Implicit elliptic equations via Krasnoselskii-Schaefer type theorems

Dedicated to Professor Jeffrey R. L. Webb on the occasion of his 75th birthday

Radu Precup ${ }^{\boxtimes}$
Babeș-Bolyai University, 1 M. Kogălniceanu Street, Cluj-Napoca, RO-400084, Romania

Received 22 April 2020, appeared 21 December 2020
Communicated by Gennaro Infante

Abstract

Existence of solutions to the Dirichlet problem for implicit elliptic equations is established by using Krasnoselskii-Schaefer type theorems owed to Burton-Kirk and Gao-Li-Zhang. The nonlinearity of the equations splits into two terms: one term depending on the state, its gradient and the elliptic principal part is Lipschitz continuous, and the other one only depending on the state and its gradient has a superlinear growth and satisfies a sign condition. Correspondingly, the associated operator is a sum of a contraction with a completely continuous mapping. The solutions are found in a ball of a Lebesgue space of a sufficiently large radius established by the method of a priori bounds.

Keywords: implicit elliptic equation, fixed point, Krasnoselskii theorem for the sum of two operators.
2020 Mathematics Subject Classification: 35J60, 47H10, 47J05.

1 Introduction

Krasnoselskii's fixed point theorem for the sum of two operators [12] - a typical hybrid fixed point result - has been used to prove the existence of solutions for many classes of problems when the associated operators do not comply to a pure fixed point principle. Its hybrid character is given by a combination of the Banach and Schauder fixed point theorems.

Theorem 1.1 (Krasnoselskii). Let D be a bounded closed convex nonempty subset of a Banach space $(X,|\cdot|)$ and let A, B be two operators such that
(i) $A: D \rightarrow X$ is a contraction;
(ii) $B: D \rightarrow X$ is continuous with $B(D)$ relatively compact;
(iii) $A(x)+B(y) \in D$ for every $x, y \in D$.

[^0]Then the operator $A+B$ has at least one fixed point, i.e., there exists $x \in D$ such that $x=A(x)+B(x)$.
There are many extensions of Krasnoselskii's theorem in several directions, for single and multi-valued mappings, self and non-self mappings, for generalized contractions and generalized compact-type operators, see for example [2,5,6,10,14,18].

The strong invariance condition (iii) is required by the similar condition from Schauder's fixed point theorem. The last one is removed and replaced with the Leray-Schauder boundary condition by Schaefer's fixed point theorem [17].

Theorem 1.2 (Schaefer). Let D_{R} be the closed ball centered at the origin and of radius R of a Banach space X, and let $N: D_{R} \rightarrow X$ be continuous with $N\left(D_{R}\right)$ relatively compact. If

$$
\begin{equation*}
\lambda N(x) \neq x \quad \text { for all } x \in \partial D_{R}, \lambda \in(0,1) \tag{1.1}
\end{equation*}
$$

then N has at least one fixed point.
There are known hybrid theorems of Krasnoselskii type that combine Banach's contraction principle with Schaefer's fixed point theorem. Such a result is owed to Burton and Kirk [6].

Theorem 1.3 (Burton-Kirk). Let D_{R} be the closed ball centered at the origin and of radius R of a Banach space X, and let A, B be operators such that
(j) $A: X \rightarrow X$ is a contraction;
(jj) $B: D_{R} \rightarrow X$ is continuous with $B\left(D_{R}\right)$ relatively compact;
(jij) $x \neq \lambda A\left(\frac{1}{\lambda} x\right)+\lambda B(x)$ for all $x \in \partial D_{R}$ and $\lambda \in(0,1)$.
Then the operator $A+B$ has at least one fixed point, i.e., there exists $x \in D_{R}$ such that $x=A(x)+$ $B(x)$.

A similar result is owed to Gao, Li and Zhang [11].
Theorem 1.4 (Gao-Li-Zhang). Let D_{R} be the closed ball centered at the origin and of radius R of a Banach space X, and let A, B be operators such that
(h) $A: X \rightarrow X$ is a contraction;
(hh) $B: D_{R} \rightarrow X$ is continuous with $B\left(D_{R}\right)$ relatively compact;
(hhh) $x \neq A(x)+\lambda B(x)$ for all $x \in \partial D_{R}$ and $\lambda \in(0,1)$.

Then the operator $A+B$ has at least one fixed point, i.e., there exists $x \in D_{R}$ such that $x=A(x)+$ $B(x)$.

In proof, the difference between Theorem 1.3 and Theorem 1.4 consists in the homotopy that is considered. In the first case, the homotopy is $\lambda(I-A)^{-1} B$, while in the second case, it is $(I-A)^{-1} \lambda B$.

Obviously, if A is identically zero, then both results by Burton-Kirk and Gao-Li-Zhang reduce to Schaefer's theorem.

Remark 1.5 (Method of a priori bounds). In applications, usually both operators A, B are defined on the whole space X and a ball D_{R} as required by condition (jjj) of Theorem 1.3 and (hhh) of Theorem 1.4 exists if the set of all solutions for $\lambda \in(0,1)$ of the equations

$$
x=\lambda A\left(\frac{1}{\lambda} x\right)+\lambda B(x)
$$

and

$$
x=A(x)+\lambda B(x)
$$

respectively, is bounded in X.
The aim of this paper is to give an application of the previous Krasnoselskii-Schaefer type theorems to the Dirichlet problem for implicit elliptic equations. Such equations have been intensively studied in the literature, see for example [7,9]. Our result extends and complements previous contributions in this direction such as those in [4,13,15,16].

We conclude the Introduction by some basic notions and results from the linear theory of partial differential equations $[3,16]$.

We shall work in the Sobolev space $H_{0}^{1}(\Omega)$, where $\Omega \subset \mathbb{R}^{n}(n \geq 3)$ is open bounded, endowed with the energetic norm

$$
|u|_{H_{0}^{1}}=|\nabla u|_{L^{2}}=\left(\int_{\Omega}|\nabla u|^{2}\right)^{\frac{1}{2}} .
$$

Its dual space is $H^{-1}(\Omega)$ and the pairing of a functional $v \in H^{-1}(\Omega)$ and a function $u \in H_{0}^{1}(\Omega)$ is denoted by (v, u). We identify $L^{2}(\Omega)$ to its dual and thus we have $H_{0}^{1}(\Omega) \subset L^{2}(\Omega) \subset$ $H^{-1}(\Omega)$. Then, in particular, for $v \in L^{2}(\Omega)$, one has

$$
(v, u)=(v, u)_{L^{2}}=\int_{\Omega} u v, \quad u \in H_{0}^{1}(\Omega) .
$$

Recall that the operator $(-\Delta)^{-1}$ is an isometry between $H^{-1}(\Omega)$ and $H_{0}^{1}(\Omega)$, so

$$
|v|_{H^{-1}}=\left|(-\Delta)^{-1} v\right|_{H_{0}^{1^{\prime}}} \quad v \in H^{-1}(\Omega) .
$$

Also, the embedding $H_{0}^{1}(\Omega) \subset L^{p}(\Omega)$ holds and is continuous for $1 \leq p \leq 2^{*}=2 n /(n-2)$, and the same happens for the embedding $L^{q}(\Omega) \subset H^{-1}(\Omega)$ if $q \geq\left(2^{*}\right)^{\prime}=2 n /(n+2)$. These embeddings are compact for $p<2^{*}$ and $q>\left(2^{*}\right)^{\prime}$, respectively.

2 Application

We discuss here the Dirichlet problem for implicit nonlinear elliptic equations,

$$
\begin{cases}-\Delta u=f(x, u, \nabla u, \Delta u)+g(x, u, \nabla u) & \text { in } \Omega \tag{2.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{n}$ is open bounded ($n \geq 3$); $f: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ and $g: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfy the Carathéodory conditions.

To give sense to the composition $f(x, u, \nabla u, \Delta u)$, we need to look for solutions $u \in H_{0}^{1}(\Omega)$ such that Δu is a function. More exactly we shall require that $\Delta u \in L^{q}(\Omega)$ for a given number $q \geq\left(2^{*}\right)^{\prime}$.

If we let $v:=-\Delta u$, then the equation becomes

$$
v=f\left(x,(-\Delta)^{-1} v, \nabla(-\Delta)^{-1} v,-v\right)+g\left(x,(-\Delta)^{-1} v, \nabla(-\Delta)^{-1} v\right) .
$$

As noted above, this equation will be solved in a Lebesgue space $L^{q}(\Omega)$ with $q \geq\left(2^{*}\right)^{\prime}$. We assume in addition that $q \leq 2$, which implies $L^{2}(\Omega) \subset L^{q}(\Omega)$.

Let $A, B: L^{q}(\Omega) \rightarrow L^{q}(\Omega)$ be given by

$$
\begin{aligned}
& A(v)=f\left(\cdot,(-\Delta)^{-1} v, \nabla(-\Delta)^{-1} v,-v\right) \\
& B(v)=g\left(\cdot,(-\Delta)^{-1} v, \nabla(-\Delta)^{-1} v\right) .
\end{aligned}
$$

Clearly we need some additional conditions on f and g to guarantee that the two operators are well-defined from $L^{q}(\Omega)$ to itself, and then, wishing to apply Theorem 1.3 or Theorem 1.4 we have to guarantee that A is a contraction, and B is completely continuous.

We begin by a technical lemma concerning the embedding constants. By an embedding constant for a continuous embedding $X \subset Y$ of two Banach spaces $\left(X,|\cdot|_{X}\right)$ and $\left(Y,|\cdot|_{Y}\right)$, we mean a number $c>0$ such that

$$
|x|_{Y} \leq c|x|_{X} \text { for every } x \in X .
$$

Note that if c is an embedding constant for the inclusion $X \subset Y$, then c is also an embedding constant for the dual inclusion $Y^{\prime} \subset X^{\prime}$. Indeed, for any $u \in Y^{\prime}$, one has

$$
|u|_{X^{\prime}}=\sup _{\substack{x \in X \\ x \neq 0}} \frac{|(u, x)|}{|x|_{X}} \leq \sup _{\substack{x \in X \\ x \neq 0}} \frac{|(u, x)|}{c^{-1}|x|_{Y}} \leq c \sup _{\substack{x \in Y \\ x \neq 0}} \frac{|(u, x)|}{|x|_{Y}}=c|u|_{Y^{\prime}} .
$$

Recall that, according to the Poincaré inequality, the best (smallest) embedding constant for the inclusions $H_{0}^{1}(\Omega) \subset L^{2}(\Omega)$ and $L^{2}(\Omega) \subset H^{-1}(\Omega)$ is $1 / \sqrt{\lambda_{1}}$, where λ_{1} is the first eigenvalue of the Dirichlet problem for the operator $-\Delta$.
Lemma 2.1. Let $\left(2^{*}\right)^{\prime} \leq q \leq 2$ and let c_{1}, c_{2}, c_{3} be embedding constants for the inclusions

$$
\begin{equation*}
H_{0}^{1}(\Omega) \subset L^{q}(\Omega), \quad L^{2}(\Omega) \subset L^{q}(\Omega), \quad L^{q}(\Omega) \subset H^{-1}(\Omega) \tag{2.2}
\end{equation*}
$$

Then one may consider

$$
c_{2}=c_{1} \sqrt{\lambda_{1}}, \quad c_{3}=\frac{1}{c_{1} \lambda_{1}} .
$$

Proof. From $H_{0}^{1}(\Omega) \subset L^{2}(\Omega) \subset L^{q}(\Omega)$, if $u \in H_{0}^{1}(\Omega)$, one has

$$
|u|_{L^{9}} \leq c_{2}|u|_{L^{2}} \leq \frac{c_{2}}{\sqrt{\lambda_{1}}}|u|_{H_{0}^{1}}
$$

hence $c_{1}=c_{2} / \sqrt{\lambda_{1}}$, or $c_{2}=c_{1} \sqrt{\lambda_{1}}$. To prove the second equality, let $u \in H_{0}^{1}(\Omega)$. On the one hand, using twice Poincaré's inequality, we have

$$
|u|_{H^{-1}} \leq \frac{1}{\sqrt{\lambda_{1}}}|u|_{L^{2}} \leq \frac{1}{\lambda_{1}}|u|_{H_{0}^{1}},
$$

and on the other hand,

$$
|u|_{H^{-1}} \leq c_{3}|u|_{L^{9}} \leq c_{1} c_{3}|u|_{H_{0}^{1}} .
$$

Hence $c_{1} c_{3}=1 / \lambda_{1}$.

The next lemma guarantees that the operator A is a contraction.
Lemma 2.2. Assume that there exist constants $a, b, c \geq 0$ such that

$$
|f(x, y, z, w)-f(x, \bar{y}, \bar{z}, \bar{w})| \leq a|y-\bar{y}|+b|z-\bar{z}|+c|w-\bar{w}|
$$

for all $y, \bar{y}, w, \bar{w} \in \mathbb{R} ; z, \bar{z} \in \mathbb{R}^{n}$ and a.a. $x \in \Omega$. Also assume that $f(\cdot, 0,0,0) \in L^{2}(\Omega)$. If

$$
l:=\frac{a}{\lambda_{1}}+\frac{b}{\sqrt{\lambda_{1}}}+c<1
$$

then A is a contraction on the space $L^{q}(\Omega)$ for any $q \in[1,2]$.
Proof. From the basic result about Nemytskii's operator (see, a.e., [16]), we have that A maps $L^{q}(\Omega)$ to itself. Let $v, w \in L^{q}(\Omega)$. Then using the embedding constants for the inclusions (2.2) and the relationships between them given by Lemma 2.1, we have

$$
\begin{aligned}
|A(v)-A(w)|_{L^{q}} & \leq a\left|(-\Delta)^{-1}(v-w)\right|_{L^{q}}+b\left|\nabla(-\Delta)^{-1}(v-w)\right|_{L^{q}}+c|v-w|_{L^{q}} \\
& \leq a c_{1}\left|(-\Delta)^{-1}(v-w)\right|_{H_{0}^{1}}+b c_{2}\left|\nabla(-\Delta)^{-1}(v-w)\right|_{L^{2}}+c|v-w|_{L^{q}} \\
& =a c_{1}|v-w|_{H^{-1}}+b c_{2}\left|(-\Delta)^{-1}(v-w)\right|_{H_{0}^{1}}+c|v-w|_{L^{q}} \\
& =\left(a c_{1}+b c_{2}\right)|v-w|_{H^{-1}}+c|v-w|_{L^{q}} \\
& \leq\left(\left(a c_{1}+b c_{2}\right) c_{3}+c\right)|v-w|_{L^{q}} \\
& =\left(\frac{a}{\lambda_{1}}+\frac{b}{\sqrt{\lambda_{1}}}+c\right)|v-w|_{L^{q}}
\end{aligned}
$$

Furthermore, we have the following result about the complete continuity of the operator B on the space $L^{q}(\Omega)$.

Lemma 2.3. Assume that there exist constants $a_{0}, b_{0} \geq 0 ; \alpha \in\left[1,2^{*} /\left(2^{*}\right)^{\prime}\right), \beta \in\left[1,2 /\left(2^{*}\right)^{\prime}\right) ;$ and function $h \in L^{2}(\Omega)$ such that

$$
\begin{equation*}
|g(x, y, z)| \leq a_{0}|y|^{\alpha}+b_{0}|z|^{\beta}+h(x) \tag{2.3}
\end{equation*}
$$

for all $y \in \mathbb{R}, z \in \mathbb{R}^{n}$ and a.a. $x \in \Omega$. Then the operator $B: L^{q}(\Omega) \rightarrow L^{q}(\Omega)$ is well-defined and completely continuous for

$$
\begin{equation*}
q=\min \left\{\frac{2^{*}}{\alpha}, \frac{2}{\beta}\right\} \tag{2.4}
\end{equation*}
$$

Proof. First note that the restrictions on α and β imply that q given by (2.4) satisfies $\left(2^{*}\right)^{\prime}<$ $q \leq 2$.

Now the operator B is the composition $N P J$ of three operators

$$
\begin{array}{ll}
J: L^{q}(\Omega) \rightarrow H^{-1}(\Omega), & J(v)=v \\
P: H^{-1}(\Omega) \rightarrow L^{2^{*}}(\Omega) \times L^{2}\left(\Omega ; \mathbb{R}^{n}\right), & P(v)=\left((-\Delta)^{-1} v, \nabla(-\Delta)^{-1} v\right) \\
N: L^{2^{*}}(\Omega) \times L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \rightarrow L^{q}(\Omega), & N(u, v)=g(\cdot, u, v)
\end{array}
$$

Here J is completely continuous since the embedding $L^{q}(\Omega) \subset H^{-1}(\Omega)$ is compact $\left(q>\left(2^{*}\right)^{\prime}\right)$, and obviously, the linear operator P is bounded. Next we show that N is welldefined, continuous and bounded (maps bounded sets into bounded sets). According to the
basic result about Nemytskii's operator, this happens if we have a growth condition on g of the form

$$
\begin{equation*}
\left|g\left(x, w_{1}, w_{2}\right)\right| \leq a_{0}\left|w_{1}\right|^{\frac{2^{*}}{q}}+b_{0}\left|w_{2}\right|^{\frac{2}{q}}+h_{0}(x) \quad\left(w_{1} \in \mathbb{R}, w_{2} \in \mathbb{R}^{n}, \text { a.a. } x \in \Omega\right) \tag{2.5}
\end{equation*}
$$

with $a_{0}, b_{0} \in \mathbb{R}_{+}$and $h_{0} \in L^{q}(\Omega)$. From (2.4), we have

$$
1 \leq \alpha \leq \frac{2^{*}}{q}, \quad 1 \leq \beta \leq \frac{2}{q} .
$$

Then the exponents α, β in (2.3) can be replaced by the larger ones $2^{*} / q$ and $2 / \beta$ and thus the growth condition (2.3) implies (2.5), with a suitable function h_{0} that incorporates h. Hence N has the desired properties.

The above properties of the operators J, P and N imply that B is well-defined and completely continuous from $L^{q}(\Omega)$ to itself.

It remains to find a priori bounds of the solutions as required by Remark 1.5.
Lemma 2.4. Under the assumptions of Lemmas 2.2 and 2.3, if in addition g satisfies the sign condition

$$
\begin{equation*}
y g(x, y, z) \leq 0 \tag{2.6}
\end{equation*}
$$

for all $y \in \mathbb{R}, z \in \mathbb{R}^{n}$ and a.a. $x \in \Omega$, then the sets of solutions of the equations

$$
\begin{equation*}
v=\lambda A\left(\frac{1}{\lambda} v\right)+\lambda B(v) \quad(\lambda \in(0,1)) \tag{2.7}
\end{equation*}
$$

and of the equations

$$
\begin{equation*}
v=A(v)+\lambda B(v) \quad(\lambda \in(0,1)) \tag{2.8}
\end{equation*}
$$

are bounded in $L^{q}(\Omega)$.

Proof. We shall prove the statement for the family of equations (2.7). The proof is similar for (2.8).

Step 1: We first prove the boundedness of the solutions in $H^{-1}(\Omega)$. Let $v \in L^{q}(\Omega)$ be any solution of (2.7). Since $v \in H^{-1}(\Omega)$, we may write

$$
\begin{equation*}
\left(v,(-\Delta)^{-1} v\right)=\lambda\left(A\left(\frac{1}{\lambda} v\right),(-\Delta)^{-1} v\right)+\lambda\left(B(v),(-\Delta)^{-1} v\right) . \tag{2.9}
\end{equation*}
$$

On the left side we have $\left|(-\Delta)^{-1} v\right|_{H_{0}^{1}}^{2}$ which is equal to $|v|_{H^{-1}}^{2}$. Also, from (2.6) we have

$$
\left(B(v),(-\Delta)^{-1} v\right)=\int_{\Omega} g\left(x,(-\Delta)^{-1} v, \nabla(-\Delta)^{-1} v\right)(-\Delta)^{-1} v \leq 0 .
$$

Next, using the Lipschitz property of f, and denoting $\gamma_{0}:=|f(\cdot, 0,0,0)|_{L^{2}}$ we obtain

$$
\begin{aligned}
& \lambda\left(A\left(\frac{1}{\lambda} v\right),(-\Delta)^{-1} v\right) \\
&= \lambda \int_{\Omega} f\left(x, \frac{1}{\lambda}(-\Delta)^{-1} v, \frac{1}{\lambda} \nabla(-\Delta)^{-1} v,-\frac{1}{\lambda} v\right)(-\Delta)^{-1} v \\
& \leq \int_{\Omega}\left(a\left|(-\Delta)^{-1} v\right|+b\left|\nabla(-\Delta)^{-1} v\right|+c|v|+|f(x, 0,0,0)|\right)\left|(-\Delta)^{-1} v\right| \\
& \leq a\left|(-\Delta)^{-1} v\right|_{L^{2}}^{2}+b\left|\nabla(-\Delta)^{-1} v\right|_{L^{2}}\left|(-\Delta)^{-1} v\right|_{L^{2}} \\
&+c \int_{\Omega}|v|\left|(-\Delta)^{-1} v\right|+\gamma_{0}\left|(-\Delta)^{-1} v\right|_{L^{2}} \\
& \leq \frac{a}{\lambda_{1}}\left|(-\Delta)^{-1} v\right|_{H_{0}^{1}}^{2}+\frac{b}{\sqrt{\lambda_{1}}}\left|(-\Delta)^{-1} v\right|_{H_{0}^{1}}^{2} \\
&+c \int_{\Omega}|v|\left|(-\Delta)^{-1} v\right|+\frac{1}{\sqrt{\lambda_{1}}} \gamma_{0}\left|(-\Delta)^{-1} v\right|_{H_{0}^{1}} \\
&= \frac{a}{\lambda_{1}}|v|_{H^{-1}}^{2}+\frac{b}{\sqrt{\lambda_{1}}}|v|_{H^{-1}}^{2}+c \int_{\Omega}|v|\left|(-\Delta)^{-1} v\right|+\frac{1}{\sqrt{\lambda_{1}}} \gamma_{0}|v|_{H^{-1}} .
\end{aligned}
$$

Since

$$
\int_{\Omega}|v|\left|(-\Delta)^{-1} v\right|=\left(v, s(-\Delta)^{-1} v\right)
$$

where function s has only two values ± 1 giving the sign of $v(-\Delta)^{-1} v$, we then have

$$
\int_{\Omega}|v|\left|(-\Delta)^{-1} v\right| \leq|v|_{H^{-1}}\left|s(-\Delta)^{-1} v\right|_{H_{0}^{1}}=|v|_{H^{-1}}\left|(-\Delta)^{-1} v\right|_{H_{0}^{1}}=|v|_{H^{-1}}^{2}
$$

It follows that

$$
\lambda\left(A\left(\frac{1}{\lambda} v\right),(-\Delta)^{-1} v\right) \leq\left(\frac{a}{\lambda_{1}}+\frac{b}{\sqrt{\lambda_{1}}}+c\right)|v|_{H^{-1}}^{2}+d|v|_{H^{-1}}
$$

where $d=\gamma_{0} / \sqrt{\lambda_{1}}$. Thus (2.9) gives

$$
|v|_{H^{-1}}^{2} \leq l|v|_{H^{-1}}^{2}+d|v|_{H^{-1}}
$$

which based on $l<1$ implies that

$$
\begin{equation*}
|v|_{H^{-1}} \leq C_{1} \tag{2.10}
\end{equation*}
$$

where $C_{1}=d /(1-l)$ does not depend on λ.
Step 2. $|B(v)|_{L^{q}} \leq C_{2}$ for some constant C_{2}. Indeed, one has

$$
\begin{equation*}
|B(v)|_{L^{q}} \leq\left.\left. a_{0}| |(-\Delta)^{-1} v\right|^{\alpha}\right|_{L^{q}}+\left.\left.b_{0}| | \nabla(-\Delta)^{-1} v\right|^{\beta}\right|_{L^{q}}+|h|_{L^{q}} \tag{2.11}
\end{equation*}
$$

Furthermore, since $\alpha q \leq 2^{*}$, we have the continuous embedding $H_{0}^{1}(\Omega) \subset L^{\alpha q}(\Omega)$, and so for some constant \bar{c}, we have

$$
\begin{equation*}
\left|\left|(-\Delta)^{-1} v\right|^{\alpha}\right|_{L^{q}}=\left|(-\Delta)^{-1} v\right|_{L^{\alpha q}}^{\alpha} \leq \bar{c}\left|(-\Delta)^{-1} v\right|_{H_{0}^{1}}^{\alpha}=\bar{c}|v|_{H^{-1}}^{\alpha} . \tag{2.12}
\end{equation*}
$$

Similarly, since $\beta q \leq 2$, we have

$$
\begin{align*}
\left|\left|\nabla(-\Delta)^{-1} v\right|^{\beta}\right|_{L^{q}} & =\left|\nabla(-\Delta)^{-1} v\right|_{L^{\beta q}}^{\beta} \leq \bar{c}\left|\nabla(-\Delta)^{-1} v\right|_{L^{2}}^{\beta} \tag{2.13}\\
& =\overline{\bar{c}}\left|(-\Delta)^{-1} v\right|_{H_{0}^{1}}^{\beta}=\overline{\bar{c}}|v|_{H^{-1}}^{\beta} .
\end{align*}
$$

Now (2.10)-(2.13) lead to the conclusion at Step 2.
Step 3. $|v|_{L^{g}} \leq C$ for some constant C. Indeed, if $\gamma=|f(\cdot, 0,0,0)|_{L^{g}}$, then one has

$$
|v|_{L^{q}} \leq \lambda\left|A\left(\frac{1}{\lambda} v\right)\right|_{L^{q}}+\lambda|B(v)|_{L^{q}} \leq l|v|_{L^{q}}+\gamma+|B(v)|_{L^{q}} .
$$

Hence

$$
|v|_{L^{q}} \leq \frac{1}{1-l}\left(|B(v)|_{L^{q}}+\gamma\right),
$$

which together with the result at Step 2 gives the conclusion with $C=\left(C_{2}+\gamma\right) /(1-l)$.
The above lemmas together with Theorem 1.3 (or alternatively, Theorem 1.4) and Remark 1.5 allow us to state the following existence result.

Theorem 2.5. If f and g satisfy the conditions in Lemmas 2.2-2.4, then problem (2.1) has at least one solution $u \in H_{0}^{1}(\Omega)$ with $\Delta u \in L^{q}(\Omega)$, where $q=\min \left\{2^{*} / \alpha, 2 / \beta\right\}$.

Remark 2.6. The sign condition (2.6) can be replaced by

$$
y g(x, y, z) \leq \sigma y^{2}
$$

for all $y \in \mathbb{R}, z \in \mathbb{R}^{n}$ and a.a. $x \in \Omega$, for some $\sigma<(1-l) \lambda_{1}$.
Remark 2.7. If $g(x, y, z)$ has a linear growth in y, z with constants a_{0} and b_{0}, and

$$
\frac{a+a_{0}}{\lambda_{1}}+\frac{b+b_{0}}{\sqrt{\lambda_{1}}}+c<1,
$$

then the conclusion of Theorem 2.5 can be obtain using Krasnoselskii's theorem, without a sign condition on g. This happens, since in this case, it is possible to find a ball of $L^{q}(\Omega)$ of a sufficiently large radius such that the strong invariance condition of Krasnoselskii's theorem is fulfilled.

Finally we would like to mention that the result can be adapted to a general elliptic operator replacing the Laplacian, and the technique is possible to be used for treating other classes of implicit differential equations.

References

[1] C. Avramescu, Asupra unei teoreme de punct fix (in Romanian) [On a fixed point theorem], St. Cerc. Mat. 22(1970), No. 2, 215-221. MR0310716
[2] I. Basoc, T. Cardinali, A hybrid nonlinear alternative theorem and some hybrid fixed point theorems for multimaps, J. Fixed Point Theory Appl. 17(2015), 413-424. https: //doi . org/10.1007/s11784-015-0211-x; MR3397125
[3] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer, New York, 2011. https://doi.org/10.1007/978-0-387-70914-7; MR2759829
[4] A. Buică, Existence of strong solutions of fully nonlinear elliptic equations, in: Analysis and Optimization of Differential Systems, Springer, Boston, 2003, pp. 69-76. MR1993700
[5] T. A. Burton, A fixed-point theorem of Krasnoselskii, Appl. Math. Lett. 11(1998), 85-88. https://doi.org/10.1007/978-0-387-70914-7; MR1490385
[6] T. A. Burton, C. Kirk, A fixed point theorem of Krasnoselskii-Schaefer type, Math. Nachr. 189(1998), 23-31. https://doi.org/10.1002/mana.19981890103; MR1492921
[7] L. A. Caffarelli, X. Cabré, Fully nonlinear elliptic equations, Colloquium Publications, Vol. 43, American Math. Soc., Providence, 1995. https://doi.org/10.1090/coll/043; MR1351007
[8] T. Cardinali, R. Precup, P. Rubbioni, Heterogeneous vectorial fixed point theorems, Mediterr. J. Math. 14(2017), No. 2, Paper No. 83, 12 pp. https://doi.org/10.1007/ s00009-017-0888-8; MR3620754
[9] S. Carl, S. Heikkila, Discontinuous implicit elliptic boundary value problems, Differential Integral Equations 11(1998), 823-834. MR1659268
[10] D. E. Edmunds, Remarks on non-linear functional equations, Math. Ann. 174(1967), 233239. https://doi.org/10.1007/BF01360721; MR0220113
[11] H. Gao, Y. Li, B. Zhang, A fixed point theorem of Krasnoselskii-Schaefer type and its applications in control and periodicity of integral equations, Fixed Point Theory 12(2011), 91-112. MR2797072
[12] M. A. Krasnoselskir, Some problems of nonlinear analysis, in: Amer. Math. Soc. Transl. Ser. 2, Vol. 10, American Mathematical Society, Providence, R.I. 1958, pp. 345-409. MR0094731
[13] S. A. Marano, Implicit elliptic differential equations, Set-Valued Anal. 2(1994), 545-558. https://doi.org/10.1007/BF01033071; MR1308484
[14] D. O'Regan, Fixed-point theory for the sum of two operators, Appl. Math. Lett. 9(1996), 1-8. https://doi.org/10.1016/0893-9659(95)00093-3; MR1389589
[15] R. Precur, Existence results for nonlinear boundary value problems under nonresonance conditions, in: Qualitative problems for differential equations and control theory, World Sci. Publ., River Edge, 1995, pp. 263-273. MR1372758
[16] R. Precup, Linear and semilinear partial differential equations, De Gruyter, Berlin, 2013. MR2986215
[17] H. Schaefer, Über die Methode der a priori-Schranken (in German) [On the method of a priori bounds], Math. Ann. 129(1955), 415-416. https ://doi.org/10.1007/BF01362380; MR0071723
[18] J. R. L. Webb, Fixed point theorems for non-linear semicontractive operators in Banach spaces, J. London Math. Soc. (2) 1(1969), 683-688. https://doi.org/10.1112/jlms/s2-1. 1.683; MR0250152

[^0]: ${ }^{\boxtimes}$ Email: r.precup@math.ubbcluj.ro

