ψ, and yn,ψ(t) > 0 for all t ≥ 0.
For equation (E∞) with the discontinuous f , we use formula (1.1) with f instead of fn to

define solutions. A solution of equation (E∞) with initial function ϕ ∈ C+ is a continuous
function x = xϕ : [−1, tϕ)→ R with some 0 < tϕ ≤ ∞ such that x0 = ϕ, the map [0, tϕ) 3 s 7→
f (x(s− 1)) ∈ R is locally integrable, and

x(t) = e−a(t−k)x(k) + b
∫ t

k
e−a(t−s) f (x(s− 1)) ds (1.2)

holds for all k ∈N∪ {0} and t ∈ [0, tϕ) with k ≤ t ≤ k + 1.
It is easy to show that, for any ϕ ∈ C+, there is a unique solution xϕ of equation (E∞)

on [−1, ∞). However, comparing solutions with initial functions ϕ > 1, ϕ ≡ 1, one sees that
there is no continuous dependence on initial data in C+. Therefore we restrict our attention
to the subset C+

r of C+. The choice of C+
r as a phase space guarantees not only continuous

dependence on initial data, but also allows to compare certain solutions of equations (E∞) and
(En) for large n. This is not used here, but it is important in [2]. [2] proves that for each ϕ ∈ C+

r
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there is a unique maximal solution xϕ : [−1, ∞)→ R of equation (E∞). The maximal solution
xϕ satisfies xϕ

t ∈ C+
r for all t ≥ 0; and if t > 0 and xϕ(t− 1) 6= 1, then xϕ is differentiable at t,

and equation (E∞) holds at t.
One of the main results of [2] is as follows.

Theorem 1.1. If the parameters b > a > 0 are given so that

(H) equation (E∞) has an ω-periodic solution p : R→ R with the following properties:

(i) p(0) = 1, p(t) > 1 for all t ∈ [−1, 0),

(ii) (p(t), p(t− 1)) 6= (1, a/b) for all t ∈ [0, ω]

holds then there exists an n∗ ≥ 4 such that, for all n ≥ n∗, equation (En) has a periodic solution
pn : R→ R with period ωn > 0 so that the periodic orbits

On = {pn
t : t ∈ [0, ωn]}

are hyperbolic, orbitally stable, exponentially attractive with asymptotic phase, moreover, ωn → ω,
dist {On,O} → 0 as n→ ∞, where O = {pt : t ∈ [0, ω]}.

[2] shows that in case b is large comparing to a, namely b > max{aea, ea − e−a}, then (H)
is satisfied. In addition, by using a rigorous computer-assisted technique, [2] gives parameter
values a, b such that (H) is valid, and the obtained stable periodic orbits for the Mackey–Glass
equation may have complicated structures.

[2] remarks that (H) holds if b > a > 0 and b is sufficiently close to a, and refers to this
work for the proof. The aim of this paper is to prove this fact, namely the following result.

Theorem 1.2. For every a > 0 there exists an ε0 = ε0(a) > 0 such that for the parameters a, b with
b ∈ (a, a + ε0) condition (H) holds.

In particular, for the periodic solution p = p(a, b) of equation (E∞) the minimal period ω = ω(a, b)
satisfies ω > 5, and there exists a σ = σ(a, b) ∈ (4, ω− 1) so that

0 < p(t) < 1 for all t ∈ (0, σ); p(t) > 1 for all t ∈ (σ, ω).

Moreover, if a > 0 is fixed and (bk)
∞
k=1 is a sequence in (a, a + ε0(a)), limk→∞ bk = a then σ(a, bk)→

∞, ω(a, bk)→ ∞ as k→ ∞.

Theorems 1.1 and 1.2 immediately imply the following result for equation (En).

Theorem 1.3. For each a > 0 there exists an ε0 = ε0(a) > 0 such that for every b ∈ (a, a + ε0) there
exists an n∗ = n∗(a, b) ≥ 4 so that, for all n ≥ n∗, equation (En) has a periodic solution pn : R→ R

with minimal period ωn(a, b) so that the periodic orbits

On = {pn
t : t ∈ [0, ωn]}

are hyperbolic, orbitally stable, exponentially attractive with asymptotic phase. Moreover, if (bk)
∞
k=1 is

a sequence in (a, a + ε0(a)) with limk→∞ bk = a, nk > n∗(a, bk) then ωn(a, bk)→ ∞ as k→ ∞.

Note that the papers [8] by Karakostas et al. and [5] by Gopalsamy et al. give conditions
for the global attractivity of the unique positive equilibrium of (En) for b > a > 0, and n is
below a certain constant given in terms of a, b. Theorem 1.3 requires n to be large.

Section 2 contains the proof of Theorem 1.2. The proof requires the study of a special
solution of a linear autonomous delay differential equation. If ϕ ∈ C+

r is any function such
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that ϕ(s) > 1 for s ∈ [−1, 0) and ϕ(0) = 1 then the unique solution x = xϕ of equation (E∞)
satisfies x(t) = e−at for t ∈ [0, 1]. In order to find a periodic solution of (E∞) as stated in
Theorem 1.2 we consider the linear autonomous equation

u′(t) = −au(t) + bu(t− 1)

for t > 1 with u(t) = e−at, t ∈ [0, 1]. If we find a T > 0 such that u(t) < 1 for t ∈ (0, T),
u(T) = 1, u(t) > 1 for t ∈ (T, T + 1], then it is straightforward to see that x(t) = u(t) for
all t ∈ [0, T + 1]. Then, equation (E∞) gives x′(t) = −ax(t) for all t > T + 1 as long as
x(t− 1) > 1. Hence there exists an ω > T + 1 with x(ω) = 1 and x(t) > 1 for all t ∈ (T, ω).
By the fact f (ξ) = 0 for ξ > 1, the solution x does not change on [0, ∞) if ϕ is replaced by
xω, and consequently x(t) = x(t + ω) follows for all t ≥ −1. Therefore the proof of Theorem
1.2 is reduced to the existence of a T > 0 with u(t) < 1 for t ∈ (0, T), u(T) = 1, u(t) > 1 for
t ∈ (T, T + 1]. Property (H)(ii) is guaranteed by u′(T) > 0.

We remark that the use of a limiting equation in order to study nonlinear delay differential
equations when the nonlinearity is close to its limiting function is not new. We refer to
the papers [10–12, 21, 24–26] where the limiting step function reduces the search of periodic
solutions to a finite dimensional problem. The limiting Mackey–Glass nonlinearity f is not
a step function. The introduction of the limiting Mackey–Glass equation does not reduce
the search for periodic solutions to a finite dimensional problem, nevertheless it can simplify
it. The paper [14] considered the limiting Mackey–Glass nonlinearity to construct periodic
solutions for an equation different from (En). The result of [14] is analogous to the case when
b is large comparing to a, mentioned above for the Mackey–Glass equation.

2 The proof of Theorem 1.2

The proof is divided into eight steps. The desired periodic solution of equation (E∞) will be
an ω-periodic extension of a function w : [0, ω]→ R. We construct w in the remaining part of
this section.

Step 1. Let a > 0 be fixed, and consider the characteristic function

h : C×R 3 (z, ε) 7→ z + a− (a + ε)e−z ∈ C

of the linear delay differential equation v′(t) = −av(t) + (a + ε)v(t − 1). By h(0, 0) = 0,
D1h(0, 0) = 1 + a, and D2h(0, 0) = −1, the Implicit Function Theorem can be applied to get
that there are ε1 ∈ (0, min{a, 1/4}), r1 ∈ (0, 1) and a C1-smooth map λ0 : (−ε1, ε1) → C such
that λ0(0) = 0, h(λ0(ε), ε) = 0, and (λ0(ε), ε) is the unique solution of h(z, ε) = 0 in the set
{z ∈ C : |z| < r1} × (−ε1, ε1). Since a and ε are real in the equation h(z, ε) = 0, (z, ε) is a
solution together with (z, ε). Then, by uniqueness, it follows that λ0(ε) ∈ R, ε ∈ (−ε1, ε1).

Chapter XI of [4] applies to get that the zeros of the characteristic function h(z, ε) for
ε ∈ (−ε1, ε1) are λ0(ε) ∈ R and a sequence of pairs

(
λj(ε), λj(ε)

)∞
j=1 with

λ0(ε) > Re λ1(ε) > Re λ2(ε) > · · · > Re λj(ε)→ −∞ as j→ ∞

and
Im λj ∈

(
(2j− 1)π, 2jπ

)
(j ∈N).

If ε = 0 then λ0(0) = 0, and consequently Re λ1(0) < 0. Fix c ∈ (0, a) so that

Re λ1(0) < −2c.
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Notice that the choice of c depends only on a.
Differentiating the equation h(λ0(ε), ε) = 0 with respect to ε we obtain λ′0(0) = 1/(1 + a),

and thus
λ0(ε) =

ε

1 + a
+ η(ε)

with a function η : (−ε1, ε1) → R satisfying limε→0 η(ε)/ε = 0. Applying the above repre-
sentation for λ0(ε), we assume (in addition to the above properties of ε1) that ε1 is so small
that

λ0(ε) <
2ε

1 + 2a
for all ε ∈ (0, ε1), (2.1)

where the equality 2ε/(1 + 2a) = ε/(1 + a) + ε/[(1 + a)(1 + 2a)] shows that this is possible.
By Rouché’s theorem [20] there exists an ε2 ∈ (0, ε1) such that

Re λ1(ε) < −2c for all ε ∈ [0, ε2].

In particular, h(z, ε) 6= 0 on the line {−c + is : s ∈ R} for all ε ∈ [0, ε2].

Step 2. For ε ∈ (0, ε2) consider the unique solution v : [−1, ∞)→ R of the linear equation

v′(t) = −av(t) + (a + ε)v(t− 1) (t > 0) (2.2)

with initial function v0(s) = e−a(s+1), −1 ≤ s ≤ 0. Remark that v and λ0 depend on ε as
well. Taking the Laplace transform of both sides of (2.2) and expressing the Laplace transform
L(v)(z) of v,

L(v)(z) = 1
h(z, ε)

[
e−a + (a + ε)

1− e−(z+a)

z + a

]
is obtained where the right hand side can be written as F(z, ε) = F1(z) + F2(z, ε) with

F1(z) =
e−a

z + a
, F2(z, ε) =

a + ε

(z + a)h(z, ε)
.

According to Chapter I of [4], by taking the inverse Laplace transform, function v can be
written as

v(t) = eλ0tResλ0 F(z, ε) +
1

2π
e−ct lim

T→∞

∫ T

−T
eistF(−c + is, ε) ds (t > 0).

As F1(z) is holomorphic in a neighborhood of λ0, one finds Resλ0 F(z, ε) = Resλ0 F2(z, ε). By
using that h(z, ε) has a simple zero at λ0, and λ0 + a = (a + ε)e−λ0 , we get

Resλ0 F(z, ε) =
a + ε

(λ0 + a) D1h(λ0, ε)
=

a + ε

(λ0 + a)(1 + (a + ε)e−λ0)
=

eλ0

1 + a + λ0
.

For t ≥ 1, integration by parts leads to

∫ T

−T
eistF1(−c + is) ds =

[
eist

it
e−a

a− c + is

]s=T

s=−T
+
∫ T

−T

eist

it
ie−a

(a− c + is)2 ds.

Thus ∣∣∣∣ lim
T→∞

∫ T

−T
eistF1(−c + is) ds

∣∣∣∣ ≤ ∫ ∞

−∞

∣∣∣∣ eist

it
ie−a

(a− c + is)2

∣∣∣∣ ds ≤ K1
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with

K1 = 2
∫ ∞

0

e−a

(a− c)2 + s2 ds.

Let s0 = 2(a + 1)ec. The continuous function (s, ε) 7→ h(−c + is, ε) ∈ C is nonzero on the
set [−s0, s0]× [0, ε2]. So there exists k > 0 such that |F2(−c + is, ε)| ≤ k on the compact set
[−s0, s0]× [0, ε2]. If |s| ≥ s0, ε ∈ [0, ε2] then, by the choice of s0,

|h(−c + is, ε)| ≥ |a− c + is| − |(a + ε)ec−is| ≥
[
(a− c)2 + s2]1/2 − (a + 1)ec

≥ 1
2
[
(a− c)2 + s2]1/2

.

Consequently∣∣∣∣ lim
T→∞

∫ T

−T
eistF2(−c + is, ε) ds

∣∣∣∣ ≤ ∫ ∞

−∞
|F2(−c + is, ε)| ds

≤ 2
∫ s0

0
k ds + 2

∫ ∞

s0

a + 1
(1/2)[(a− c)2 + s2]

ds

= K2

with

K2 = 2ks0 + 4
∫ ∞

s0

(a + 1)
(a− c)2 + s2 ds.

Notice that both K1 and K2 are independent of ε ∈ (0, ε2).
Summarizing the above estimations we obtain that

v(t) =
eλ0(t+1)

1 + a + λ0
+ r̂(t) (t ≥ 1)

for some continuous function r̂ : [1, ∞)→ R satisfying

|r̂(t)| ≤ K̂e−ct (t ≥ 1)

with K̂ = (K1 + K2)/(2π). Note that r̂ depends on ε, however K̂ and c are independent of ε.

Step 3. For ε ∈ (0, ε2) define the function u : [0, ∞) → R by u(t) = v(t − 1), t ≥ 0. Then
u(t) = e−at for t ∈ [0, 1], u is differentiable on (1, ∞) and satisfies

u′(t) = −au(t) + (a + ε)u(t− 1) (t > 1). (2.3)

Moreover, defining r(t) = r̂(t− 1) for t ≥ 2, K = K̂ec, u has the representation

u(t) =
eλ0t

1 + a + λ0
+ r(t) (t ≥ 2) (2.4)

with the continuous function r : [2, ∞)→ R satisfying

|r(t)| ≤ Ke−ct (t ≥ 2). (2.5)

From equation (2.3)

u(t) = e−a(t−1)u(1) +
∫ t

1
(a + ε)e−a(t−s)e−a(s−1) ds

= e−at [1 + (a + ε)ea(t− 1)] (t ∈ [1, 2])
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and
u′(t) = e−at [−a− a(a + ε)ea(t− 1) + (a + ε)ea] (t ∈ (1, 2]).

Define
t0 = t0(ε) = 1 +

1
a
− 1

(a + ε)ea .

Choose ε3 ∈ (0, ε2] so that
ε3 <

a
1− a

(
e−a − 1 + a

)
provided a ∈ (0, 1), and let ε3 = ε2 if a ≥ 1.

Suppose ε ∈ (0, ε3). Then t0 = t0(ε) ∈ (1, 2) is the unique zero of u′ in (1, 2), and it is easy
to see that

max
t∈[1,2]

u(t) = u(t0) = e−at0 [1 + (a + ε)ea(t0 − 1)] =
a + ε

a
exp

[
ae−a

a + ε
− 1
]

. (2.6)

Step 4. In this step we show the following
CLAIM:

(i) For each k ∈N

max
t∈[k+1,k+2]

u(t) ≤
(

1 +
ε

a

)
max

t∈[k,k+1]
u(t),

and

(ii) for each N ∈N

max
t∈[N+1,N+2]

u(t) ≤
(

1 +
ε

a

)N
max
t∈[1,2]

u(t).

Let k ∈ N be given. If maxt∈[k+1,k+2] ≤ maxt∈[k,k+1] u(t) then the stated inequality obvi-
ously holds for k. If maxt∈[k+1,k+2] u(t) > maxt∈[k,k+1] u(t), then there exists a t1 ∈ (k + 1, k + 2]
such that u′(t1) ≥ 0 and u(t1) = maxt∈[k+1,k+2] u(t). Equation (2.3) at t = t1 and u′(t1) ≥ 0
imply the inequality −au(t1) + (a + ε)u(t1 − 1) ≥ 0. Hence

max
t∈[k+1,k+2]

u(t) = u(t1) ≤
a + ε

a
u(t1 − 1) ≤

(
1 +

ε

a

)
max

t∈[k,k+1]
u(t),

that is, the stated inequality is satisfied. This proves (i).
A repeated application of (i) gives (ii):

max
t∈[N+1,N+2]

u(t) ≤
(

1 +
ε

a

)
max

t∈[N,N+1]
u(t) ≤

(
1 +

ε

a

)2
max

t∈[N−1,N]
u(t)

≤ · · · ≤
(

1 +
ε

a

)N
max
t∈[1,2]

u(t).

Step 5. Choose ξ0 ∈ (exp(e−a − 1), 1). The function

(0, ∞) 3 ε 7→ a + ε

a
exp

[
ae−a

a + ε
− 1
]
∈ R

strictly increases and its limit is exp(e−a − 1) as ε → 0+. Therefore there exists an ε4 ∈ (0, ε3)

such that
a + ε

a
exp

[
ae−a

a + ε
− 1
]
< ξ0
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for all ε ∈ (0, ε4).
By the equality (2.6) in Step 3 and the choice of ε4, for all ε ∈ (0, ε4), the inequality

maxt∈[1,2] u(t) < ξ0 holds. Then by the CLAIM in Step 4

max
t∈[1,N+2]

u(t) <
(

1 +
ε

a

)N
ξ0 (2.7)

follows for all N ∈N.
For a given N ∈N, from (2.7) one gets

max
t∈[1,N+2]

u(t) < 1

provided ε ∈ (0, ε4) is so small that

ε < a
[
(1/ξ0)

1/N − 1
]

. (2.8)

Step 6. Let N ∈N \ {1, 2} be given. We look for a condition on ε ∈ (0, ε4) to guarantee

u′(t) > 0 for all t > N. (2.9)

Equation (2.3) gives that

au(t) < (a + ε)u(t− 1) for all t > N (2.10)

is sufficient to yield (2.9). By the representation (2.4) condition (2.10) is equivalent to

a
1 + a + λ0

eλ0t
[(

1 +
ε

a

)
e−λ0 − 1

]
> ar(t)− (a + ε)r(t− 1) (t > N),

that is (
1 +

ε

a

)
e−λ0 − 1 >

1 + a + λ0

a
e−λ0t [ar(t)− (a + ε)r(t− 1)] (t > N).

From ε < 1, 0 < λ0(ε) < 1 and (2.5) one obtains

1 + a + λ0

a
e−λ0t [ar(t)− (a + ε)r(t− 1)]

<
(a + 2)(2a + 1)

a
Ke−c(t−1)

<
(a + 2)(2a + 1)

a
Kece−cN (t > N).

Recall that, by the choice of ε1 in Step 1,

λ0(ε) <
2ε

2a + 1
.

Hence
e−λ0(ε) > 1− λ0(ε) > 1− 2ε

2a + 1
.

Thus, by using ε1 < 1/4 as well,(
1 +

ε

a

)
e−λ0(ε) − 1 >

(
1 +

ε

a

)(
1− 2ε

2a + 1

)
− 1

=
ε− 2ε2

a(2a + 1)
>

ε

2a(2a + 1)
.



Periodic solutions for the Mackey–Glass equation 9

Consequently, (2.9) holds if, in addition to ε ∈ (0, ε4),

ε > ξ1e−cN (2.11)

with ξ1 = 2(a + 2)(2a + 1)2Kec.

Step 7. In order to satisfy conditions (2.8) and (2.11) simultaneously consider a
[
(1/ξ0)1/N − 1

]
and ξ1e−cN . By L’Hospital’s rule

lim
N→∞

ξ1e−cN

a [(1/ξ0)1/N − 1]
= 0.

Therefore there exists an integer N0 > 2 such that

ξ1e−cN

a
[
(1/ξ0)1/(N+1) − 1

] < 1 for all integers N ≥ N0. (2.12)

Define ε∗ ∈ (0, ε4) so that

ε∗ < a
[
(1/ξ0)

1/N0 − 1
]

.

Let ε ∈ (0, ε∗) be fixed. By ε < ε∗ and limN→∞ a
[
(1/ξ0)1/N − 1

]
= 0 there exists a maximal

integer N(ε) ≥ N0 so that

ε < a
[
(1/ξ0)

1/N(ε) − 1
]

. (2.13)

The maximality of N(ε) ≥ N0 and inequality (2.12) imply

ξ1e−cN(ε) < a
[
(1/ξ0)

1/(N(ε)+1) − 1
]
≤ ε.

Therefore, we arrive at the inequality

ξ1e−cN(ε) < ε < a
[
(1/ξ0)

1/N(ε) − 1
]

, (2.14)

that is, for every ε ∈ (0, ε∗) inequalities (2.11) and (2.8) hold with N = N(ε).

Step 8. By Steps 5–7, for each ε ∈ (0, ε∗) there exists an integer N = N(ε) > 2 such that the
unique continuous function u = u(ε) : [0, ∞) → R satisfying u(t) = e−at for t ∈ [0, 1], and
equation (2.3) on (1, ∞) has the properties

1 = u(0) > u(t) > 0 for all t ∈ (0, N + 2),

u′(t) > 0 for all t > N,

u(t)→ ∞ as t→ ∞.

(2.15)

The last property is clear from λ0(ε) > 0, (2.4) and (2.5).
From (2.15) it follows that there exits a unique σ(ε) > N(ε) + 2 > 4 so that u(σ(ε)) = 1

and u′(σ(ε)) > 0. From u′(σ(ε)) > 0 it is clear that u(σ(ε)− 1) 6= a/(a + ε). The maximality
of N(ε) in inequality (2.13) implies that N(ε)→ ∞, σ(ε)→ ∞ as ε→ 0+.

Let ω(ε) = σ(ε) + 1 + (1/a) log u(σ(ε) + 1) > 5. Define the function w : [0, ω(ε)]→ R by

w(t) =

{
u(t) if t ∈ [0, σ(ε) + 1],

u(σ(ε) + 1)e−a(t−σ(ε)−1) if t ∈ [σ(ε) + 1, ω(ε)].
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Then w(t) > 1 for all t ∈ (σ, ω), and w(ω) = 1. Let p : R→ R be the ω(ε)-periodic extension
of w to R.

For the fixed a > 0 set ε0 = ε∗. Observe that c, K, and consequently ξ0, ξ1, depend only on
a. Then relation (2.12) shows that N0 is also a function of a . Therefore, ε0 depends only on a.

If b ∈ (a, a + ε0) then the above constructed p(ε) with ε = b− a ∈ (0, ε∗) is clearly an ω(ε)-
periodic solution of equation (E∞) satisfying (H). Setting ω(a, b) = ω(ε) and σ(a, b) = σ(ε),
we see that all statements of Theorem 1.2 are satisfied, and the proof is complete.

The typical shape of the periodic solutions obtained in this paper for (E∞) is shown in
Figure 2.1 with a = 9, b = 9.7.

Figure 2.1: The periodic solution of (E∞) for a = 9, b = 9.7
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