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Abstract. This paper considers two-point higher order impulsive boundary value prob-
lems, with a strongly nonlinear fully differential equation with an increasing homeo-
morphism. It is stressed that the impulsive effects are defined by very general functions,
that can depend on the unknown function and its derivatives, till order n− 1.

The arguments are based on the lower and upper solutions method, together with
Leray–Schauder fixed point theorem. An application, to estimate the bending of a one-
sided clamped beam under some impulsive forces, is given in the last section.
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1 Introduction

In this article we study the two point boundary value problem composed by the one-dimensional
φ-Laplacian equation

(φ(u(n−1)(t)))′ + q(t) f (t, u(t), . . . , u(n−1)(t)) = 0, t ∈ [a, b]\{t1, . . . , tm}, (1.1)

where φ is an increasing homeomorphism such that φ(0) = 0 and φ(R) = R, q ∈ L∞[a, b] is
a positive function and f : [a, b]×Rn → R is a L1-Carathéodory function, together with the
boundary conditions

u(j)(a) = Aj, u(n−1)(b) = B, j = 0, 1, . . . , n− 2, Aj, B ∈ R, (1.2)
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and the impulsive conditions

∆u(i)(tk) = Ii,k(u(tk), u′(tk), . . . , u(n−1)(tk)), i = 0, 1, . . . , n− 2,

∆φ(u(n−1)(tk)) = In−1,k(u(tk), u′(tk), , . . . , u(n−1)(tk)),
(1.3)

being ∆u(i)(tk) = u(i)(t+k )− u(i)(t−k ), i = 0, 1, . . . , n− 1, k = 1, 2, . . . , m, Ii,k ∈ C(Rn, R), and tk
fixed points such that a = t0 < t1 < t2 < · · · < tm < tm+1 = b.

Impulsive boundary value problems have been studied by many authors where it is high-
lighted the huge possibilities of applications to phenomena where a sudden variation hap-
pens. Indeed, these types of jumps occur in different areas such as population dynamics,
engineering, control, and optimization theory, medicine, ecology, biology and biotechnology,
economics, pharmacokinetics, and many other fields.

From a large number of items existent in the literature on classical impulsive differential
problems, we mention, for instance, [1, 2, 17, 19–21] and the references therein. The most
applied arguments are based on critical point theory and variational methods [18, 22, 26],
fixed point theory on cones [6, 29], bifurcation results [13, 15], and upper and lower solutions
techniques suggested in [4, 5, 12, 14].

In the last years, p-Laplacian and φ-Laplacian operators have been applied to semi-linear,
quasi-linear, and strongly nonlinear differential equations, in singular and regular cases, in-
creasing the range of theoretical and practical applications, as it can be seen, for example, in
[3, 11, 25, 27, 28, 30] and in their references. However, impulsive problems with this type of
nonlinear differential equations are scarce.

In [16], the third order differential equation

(φ(u′′(t)))′ + q(t) f (t, u(t), u′(t), u′′(t)) = 0, t ∈ [a, b]\{t1, . . . , tn},

is studied, where φ is an increasing homeomorphism, q ∈ C([a, b]) with q > 0 , f ∈ C([a, b]×
R3, R), the two-point boundary conditions

u(a) = A, u′(a) = B, u′′(b) = C, A, B, C ∈ R,

and the impulsive effects are given by

∆u(tk) = I1k(tk, u(tk), u′(tk)),

∆u′(tk) = I2k(tk, u(tk), u′(tk), u′′(tk)),

∆φ(u′′(tk)) = I3k(tk, u(tk), u′(tk), u′′(tk)),

where k = 1, 2, . . . , n, I1k ∈ C([a, b]×R2, R), and Iik ∈ C([a, b]×R3, R), i = 2, 3.
In this work, we found a method that allows generalizing the above results to higher-order

boundary value problems with impulsive functions, depending not only on the unknown
function but also on its derivatives till order n− 1. To best of our knowledge, it is the first time,
where such nonlinear higher-order problems are considered with this type of generalized
impulsive functions.

This paper is organized in the following way: Section 2 contains the functional framework,
some definitions and an explicit form for the solution of the associated homogeneous problem.
Section 3 presents the main existence and localization theorem obtained via lower and upper
solutions technique and a fixed point theorem. The last section gives a technique to estimate
the bending of a one-sided clamped beam under some impulsive forces and how it can be
obtained some qualitative data about its variation.
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2 Definitions and preliminary results

Let

PCn−1[a, b] =

{
u : u ∈ Cn−1([a, b]; R) for t 6= tk, u(i)(tk) = u(i)(t−k ), u(i)(t+k )

exists for k = 1, 2, . . . , m, and i = 0, 1, . . . , n− 1

}
.

Denote X := PCn−1[a, b]. Then X is a Banach space with norm

‖u‖X = max{‖u(i)‖∞, i = 0, 1, . . . , n− 1},

where
‖w‖∞ = sup

a≤t≤b
|w(t)|.

Defining J := [a, b] and J′ = J\{t1, . . . , tm}, for a solution u of problem (1.1)–(1.3) one should
consider u(t) ∈ E, where

E := PCn−1(J) ∩ Cn(J′).

Next lemma provides a uniqueness result for a linear problem related to (1.1)–(1.3).

Lemma 2.1. For v ∈ PC[a, b], the problem composed by the differential equation

(φ(u(n−1)(t)))′ + v(t) = 0 (2.1)

together with conditions (1.2), (1.3), has a unique solution given by

u(t) =
n−2

∑
i=0

([
Ai + ∑

k : tk<t
Ii,k

(
tk, u(tk), . . . , u(n−1)(tk)

)] (t− a)n−2−i

(n− 2− i)!

)

+
∫ t

a

(t− s)n−2

(n− 2)!
φ−1

(
φ(B) +

∫ b

s
v(r)dr− ∑

k : tk>s
In−1,k

(
tk, u(tk), . . . , u(n−1)(tk)

))
ds.

Proof. Integrating the differential equation (2.1) for t ∈ (tm, b] we get, by (1.2),

φ
(

u(n−1)(t)
)
= φ(B) +

∫ b

tm

v(s)ds. (2.2)

By integration of (2.1) for t ∈ (tm−1, tm] one has by (2.2)

φ
(

u(n−1)(t)
)
=
∫ tm

t
v(s)ds− In−1,m

(
tm, u(tm), . . . , u(n−1)(tm)

)
+ φ

(
u(n−1) (t+m))

= φ (B)− In−1,m

(
tm, u(tm), . . . , u(n−1)(tm)

)
+
∫ b

t
v(s)ds

and so,

u(n−1)(t) = φ−1
(

φ (B)− In−1,m

(
tm, u(tm), . . . , u(n−1)(tm)

)
+
∫ b

t
v(s)ds

)
.

Therefore, for t ∈ [a, b], we have

u(n−1)(t) = φ−1

(
φ(B) +

∫ b

t
v(s)ds− ∑

k : tk>t
In−1,k

(
tk, u(tk), . . . , u(n−1)(tk)

))
. (2.3)
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Integrating (2.3), for t ∈ [a, t1],

u(n−2)(t) = An−2 +
∫ t

a

(
φ−1

(
φ(B) +

∫ b

s
v(r)dr− ∑

k : tk>s
In−1,k

(
tk, u(tk), . . . , u(n−1)(tk)

)))
ds.

By integration of (2.3) on (t1, t2] and (1.3)

u(n−2)(t) = In−2,1

(
t1, u(t1), . . . , u(n−1)(t1)

)
+
∫ t

t1

(
φ−1

(
φ(B) +

∫ b

s
v(r)dr− ∑

k : tk>s
In−1,k

(
tk, u(tk), . . . , u(n−1)(tk)

)))
ds.

Therefore, for t ∈ [a, b],

u(n−2)(t) = ∑
k : tk<t

(
In−2,k

(
tk, u(tk), . . . , u(n−1)(tk)

))
+ An−2

+
∫ t

a

(
φ−1

(
φ(B) +

∫ b

s
v(r)dr− ∑

k : tk>s
In−1,k

(
tk, u(tk), . . . , u(n−1)(tk)

)))
ds.

Following the same method, by iterate integrations and (1.3), we obtain for t ∈ [a, b]

u(t) =
n−2

∑
i=0

([
Ai + ∑

k : tk<t
Ii,k

(
tk, u(tk), . . . , u(n−1)(tk)

)] (t− a)n−2−i

(n− 2− i)!

)

+
∫ t

a

(t− s)n−2

(n− 2)!
φ−1

(
φ(B) +

∫ b

s
v(s)ds− ∑

k : tk>s
In−1,k

(
tk, u(tk), . . . , u(n−1)(tk)

))
ds.

Lower and upper solutions will play a key role in our method, and they are defined as it
follows:

Definition 2.2. A function α(t) ∈ E with φ(α(n−1)(t)) ∈ PC1[a, b] is a lower solution of problem
(1.1), (1.2), (1.3) if

(φ
(

α(n−1)(t))
)′

+ q(t) f
(

t, α(t), α′(t), . . . , α(n−1)(t)
)
≥ 0

α(j) (a) ≤ Aj, j = 0, 1, . . . , n− 2,

α(n−1) (b) ≤ B

∆α(i)(tk) ≤ Ii,k(α(tk), . . . , α(n−1)(tk)), i = 0, 1, . . . , n− 3,

∆α(n−2)(tk) > In−2,k(α(tk), . . . , α(n−1)(tk))

∆φ(α(n−1)(tk)) > In−1,k(α(tk), . . . , α(n−1)(tk)),

(2.4)

for k = 1, 2, . . . , m.
A function β(t) ∈ E such that φ(β(n−1)(t)) ∈ PC1[a, b] is an upper solution of (1.1)–(1.3) if

it satisfies the opposite inequalities.

To control the derivative u(n−1)(t) we will apply the Nagumo condition:
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Definition 2.3. An L1-Carathéodory function f : [a, b]×Rn → R satisfies a Nagumo condition
related to a pair of functions γ, Γ ∈ E, with γ(i)(t) ≤ Γ(i)(t), for i = 0, 1, . . . , n− 2, and t ∈ [a, b],
if there exists a function ψ : C([0,+∞), ]0,+∞)) such that

| f (t, x0, x1, . . . , xn−1)| ≤ ψ(|xn−1|), for all (t, x0, x1, . . . , xn−1) ∈ S (2.5)

with

S := {(t, x0, x1, . . . , xn−1) ∈ [a, b]×Rn : γ(i)(t) ≤ xi ≤ Γ(i)(t), i = 0, 1, . . . , n− 2},

and ∫ +∞

φ(µ)

ds
ψ(φ−1(s))

>
∫ b

a
q(s)ds, (2.6)

where

µ := max
k=0,1,2,...,m

{∣∣∣∣∣Γ(n−2)(tk+1)− γ(n−2)(tk)

tk+1 − tk

∣∣∣∣∣ ,

∣∣∣∣∣γ(n−2)(tk+1)− Γ(n−2)(tk)

tk+1 − tk

∣∣∣∣∣
}

.

From the Nagumo condition we deduce an a priori estimation for u(n−1)(t):

Lemma 2.4. If the L1-Carathéodory function f : [a, b] ×Rn → R satisfies a Nagumo condition in
the set S, referred to the functions γ and Γ, then there is N ≥ µ > 0 such that every solution u of the
differential equation (1.1) verifies ‖u(n−1)‖∞ ≤ N.

Proof. Let u(t) be a solution of (1.1) such that

γ(i)(t) ≤ u(i)(t) ≤ Γ(i)(t), for i = 0, 1, . . . , n− 2 and t ∈ [a, b].

By the Mean Value Theorem, there exists η0 ∈ (tk, tk+1) with

u(n−1)(η0) =
u(n−2)(tk+1)− u(n−2)(tk)

tk+1 − tk
, with k = 0, 1, 2, . . . , m.

Moreover,

−N ≤ −µ ≤ γ(n−2)(tk+1)− Γ(n−2)(tk)

tk+1 − tk
≤ u(n−1)(η0) (2.7)

≤ Γ(n−2)(tk+1)− γ(n−2)(tk)

tk+1 − tk
≤ µ ≤ N.

If
∣∣u(n−1)(t)

∣∣ ≤ N for every t ∈ [a, b], the proof is complete.
On the contrary, assume that there is τ ∈ [a, b] such that

∣∣u(n−1)(τ)
∣∣ > N. Consider the

case where u(n−1)(τ) > N. Therefore there is η1 such that u(n−1)(η1) = N. Suppose, without
loss of generality, that η0 < η1. So,

u(n−1)(t) > 0 and u(n−1)(η0) ≤ u(n−1)(t) ≤ N, for t ∈ [η0, η1] .

So

|φ(u(n−1)(t))| = |q(t) f (t, u(t), . . . , u(n−1)(t))| ≤ q(t)|ψ(u(n−1)(t))|, for t ∈ [η0, η1] ,
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and∫ φ(N)

φ(u(n−1)(η0))

ds
ψ(φ−1(s))

≤
∫ η1

η0

|(φ(u(n−1)(t))′|
ψ(u(n−1)(t))

dt

=
∫ η1

η0

|q(t) f (t, u(t), . . . , u(n−1)(t))|
ψ(u(n−1)(t))

dt ≤
∫ η1

η0

q(t)dt <
∫ b

a
q(t)dt.

As u(n−1)(η0) ≤ µ < N, by the monotony of φ,

φ(u(n−1)(η0)) ≤ φ(µ)

and, by (2.6), ∫ φ(N)

φ(u(n−1)(η0))

ds
ψ(φ−1(s))

≥
∫ φ(N)

φ(µ)

ds
ψ(φ−1(s))

>
∫ b

a
q(t)dt

which leads to a contradiction.
The other cases, that is, u(n−1)(τ) > N with η1 < η0, and u(n−1)(τ) < −N with η0 <

η1 or η1 < η0, follow the same arguments to obtain a contradiction.
Therefore

∣∣u(n−1)(t)
∣∣ ≤ N, for t ∈ [a, b].

Forward, in our method, we will use the following lemma, given in [23]:

Lemma 2.5. For v, w ∈ C(I) such that v(x) ≤ w(x), for every x ∈ I, define

q(x, u) = max{v, min{u, w}}.

Then, for each u ∈ C1(I) the next two properties hold:

(a) d
dx q(x, u(x)) exists for a.e. x ∈ I.

(b) If u, um ∈ C1(I) and um → u in C1(I) then

d
dx

q(x, um(x))→ d
dx

q(x, u(x)) for a.e. x ∈ I.

We recall the classical Schauder’s fixed point theorem:

Theorem 2.6. Let M be a nonempty, closed, bounded and convex subset of a Banach space X, and
suppose that T : M→ M is a compact operator. Then T as at least one fixed point in M.

3 Existence and localization result

The main result is an existence and localization theorem, as it provides not only the existence
of solutions but also some of its qualitative properties.

Theorem 3.1. Suppose that there are α and β lower and upper solutions, respectively, of problem
(1.1)–(1.3) such that

α(n−2)(t) ≤ β(n−2)(t), for t ∈ [a, b].

Assume that the L1-Carathéodory function f : [a, b]×Rn → R satisfies a Nagumo condition, related
to α and β, and verifies

f (t, α(t), . . . , α(n−3)(t)), y, z) ≤ f (t, x0, . . . , xn−1) ≤ f (t, β(t), . . . , β(n−3)(t), y, z), (3.1)
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for α(i)(t) ≤ xi ≤ β(i)(t), for i = 0, . . . , n− 3, and fixed (y, z) ∈ R2.
Moreover, if the impulsive functions satisfy

Ij,k(α(tk), . . . , α(n−1)(tk)) ≤ Ij,k(x0, . . . , xn−1) ≤ Ij,k(β(tk), . . . , β(n−1)(tk)), (3.2)

for j = 0, . . . , n− 3, α(i)(tk) ≤ xi ≤ β(i)(tk), for i = 0, 1, . . . , n− 2, k = 1, 2, . . . , m,
and

In−2,k(α(tk), . . . , α(n−3)(tk), y, z) ≥ In−2,k(x0, . . . , xn−1) (3.3)

≥ In−2,k(β(tk), . . . , β(n−3)(tk), y, z)

for α(i)(t) ≤ xi ≤ β(i)(t), for i = 0, . . . , n− 3, and fixed (y, z) ∈ R2, then problem (1.1)–(1.3) has at
least one solution u ∈ E, such that

α(i)(t) ≤ u(i)(t) ≤ β(i)(t) for i = 0, 1, . . . , n− 2 and − N ≤ u(n−1)(t) ≤ N,

for t ∈ [a, b] and N given by (2.7).

Proof. Define the continuous functions δi, for i = 0, 1, . . . , n− 2,

δi(t, u(i)(t)) =


β(i)(t), u(i)(t) ≥ β(i)(t)

u(i)(t), α(i)(t) ≤ u(i)(t) ≤ β(i)(t)

α(i)(t), u(i)(t) ≤ α(i)(t)

and consider the following modified and perturbed equation

(φ(u(n−1)(t)))′ + q(t) f
(

t, δ0(t, u(t)), . . . , δn−2(t, u(n−2)(t)),
d
dt

(
δn−2(t, u(n−2)(t))

))
+

δn−2(t, u(n−2)(t))− u(n−2)(t)
1 + |u(n−2)(t)− δn−2(t, u(n−2)(t))|

= 0, (3.4)

coupled with boundary conditions (1.2) and the truncated impulsive conditions, for i =

0, 1, . . . , n− 2,

∆u(i)(tk) = Ii,k

(
δ0(tk, u(tk)), . . . , δn−2(tk, u(n−2)(tk),

d
dt (δn−2(tk, u(n−2)(tk)))

)
:= I∗i,k(tk),

∆φ(u(n−1)(t)) = In−1,k

(
δ0(tk, u(tk)), . . . , δn−2(tk, u(n−2)(tk)),

d
dt (δn−2(tk, u(n−2)(tk)))

)
:= I∗n−1,k(tk).

(3.5)

Define the operator T : E→ E by

T(u)(t) :=
n−2

∑
i=0

([
Ai + ∑

k : tk<t
I∗i,k

]
(t− a)n−2−i

(n− 2− i)!

)

+
∫ t

a

(t− s)n−2

(n− 2)!
φ−1

(
φ(B) +

∫ b

s
v(s)ds− ∑

k : tk>s
I∗n−1,k

)
ds.

By Lemma 2.1, it is clear that the fixed points of T, u∗, are solutions of the initial problem
(1.1)-(3.5), if they verify

α(i)(t) ≤ u(i)
∗ (t) ≤ β(i)(t), for t ∈ [a, b] and i = 0, 1, . . . , n− 2.
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As T is compact, by Schauder’s fixed point theorem, T has a fixed point u ∈ E, which is a
solution of (3.4), (1.2), (3.5). To prove that this solution verifies

α(i)(t) ≤ u(i)(t) ≤ β(i)(t), for t ∈ [a, b], and i = 0, 1, . . . , n− 2,

suppose, by contradiction, that, for i = n− 2, there is t ∈ [a, b] such that

u(n−2)(t) > β(n−2)(t).

Define ζ ∈ [a, b] as

sup
t∈[a,b]

(u(n−2)(t)− β(n−2)(t)) := u(n−2)(ζ)− β(n−2)(ζ)) > 0. (3.6)

By (1.2) and Definition 2.2, u(n−2)(a) − β(n−2)(a) ≤ 0, then ζ 6= a. On the other hand
u(n−1)(b)− β(n−1)(b) < 0 and then ζ 6= b, by (3.6).

Therefore ζ ∈ ]a, b[.

Case 1: Assume that there is p ∈ {1, 2, . . . , m} such that ζ ∈ (tp, tp+1).

Consider ε > 0 small enough such that

u(n−2)(t)− β(n−2)(t) > 0 and u(n−1)(t)− β(n−1)(t) ≤ 0, for t ∈ (ζ, ζ + ε) . (3.7)

Therefore, by (3.1) and (3.7), for all t ∈ (ζ, ζ + ε), we have the following contradiction

0 ≥ φ
(

u(n−1)(t)
)′
− φ

(
β(n−1)(t)

)′
≥ − q(t) f

(
t, δ0(t, u(t)), . . . , δn−2(t, u(n−2)(t)),

d
dt

(
δn−2(t, u(n−2)(t))

))

−
δn−2

(
t, u(n−2)(t)

)
− u(n−2)(t)

1 +
∣∣u(n−2)(t)− δn−2

(
t, u(n−2)(t)

)∣∣ + q(t) f
(

t, β(t), . . . , β(n−1)(t)
)

= − q(t) f
(

t, δ0(t, u(t)), . . . , δn−3 (t, u(t)) , β(n−2)(t), β(n−1)(t)
)

− β(n−2)(t)− u(n−2)(t)
1 +

∣∣u(n−2)(t)− β(n−2)(t)
∣∣ + q(t) f

(
t, β(t), . . . , β(n−1)(t)

)
≥ − q(t) f

(
t, β(t), . . . , β(n−1)(t)

)
− β(n−2)(t)− u(n−2)(t)

1 +
∣∣u(n−2)(t)− β(n−2)(t)

∣∣
+ q(t) f

(
t, β(t), . . . , β(n−1)(t)

)
=

u(n−2)(t)− β(n−2)(t)
1 +

∣∣u(n−2)(t)− β(n−2)(t)
∣∣ > 0.

Case 2: Consider that there exists k ∈ {1, 2, . . . , m} such that, or

max
t∈[a,b]

(
u(n−2)(t)− β(n−2)(t)

)
:= u(n−2)(t−k )− β(n−2)(t−k ) > 0 (3.8)

or
sup

t∈[a,b]

(
u(n−2)(t)− β(n−2)(t)

)
:= u(n−2)(t+k )− β(n−2)(t+k ) > 0. (3.9)

If (3.8) holds, then
∆
(

u(n−2)(t)− β(n−2)(t)
)
≤ 0
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and, by (3.3) and Definition 2.2, we have the contradiction

0 ≥ ∆u(n−2)(tk)− ∆β(n−2)(tk) = I∗n−2,k − ∆β(n−2)(tk)

= In−2,k

(
δ0(t, u(t)), . . . , δn−3 (t, u(t)) , β(n−2)(t), β(n−1)(t)

)
− ∆β(n−2)(tk)

≥ In−2,k

(
tk, β(tk), . . . , β(n−1)(tk)

)
− ∆β(n−2)(tk) > 0.

Consider now (3.9). So, there is ε > 0 such that, for t ∈ (tk, tk + ε),

u(n−1)(t)− β(n−1)(t) ≤ 0,

and the arguments follow by the same technique as in Case 1, to have

u(n−2)(t) ≤ β(n−2)(t), ∀t ∈ [a, b].

To prove that u(n−2)(t) ≥ α(n−2)(t), ∀t ∈ [a, b], the method is similar. Therefore

α(n−2)(t) ≤ u(n−2)(t) ≤ β(n−2), for t ∈ [a, b].

Integrating the first inequality in [a, t1], we have

α(n−3)(t) ≤ u(n−3)(t)− u(n−3)(a) + α(n−3)(a) (3.10)

= u(n−3)(t)− An−3 + α(n−3)(a) ≤ u(n−3)(t).

For t ∈ (t1, t2], by (3.2) and (3.10),

α(n−3)(t) ≤ u(n−3)(t)− u(n−3)(t+1 ) + α(n−3)(t+1 )

≤ u(n−3)(t)− I∗n−3,1(t1)− u(n−3)(t1)

+ In−3,1

(
t1, α(t1), . . . , αn−1(t1)

)
+ α(n−3)(t1)

≤ u(n−3)(t)− I∗n−3,1(t1) + In−3,1

(
t1, α(t1), . . . , α(n−1)(t1)

)
≤ u(n−3)(t).

Applying this method for each interval (tk, tk+1], k = 2, . . . , m, we obtain

α(n−3)(t) ≤ u(n−3)(t), ∀t ∈ [a, b],

and, by the same technique,

β(n−3)(t) ≥ u(n−3)(t), ∀t ∈ [a, b].

By iteration of these arguments, we conclude

α(i)(t) ≤ u(i)(t) ≤ β(i)(t), for i = 0, 1, . . . , n− 2, and t ∈ [a, b].

The estimation
∣∣u(n−1)(t)

∣∣ ≤ N is a trivial consequence of Lemma 2.4.
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4 Estimation for the bending of one-sided clamped beam under im-
pulsive effects

Problems related to beam structures and especially beams that support some forces as im-
pulses, are part of a vast field of investigation in boundary value problems theory, see, for
example, [7–10, 24].

In this application we consider a model to describe the bending of a beam with length
L > 1, given by the fourth-order equation

EI
A

u(4) (x) +
3
2

3
√

u′(x)|u′′(x)| − ku(x)− γu′′′(x) = 0, for x ∈ ]0, L[ , (4.1)

where E > 0 is the Young modulus, I > 0 the mass moment of inertia, A > 0 the cross section
area, k > 0 the tension of a spring force vertically applied on the beam, and γ > 0 the shear
force coefficient.

At the end points the behavior of the beam is given by the following boundary conditions

u(0) = 0, u′(0) = 1, u′′(0) = 0, u′′′(L) = 0, (4.2)

meaning that the beam is clamped on the left end side.
For clearance, we consider only one moment of impulse which occurs at t1 = 1. The im-

pulsive effects are given by generalized functions with dependence on the unknown function
itself, and on several derivatives till order three,

∆u(1) = u(1) + u′(1)− 2u′′(1)− u′′′(1)

∆u′(1) = u(1) + u′(1)− 2u′′(1)− u′′′(1) (4.3)

∆u′′(1) = −u(1)− u′(1) + u′′(1) + 5u′′′(1)− 1

∆u′′′(1) = u(1)− u′(1) + u′′(1) + u′′′(1)− 1.

This problem (4.1)-(4.3) is a particular case of (1.1)-(1.3) with [a, b] = [0, L] , n = 4,

f (x, y0, y1, y2, y3) =
A
EI

(
3
2

3
√

y1|y2| − ky0 − γy3

)
, (4.4)

φ(w) = w, q(t) ≡ 1, m = 1, t1 = 1, and the impulsive functions given by

I0,1(w0, w1, w2, w3) = w0 + w1 − 2w2 − w3

I1,1(w0, w1, w2, w3) = w0 + w1 − 2w2 − w3

I2,1(w0, w1, w2, w3) = −w0 − w1 + w2 + 5w3 − 1

I3,1(w0, w1, w2, w3) = w0 − w1 + w2 + w3 − 1.

As a numeric example we can consider A = 1, EI = 1, k = 1, γ = 6, L = 2. In this case,
the continuous functions

α(x) = 0, β(x) =
x3

6
+ x2 + x, for x ∈ [0, 2] ,

are, respectively, lower and upper solutions of problem (4.1)–(4.3), according to Definition 3.6.
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In fact, for α(x) ≡ 0 the inequalities are trivially satisfied and for β, we have,

β(0) = 0, β′(0) = 1, β′′(0) = 2 > 0, β′′′(2) = 1 > 0,

∆β(1) = 0 ≥ β(0) + β′(0)− 2β′′(0)− β′′′(0) = −4
3

,

∆β′(1) = 0 ≥ β(0) + β′(0)− 2β′′(0)− β′′′(0) = −4
3

,

∆β′′(1) = 0 < −β(0)− β′(0) + β′′(0) + 5β′′′(0)− 1 =
4
3

∆β′′′(1) = 0 < β(0)− β′(0) + β′′(0) + β′′′(0)− 1 =
5
3

.

The nonlinear part f (x, y0, y1, y2, y3), given by (4.4), verifies a Nagumo condition on the set

S∗ =

{
(t, y0, y1, y2, y3) ∈ [0, 2]×Rn : 0 ≤ y0 ≤ x3

6 + x2 + x,

0 ≤ y1 ≤ x2

2 + 2x + 1, 0 ≤ y2 ≤ x + 2

}
with

µ = max
{∣∣β′′(2)∣∣ ,

∣∣β′′(0)∣∣ ,
∣∣β′′(1)∣∣} = 4,

ψ (|y3|) := |y3|+
22
3

,

and ∫ +∞

µ

ds
s + 22

3

= +∞ >
∫ L

0
1 ds = L.

Moreover, f is nondecreasing on y0 and, by Theorem 3.1, there exists a solution u(x) of
problem (4.1)–(4.3) such that

α(i)(x) 6 u(i)(x) 6 β(i)(x), i = 0, 1, 2, for x ∈ [0, 2] ,

that is

0 ≤ u(x) ≤ x3

6
+ x2 + x,

0 ≤ u′(x) ≤ x2

2
+ 2x + 1,

0 ≤ u′′(x) ≤ x + 2, for x ∈ [0, 2].

Figure 4.1: Strip of u localization.
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