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Abstract. In this paper, we study the global structure of nodal solutions of{
u′′′′(x) = λh(x) f (u(x)), 0 < x < 1,
u(0) = u(1) = u′(0) = u′(1) = 0,

where λ > 0 is a parameter, h ∈ C([0, 1], (0, ∞)), f ∈ C(R) and s f (s) > 0 for |s| > 0. We
show the existence of S-shaped component of nodal solutions for the above problem.
The proof is based on the bifurcation technique.
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1 Introduction

The deformations of an elastic beam whose both ends clamped are described by the fourth
order problem

u′′′′(x) = λh(x) f (u(x)), x ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0,
(1.1)

where λ > 0 is a parameter, f ∈ C(R), f (0) = 0, s f (s) > 0 for all s 6= 0 and h ∈
C([0, 1], (0, ∞)).

Existence and multiplicity of solutions of (1.1) have been extensively studied by several
authors [1,3,6,10,11,14,18,21,22]. For examples, Agarwal and Chow [1] studied the existence
of solutions of (1.1) by contraction mapping and iterative methods. Cabada and Enguiça [3]
developed the method of lower and upper solutions to show the existence and multiplicity of
solutions. Pei and Chang [14] proved the existence of symmetric positive solutions by using
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a monotone iterative technique. Yao [21], Zhai, Song and Han [22] established the existence
and multiplicity of solutions via the fixed point theorem in cone.

Recently, Sim and Tanaka [19] were concerned with the existence of three positive solutions
for the p-Laplacian problem{

−(|y′|p−2y′)′ = λa(x) f (y), x ∈ (0, 1),

y(0) = y(1) = 0,

by employing a bifurcation technique, where the nonlinearity f is asymptotic linear near 0
and sublinear near ∞. They obtained an S-shaped unbounded continuum (which grows to
the right from the initial point, to the left at some point and to the right near λ = ∞). The
proof of their main result heavily depends on the Sturm comparison theorem [20]. For other
related results on the existence and multiplicity of solutions of fourth order problems, see Li
and Gao [12] and Li [13].

Motivated by the above work, we shall study the existence of S-shaped unbounded con-
tinua of nodal solutions of fourth order problems (1.1). However, it seems hard to follow this
argument in [19, Lemma 3.2] directly for fourth order problem since the Sturm comparison
theorem is not available for the fourth order problems, and the nodal solution of (1.1) is not
concave down in [0, 1].

Let Y = C[0, 1] with the norm

‖u‖∞ = max
t∈[0,1]

|u(t)|.

Let E = {u ∈ C3[0, 1] : u(0) = u(1) = u′(0) = u′(1) = 0} with the norm

‖u‖ = max{‖u‖∞, ‖u′‖∞, ‖u′′‖∞, ‖u′′′‖∞}.

Let S+
k denote the set of functions in E which have exactly k− 1 simple zeros in (0, 1) and are

positive near t = 0, and set S−k = −S+
k , and Sk = S+

k ∪ S−k . They are disjoint and open in E.
Finally, let Φ±k = R× S±k and Φk = R× Sk.

We shall make use of the following assumptions

(A1) h ∈ C[0, 1] with 0 < h∗ ≤ h(x) ≤ h∗ on [0, 1] for some h∗, h∗ ∈ (0, ∞);

(A2) f : R→ R is non-decreasing, and there exists s0 > 0 such that

f∗ := inf
0<s≤s0

f (s)
s

< sup
0<s≤s0

f (s)
s

=: f ∗

with
0 < f∗ < f ∗ < ∞;

(A3) there exist α > 0, f0 := lim
|s|→0

f (s)
s ∈ (0, ∞) and f1 > 0 such that

lim
|s|→0

f (s)− f0s
s|s|α = − f1;

(A4) f (0) = 0, s f (s) > 0 for s 6= 0, f∞ := lim
|s|→∞

f (s)
s = 0.



Fourth order equation with clamped beam boundary conditions 3

Remark 1.1. Typical modal of f which satisfies (A3) is the following

f̂ (s) =

{
2s− s2, s ≥ 0,

2s + s2, s < 0,

where f0 = 2, f1 = 1 and α = 1.

The rest of the paper is organized as follows. In Section 2, we state and prove several
preliminary results on the nodal solutions (λ, u) of (1.1) with ‖u‖∞ = s0 and state a method of
lower and upper solutions due to Cabada [3]. In Section 3, we state our main result and show
the existence of bifurcation from some eigenvalue for the corresponding problem according
to the standard argument and the rightward direction of bifurcation. Section 4 is devoted to
show the change of direction of bifurcation. Finally in Section 5 we show an a-priori bound of
solutions for (1.1) and complete the proof of Theorem 3.2.

2 Preliminaries

The following result is a special case of Leighton and Nehari [11, Theorem 5.2]

Lemma 2.1. Let p, p1 : [a, b]→ (0, ∞) be two continuous functions with

p(x) ≤ p1(x), x ∈ [a, b]. (2.1)

Let

y′′′′ − p(x)y = 0, x ∈ [a, b], (2.2)

y′′′′1 − p1(x)y1 = 0, x ∈ [a, b]. (2.3)

If
y(a) = y1(a) = y(b) = y1(b) = 0

and the number of zeros of y(x) and y1(x) in [a, b] is denoted by n and n′ (n ≥ 4), respectively, then

n′ ≥ n− 1.

Lemma 2.2. Let k ≥ 4 and ν ∈ {+,−}. Let (A2) hold. If

h∗ f∗ > 0, (2.4)

then there exists Λ > 0, such that for any solution (λ, u) ∈ R+ × Sν
k of (1.1) with ‖u‖∞ = s0, one

has
λ ≤ Λ :=

γk+2

h∗ f∗
, (2.5)

where γk+2 is the (k + 2)-th eigenvalue of the linear problem

v′′′′ = γv(x), x ∈ (0, 1),

v(0) = v(1) = v′(0) = v′(1) = 0,
(2.6)

which is simple, and its corresponding eigenfunction φk+2 has k + 1 zeros in (0, 1).
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Proof. Assume on the contrary that λ > Λ. Combining this with Λ := γk+2
h∗ f∗ and using

u′′′′(x) = λh(x)
f (u(x))

u(x)
u(x), x ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0

and the fact

λh(x)
f (u(x))

u(x)
> γk+2, x ∈ [0, 1],

it deduces that u ∈ Sν
j+1 for some j ≥ k + 1. However, this contradicts the fact u ∈ Sν

k .

Lemma 2.3. Let

M := max{λh(x) f (s) : x ∈ [0, 1], s ∈ [0, s0], 0 ≤ λ ≤ Λ}. (2.7)

Then for any solution (η, u) ∈ R+ × S+
k of (1.1) with ‖u‖∞ = s0, one has

‖u′‖∞ ≤ M. (2.8)

Proof. It follows from the equation in (1.1) and (2.7) that

‖u′′′′‖∞ ≤ M,

which together with the boundary value conditions in (1.1) imply the desired result.

Let
0 = t0 < t1 < · · · < tk−1 < tk = 1

be the zeros on u in [0, 1]. Let xj be such that

|u(xj)| = max{|u(t)| : t ∈ [tj, tj+1]}, j ∈ {0, 1, · · · , k− 1}.

Lemma 2.4. Let
|u(xj0)| = ‖u‖∞ = s0.

Then
tj0+1 − tj0 ≥

2s0

M
.

Proof. We only deal with the case that u(xj0) = ‖u‖∞ = s0. The other can be treated by the
similar method.

Consider the lines

y− u(xj0) = M(t− xj0), y− u(xj0) = −M(t− xj0).

They intersect on the horizontal axis at(
xj0 −

u(xj0)

M
, 0
)

,
(

xj0 +
u(xj0)

M
, 0
)

,

respectively. Thus, it follows from this and (2.8) that(
xj0 −

u(xj0)

M
, xj0 +

u(xj0)

M

)
⊂ (tj0 , tj0+1).
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Lemma 2.5. Let (λ, u) be a Sν
k -solution with ‖u‖∞ = s0. Let

|u(x0)| = max
tj0≤x≤tj0+1

|u(x)|.

Then [
x0 −

s0

M
, x0 +

s0

M

]
⊂ (tj0 , tj0+1),

min
{
|u(t)| : t ∈

[
x0 −

s0

2M
, x0 +

s0

2M

]}
≥ 1

2
‖u‖∞. (2.9)

Proof. We only deal with the case u(x0) > 0. The other case can be treated by the similar way.
Using the fact

u(t) ≥ u(x0) + M(t− x0), t ∈
[

x0 −
s0

2M
, x0

]
,

u(t) ≥ u(x0)−M(t− x0), t ∈
[

x0, x0 +
s0

2M

]
,

and the similar argument in the proof of Lemma 2.4, we may get the desired result.

Definition 2.6. We say that α ∈ C4[a, b] is a lower solution of

y′′′′ = g(x, y), x ∈ (a, b),

y(a) = y(b) = y′(a) = y′(b) = 0,
(2.10)

if
α′′′′(x) ≤ g(x, α(x)),

α(a) ≤ 0, α(b) ≤ 0, α′(a) ≤ 0, α′(b) ≥ 0.
(2.11)

We say that β ∈ C4[a, b] is an upper solution of (2.10) if β satisfies the reversed inequalities of
the definition of lower solution.

Let us consider the following inequality that will appear later:

g(x, α(x)) ≤ g(x, u) ≤ g(x, β(x)), α(x) ≤ u ≤ β(x). (2.12)

Lemma 2.7 (Cabada [3, Theorem 4.2]). Suppose that g : [a, b]×R → R is a continuous function
and α, β are respectively a lower and an upper solution of (2.10). If α ≤ β and (2.12) holds, then there
exists a solution u(x) of (2.10) such that

α(x) ≤ u(x) ≤ β(x), x ∈ [a, b].

3 Rightward bifurcation

Let µk be the k-th eigenvalue of

y′′′′ = µh(x)y, x ∈ (0, 1),

y(0) = y(1) = y′(0) = y′(1) = 0.

Then its corresponding eigenfunction ϕk has exactly k − 1 simple zeros in (0, 1), see Elias
[8, Corollary 2 and Theorems 1 and 3].

To state our main result, we need to make the following assumption which will guarantee
that any Sν

k -solution u with ‖u‖∞ = s0 implies λ < µk
f0

, see the proof of Lemma 4.2 below.
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(A5) Let k ≥ 4 and
µk

f0
h∗ min
|s|∈[ 1

2 s0,s0]

f (s)
s

> χ3,

where χk is the k-th eigenvalue of

y′′′′ = χy, x ∈
(

0,
s0

M

)
,

y(0) = y
( s0

M

)
= y′(0) = y′

( s0

M

)
= 0.

(3.1)

Remark 3.1. As we mentioned above, to show the existence of three nodal solutions, we
shall employ a bifurcation technique. Indeed, under (A3) we have an unbounded connected
component which is bifurcating from µk/ f0. Conditions (A1), (A3) and (A4) push the direction
of bifurcation to the right near u = 0. Since Conditions (A5) and (A4) mean that f (s)/s is
large enough in [s0/2, s0] and sublinear near ∞, respectively, it is natural to expect that the
bifurcation curve (λ, u) grows to the right from the initial point (µk/ f0, 0), to the left at some
point and to the right near λ = ∞.

Arguing the shape of bifurcation we have the following

Theorem 3.2. Assume that (A1)–(A5) hold. Let ν ∈ {+,−}. Then there exist λ∗ ∈ (0, µk/ f0) and
λ∗ > µk/ f0, such that

(i) (1.1) has at least one Sν
k -solution if λ = λ∗;

(ii) (1.1) has at least two Sν
k -solutions if λ∗ < λ ≤ µk/ f0;

(iii) (1.1) has at least three Sν
k -solutions if µk/ f0 < λ < λ∗;

(iv) (1.1) has at least two Sν
k -solutions if λ = λ∗;

(v) (1.1) has at least one Sν
k -solution if λ > λ∗.

In the rest of this section, we show a global bifurcation phenomena from the trivial branch
with the rightward direction of bifurcation. Rewriting (1.1) by

u′′′′(x) = λh(x) f0u(x) + λh(x)[ f (u(x))− f0u(x)], x ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0,
(3.2)

and using Dancer [7, Theorem 2] and following the similar arguments in the proof of [5,
Theorem 3.2], we have

Lemma 3.3. Assume that (A1)–(A4) hold. Then for each ν ∈ {+,−}, there exists an unbounded
continuum Cν

k which is bifurcating from (µk/ f0, 0) for (1.1). Moreover, if (λ, u) ∈ Cν
k , then u is a

Sν
k -solution for (1.1).

Lemma 3.4. Assume that (A1)–(A4) hold. Let u be a Sν
k -solution of (1.1). Then there exists a constant

C > 0 independent of u such that
‖u′‖∞ ≤ λC‖u‖∞.
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Proof.

u(x) = λ
∫ 1

0
G(x, s)h(s) f (u(s))ds, x ∈ [0, 1].

The Green function G can be explicitly given by

G(x, s) =
1
6

{
x2(1− s)2[(s− x) + 2(1− x)s], 0 ≤ x ≤ s ≤ 1,

s2(1− x)2[(x− s) + 2(1− s)x], 0 ≤ s ≤ x ≤ 1,
(3.3)

see Cabada and Enguiça [3]. Thus

u′(x) = λ
∫ 1

0
Gx(x, s)h(s) f (u(s))ds, x ∈ [0, 1], (3.4)

Noticing that (A3) and (A4) imply that

| f (s)| ≤ f �|s|, s ∈ R (3.5)

for some f � > 0, it follows from (3.3), (3.4) and the fact

G(x, s) ≤ 1/4, (x, s) ∈ [0, 1]× [0, 1]; |Gx(x, t)| ≤ 1, (x, t) ∈ [0, 1]× [0, 1]

that

|u′(x)| ≤ λ f �
∫ 1

0
h(t)dt‖u‖∞, x ∈ [0, 1].

By the same method used in the proof of [19, Lemma 3.3], with obvious changes, we may
get the following

Lemma 3.5. Assume that (A1)–(A4) hold. Let (λn, un) be a sequence of Sν
k -solutions to (1.1) which

satisfies ‖un‖∞ → 0 and λn → µk/ f0. Let ϕk ∈ Sν
k be the eigenfunction corresponding to µk which

satisfies ‖ϕk‖∞ = 1. Then there exists a subsequence of {un}, again denoted by {un}, such that
un/‖un‖∞ converges uniformly to ϕk on [0, 1].

Lemma 3.6. Assume that (A1)–(A4) hold. Then there exists δ > 0 such that (λ, u) ∈ Cν
k and

|λ− µk/ f0|+ ‖u‖∞ ≤ δ imply λ > µk/ f0.

Proof. We only deal with the case that ν = +. The other case can be treated by the similar
method.

Assume to the contrary that there exists a sequence {(βn, un)} such that (βn, un) ∈ C+
k ,

βn → µk/ f0, ‖un‖∞ → 0 and βn ≤ µk/ f0. By Lemma 3.5, there exists a subsequence of {un},
again denoted by {un}, such that un/‖un‖∞ converges uniformly to ϕk on [0, 1]. Multiplying
the equation of (1.1) with (λ, u) = (βn, un) by un and integrating it over [0, 1], we obtain

βn

∫ 1

0
h(x) f (un(x))un(x)dx =

∫ 1

0
|u′′n(x)|2dx,

and accordingly,

βn

∫ 1

0
h(x)

f (un(x))
‖un‖∞

un(x)
‖un‖∞

dx =
∫ 1

0

|u′′n(x)|2
‖un‖2

∞
dx. (3.6)

From Lemma 3.5, after taking a subsequence and relabeling if necessary, un/‖un‖∞ con-
verges to ϕk in C[0, 1]. ∫ 1

0
|ϕ′′k (x)|2dx = µk

∫ 1

0
h(x)|ϕk(x)|2dx,
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it follows that

βn

∫ 1

0
h(x)

f (un(x))
‖un‖∞

un(x)
‖un‖∞

dx = µk

∫ 1

0
h(x)
|un(x)|2
‖un‖2

∞
dx− ζ(n),

βn

∫ 1

0
h(x) f (un(x))un(x)dx = µk

∫ 1

0
h(x)|un(x)|2dx− ζ(n)‖un‖2

∞

with a function ζ : N→ R satisfying

lim
n→∞

ζ(n) = 0. (3.7)

That is ∫ 1

0
h(x)

f (un(x))− f0un(x)
|un(x)|αun(x)

∣∣∣∣ un(x)
‖un‖∞

∣∣∣∣2+α

dx

=
βn

‖un‖α
∞

[
µk − f0

βn

∫ 1

0
h(x)

∣∣∣∣ un(x)
‖un‖∞

∣∣∣∣2 dx− ζ(n)

]
.

(3.8)

Lebesgue’s dominated convergence theorem and condition (A3) imply that

∫ 1

0
h(x)

f (un(x))− f0un

|un(x)|αun(x)

∣∣∣∣ un(x)
‖un‖∞

∣∣∣∣2+α

dx → − f1

∫ 1

0
h(x)|ϕk|2+αdx < 0

and ∫ 1

0
h(x)

∣∣∣∣ un(x)
‖un‖∞

∣∣∣∣2 dx →
∫ 1

0
h(x)|ϕk|2dx > 0.

This contradicts with βn ≤ µk/ f0.

4 Direction turn of bifurcation

In this section, we will show that

Cν
k ∩ {(λ, w) : (λ, w) ∈ (µk/ f0, ∞)× E with ‖w‖∞ = s0} = ∅.

In other word, there exists a “barrier strip” for Cν
k . From Lemmas 2.4–2.5, we obtain

Lemma 4.1. Assume that (A1)–(A4) hold. Let u be a Sν
k -solution of (1.1) with ‖u‖∞ = s0. Then there

exists Iu := (αu, βu), such that

u(αu) = u(βu) = 0,

βu − αu ≥
2s0

M
,

|u| > 0 in Iu, ‖u‖∞ = u(t0) for some t0 ∈ (αu, βu).

(4.1)

1
2
‖u‖∞ ≤ |u(x)| ≤ ‖u‖∞, x ∈

[
x0 −

s0

2M
, x0 +

s0

2M

]
=: [a, b]. (4.2)

Lemma 4.2. Assume that (A1)–(A5) hold. Let (λ, u) ∈ Cν
k be such that ‖u‖∞ = s0. Then λ < µk/ f0.

Proof. Let u be a Sν
k -solution of (1.1) with ‖u‖∞ = s0. By Lemma 4.1,

1
2
‖u‖∞ ≤ |u(x)| ≤ ‖u‖∞, x ∈ [a, b] = Ju. (4.3)
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Note that u is a solution of

u′′′′(x) = λh(x)
f (u(x))

u(x)
u(x), x ∈ Ju.

Assume on the contrary that
λ ≥ µk/ f0. (4.4)

Then for x ∈ Ju, we have from (A5) that

λh(x)
f (u(x))

u(x)
≥ µk

f0
h∗ min

s∈[s0/2,s0]

f (s)
s

> χ3, x ∈ Ju. (4.5)

Take
β(t) := u(t), t ∈ Ju;

α(t) := εψ1(t), t ∈ Ju,

where ψk is the eigenfunction corresponding to the k-th eigenvalue rk of the problem

ψ′′′′ = rψ(t), t ∈ (a, b),

ψ(a) = ψ(b) = ψ′(a) = ψ′(b) = 0,
(4.6)

and ψ1(t) > 0 in (a, b). Since the equations in (3.1) and (4.6) are autonomous,

r1 = χ1. (4.7)

We claim that
β′(a) > 0, β′(b) < 0.

In fact, let us denote

γ̃(x) := λh(x)
f (u(x))

u(x)
> 0 for x ∈ (0, 1),

and
γ̃(0) := λh(0) f0, γ̃(1) := λh(1) f0.

Then γ̃ ∈ C0[0, 1] since f0 = lims→0 f (s)/s exists by (A3). Now, the claim can be easily
deduced from Bari and Rynne [2, Lemma 2.1] and Elias [8] and the facts

u′′′′ = λh(x)
f (u(x))

u(x)
u(x), x ∈ (0, 1).

Obviously, β is an upper solution of

z′′′′(x) = λh(x)
f (u(x))

u(x)
z(x), a < x < b,

z(a) = z(b) = z′(a) = z′(b) = 0.
(4.8)

From (4.5) and (4.7), it is follows that

(εψ1(x))′′′′ = r1(εψ1(x)) = χ1(εψ1(x)) < χ3(εψ1(x)) < λh(x)
f (u(x))

u(x)
(εψ1(x)), x ∈ (a, b).

So, α is a lower solution of (4.8).
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We may take ε > 0 is so small that

α(x) ≤ β(x), x ∈ (a, b).

Therefore, it follows from Cabada [3, Theorem 4.2] that there exists a solution y(x) of (4.8)
such that

α(x) ≤ y(x) ≤ β(x). (4.9)

On the other hand, ‖y‖∞ ≤ ‖u‖∞ = s0 implies that the weight function in (4.8) satisfies

λh(x)
f (u(x))

u(x)
> χ3, x ∈ (a, b).

Combining this with the facts ψ3(x− a) has exactly two simple zeros in (a, b) and

y′′′′ = λh(x)
f (u(x))

u(x)
y(x), x ∈ (a, b),

and using Lemma 2.1, it deduces that y has a zero in (a, b). However, this contradicts (4.9).

5 Second turn and proof of Theorem 3.2

In this section, we shall give a-priori estimate and finalize the proof of Theorem 3.2.

Lemma 5.1. Assume that (A1)–(A4) hold. Let (λ, u) be a Sν
k -solution of (1.1). Then there exists

λ∗ > 0 such that λ ≥ λ∗.

Proof. Lemma 3.4 implies that (3.2) holds for some constant C > 0, which is independent of
u. Let ‖u‖∞ = u(x0). From (3.2) it follows that

‖u‖∞ = |u(x0)| ≤
∫ x0

0
|u′(x)|dx ≤ λC‖u‖∞,

that is, λ ≥ C−1.

Lemma 5.2. Assume that (A1)–(A4) hold. Let J = [a1, b1] be a compact interval in (0, ∞). Then for
given ν ∈ {+,−}, there exists MJ > 0 such that for all λ ∈ J, all possible Sν

k -solutions u of (1.1)
satisfy

‖u‖∞ ≤ MJ . (5.1)

Proof. By (A4), we have that for any σ > 0, there exists Cσ > 0, such that

| f (s)| ≤ Cσ + σ|s|. (5.2)

This together with (3.3) imply

|u(x)| = λ

∣∣∣∣∫ 1

0
G(x, s)h(s) f (u(s))ds

∣∣∣∣
≤ λ

∣∣∣∣∫ 1

0
G(x, s)h(s)(Cσ + σ|u(s)|)ds

∣∣∣∣
≤ b1

∣∣∣∣∫ 1

0
G(x, s)h∗(Cσ + σ|u(s)|)ds

∣∣∣∣
≤ C1 + σC2‖u‖∞,

(5.3)
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where
C1 := b1h∗Cσ max{G(x, s) : (x, s) ∈ [0, 1]× [0, 1]},
C2 := b1h∗max{G(x, s) : (x, s) ∈ [0, 1]× [0, 1]}.

Take σ so small that σC2 < 1. Then it follows from (5.3) that

‖u‖∞ ≤
C1

1− σC2
=: MJ .

Lemma 5.3. Assume that (A1)–(A4) hold. Let Cν
k be as in Lemma 3.3. Then there exists {(λn, un)}

such that (λn, un) ∈ Cν
k , λn → ∞ as n→ ∞ and ‖un‖∞ → ∞.

Proof. We only deal with the case ν = +. The case ν = − can be treated by the similar method.
Since C+

k is unbounded, there exists {(λn, un)} solutions of (1.1) such that {(λn, un)} ⊂ C+
k

and |λn|+ ‖un‖∞ → ∞. Lemma 5.1 implies that λn > 0.
Assume on the contrary that there exists sequence {(λn, un)} with

‖un‖∞ ≤ M1, ∀n ∈N.

Then λn → ∞, and

u′′′′n = λnh(x)
f (un)

un
un. (5.4)

Since

h∗ min
0<s≤M1

f (s)
s
≥ δ0 > 0, (5.5)

Since u′′′′ = 0 is disconjugate in [0, 1] and

λnh(x)
f (un)

un
→ ∞ uniformly for x ∈ [0, 1],

it follows from the proof of [8, Lemma 4] (see also the remarks in the final paragraph on
[8, p. 43], or the proof of Rynne [17, Lemma 3.7]) that un has more than k zeros in any given
subinterval I∗ ⊆ [0, 1] if n is large enough. However, this contradicts the fact u ∈ S+

k .

Proof of Theorem 3.2. Let Cν
k be as in Lemma 3.3. We only deal with C+

k since the case C−k can
be treated similarly.

By Lemma 3.6, C+
k is bifurcating from (µk/ f0, 0) and goes rightward. Let (λn, un) be as in

Lemma 5.3. Then there exists (λ0, u0) ∈ C+
k such that ‖u0‖∞ = s0. Lemma 4.2 implies that

λ0 < µk/ f0.
By Lemmas 3.6, 4.2 and 5.2, it follows that for ε > 0 small enough, C+

k passes through
some points (µk/ f0 − ε, v1) and (µk/ f0 + ε, v2) with

‖v1‖∞ < s0 < ‖v2‖∞.

By Lemmas 3.6, 4.2 and 5.2 again, there exist λ and λ̄ which satisfy 0 < λ < µk/ f0 < λ̄ and
both (i) and (ii):

(i) if λ ∈ (µk/ f0, λ̄], then there exist u and v such that (λ, u), (λ, v) ∈ C+
k and

‖u‖∞ < ‖v‖∞ < s0;

(ii) if λ < µk/ f0 and λ ∈ [λ, µk/ f0], then there exist u and v such that (λ, u), (λ, v) ∈ C+
k

and ‖u‖∞ < s0 < ‖v‖∞.
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Define
λ∗ = sup{λ̄ : λ̄ satisfies (i)}, λ∗ = inf{λ : λ satisfies (ii)}.

Then by the standard argument, (1.1) has a S+
k -solution at λ = λ∗ and λ = λ∗, respectively.

Since C+
k passes through (µk/ f0 + ε, v2) and (λn, un), Lemmas 4.2 and 5.2 show that, for each

λ > µk/ f0, there exists w such that (λ, w) ∈ C+
k and ‖w‖∞ > s0. This completes the proof.

Remark 5.4. Let ρ>1 be a positive parameter. Let g1∈C([4, ∞), (0, ∞)) and g2∈C([1, 2], (0, ∞))

such that

g1(4) = 4ρ + 2, lim
|s|→∞

g1(s)
s

= 0, g2(1) = 1, g2(2) = 2 + 2ρ.

Let

f̂ (s) =


g1(s), s ∈ [4, ∞),

ρs + 2, s ∈ [2, 4),

g2(s), s ∈ (1, 2),

2s− s2, s ∈ [0, 1],

and

f̃ (s) =

{
f̂ (s), s ∈ [0, ∞),

− f̂ (−s), s ∈ [−∞, 0).

Then f̃ satisfies (A4) and (A3) with f̃0 = 2, f̃1 = 1, α = 1. If we take s0 = 4 and h(x) ≡ 1 in
[0, 1], then (A5) can be rewritten as

µk

2

(
ρ +

1
2

)
> χ3.

In order to compute χ3, we may use (2.5) and (2.7) to find Λ and M, and then use (3.1) to find
χ3. In fact,

χ3 = µ3

(
M
s0

)4

, µ3
.
= (10.9956)4 .

= 14617.6.

Therefore, Theorem 3.2 can be used to deal with the case f = f̃ and h ≡ 1 if ρ large enough.

Remark 5.5. We may study the oscillating global continua of positive solutions of (1.1) under
the conditions

(A6) there exist two positive constant γ+, γ− and a sequence {ξk} ⊂ (0, ∞) with

ξ2j−1 < ξ2j < ξ2j < ξ2j+1, ξ2j−1 <
1

24
ξ2j, j = 1, 2, . . . ; (5.6)

such that

f (s)
s

<
f0

(λ1 + γ+ f0)
∫ 1

0 max{G(t, s) : t ∈ [0, 1]}h(s)ds
, s ∈ (0, ξ2j−1], (5.7)

f (s)
s

>
f0

(λ1 − γ− f0)η2
0

∫ 3/4
1/4 min{G(t, s) : t ∈ [1/4, 3/4]}h(s)ds

, s ∈
[

1
24

ξ2j, ξ2j

]
. (5.8)

Together f0 ∈ (0, ∞) with the facts that

G(t, s) ≥ 1
24

G(j(s), s), (t, s) ∈
[

1
4

,
3
4

]
,
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where

j(s) =

{
1

3−2s , 0 ≤ s ≤ 1
2 ,

2s
1+2s , 1

2 ≤ s ≤ 1.

By the similar argument in Rynne [16], we may get that for all λ ∈
(λ1

f0
− γ−, λ1

f0
+ γ+

)
, (1.1)

has infinitely many positive solutions. Obviously, (5.8) is similar to (A5).
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