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Abstract. Existence of solutions to the Dirichlet problem for implicit elliptic equations
is established by using Krasnoselskii–Schaefer type theorems owed to Burton–Kirk and
Gao–Li–Zhang. The nonlinearity of the equations splits into two terms: one term de-
pending on the state, its gradient and the elliptic principal part is Lipschitz continuous,
and the other one only depending on the state and its gradient has a superlinear growth
and satisfies a sign condition. Correspondingly, the associated operator is a sum of a
contraction with a completely continuous mapping. The solutions are found in a ball
of a Lebesgue space of a sufficiently large radius established by the method of a priori
bounds.
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1 Introduction

Krasnoselskii’s fixed point theorem for the sum of two operators [12] – a typical hybrid fixed
point result – has been used to prove the existence of solutions for many classes of problems
when the associated operators do not comply to a pure fixed point principle. Its hybrid
character is given by a combination of the Banach and Schauder fixed point theorems.

Theorem 1.1 (Krasnoselskii). Let D be a bounded closed convex nonempty subset of a Banach space
(X, |·|) and let A, B be two operators such that

(i) A : D → X is a contraction;

(ii) B : D → X is continuous with B(D) relatively compact;

(iii) A(x) + B(y) ∈ D for every x, y ∈ D.
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Then the operator A+ B has at least one fixed point, i.e., there exists x ∈ D such that x = A(x)+ B(x).

There are many extensions of Krasnoselskii’s theorem in several directions, for single and
multi-valued mappings, self and non-self mappings, for generalized contractions and gener-
alized compact-type operators, see for example [2, 5, 6, 10, 14, 18].

The strong invariance condition (iii) is required by the similar condition from Schauder’s
fixed point theorem. The last one is removed and replaced with the Leray–Schauder boundary
condition by Schaefer’s fixed point theorem [17].

Theorem 1.2 (Schaefer). Let DR be the closed ball centered at the origin and of radius R of a Banach
space X, and let N : DR → X be continuous with N(DR) relatively compact. If

λN(x) 6= x for all x ∈ ∂DR, λ ∈ (0, 1), (1.1)

then N has at least one fixed point.

There are known hybrid theorems of Krasnoselskii type that combine Banach’s contraction
principle with Schaefer’s fixed point theorem. Such a result is owed to Burton and Kirk [6].

Theorem 1.3 (Burton–Kirk). Let DR be the closed ball centered at the origin and of radius R of a
Banach space X, and let A, B be operators such that

(j) A : X → X is a contraction;

(jj) B : DR → X is continuous with B(DR) relatively compact;

(jjj) x 6= λA
( 1

λ x
)
+ λB(x) for all x ∈ ∂DR and λ ∈ (0, 1).

Then the operator A + B has at least one fixed point, i.e., there exists x ∈ DR such that x = A(x) +
B(x).

A similar result is owed to Gao, Li and Zhang [11].

Theorem 1.4 (Gao–Li–Zhang). Let DR be the closed ball centered at the origin and of radius R of a
Banach space X, and let A, B be operators such that

(h) A : X → X is a contraction;

(hh) B : DR → X is continuous with B(DR) relatively compact;

(hhh) x 6= A(x) + λB(x) for all x ∈ ∂DR and λ ∈ (0, 1).

Then the operator A + B has at least one fixed point, i.e., there exists x ∈ DR such that x = A(x) +
B(x).

In proof, the difference between Theorem 1.3 and Theorem 1.4 consists in the homotopy
that is considered. In the first case, the homotopy is λ(I − A)−1B, while in the second case, it
is (I − A)−1λB.

Obviously, if A is identically zero, then both results by Burton–Kirk and Gao–Li–Zhang
reduce to Schaefer’s theorem.
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Remark 1.5 (Method of a priori bounds). In applications, usually both operators A, B are
defined on the whole space X and a ball DR as required by condition (jjj) of Theorem 1.3 and
(hhh) of Theorem 1.4 exists if the set of all solutions for λ ∈ (0, 1) of the equations

x = λA
(

1
λ

x
)
+ λB(x)

and
x = A(x) + λB(x),

respectively, is bounded in X.

The aim of this paper is to give an application of the previous Krasnoselskii–Schaefer
type theorems to the Dirichlet problem for implicit elliptic equations. Such equations have
been intensively studied in the literature, see for example [7, 9]. Our result extends and
complements previous contributions in this direction such as those in [4, 13, 15, 16].

We conclude the Introduction by some basic notions and results from the linear theory of
partial differential equations [3, 16].

We shall work in the Sobolev space H1
0(Ω), where Ω ⊂ Rn (n ≥ 3) is open bounded,

endowed with the energetic norm

|u|H1
0
= |∇u|L2 =

(∫
Ω
|∇u|2

) 1
2

.

Its dual space is H−1(Ω) and the pairing of a functional v ∈ H−1(Ω) and a function u ∈ H1
0(Ω)

is denoted by (v, u). We identify L2(Ω) to its dual and thus we have H1
0(Ω) ⊂ L2(Ω) ⊂

H−1(Ω). Then, in particular, for v ∈ L2(Ω), one has

(v, u) = (v, u)L2 =
∫

Ω
uv, u ∈ H1

0(Ω).

Recall that the operator (−∆)−1 is an isometry between H−1(Ω) and H1
0(Ω), so

|v|H−1 =
∣∣∣(−∆)−1v

∣∣∣
H1

0

, v ∈ H−1(Ω).

Also, the embedding H1
0(Ω) ⊂ Lp(Ω) holds and is continuous for 1 ≤ p ≤ 2∗ = 2n/(n− 2),

and the same happens for the embedding Lq(Ω) ⊂ H−1(Ω) if q ≥ (2∗)′ = 2n/(n + 2). These
embeddings are compact for p < 2∗ and q > (2∗)′, respectively.

2 Application

We discuss here the Dirichlet problem for implicit nonlinear elliptic equations,{
−∆u = f (x, u,∇u, ∆u) + g(x, u,∇u) in Ω

u = 0 on ∂Ω
(2.1)

where Ω ⊂ Rn is open bounded (n ≥ 3); f : Ω×R×Rn ×R → R and g : Ω×R×Rn → R

satisfy the Carathéodory conditions.
To give sense to the composition f (x, u,∇u, ∆u), we need to look for solutions u ∈ H1

0(Ω)
such that ∆u is a function. More exactly we shall require that ∆u ∈ Lq(Ω) for a given number
q ≥ (2∗)′.
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If we let v := −∆u, then the equation becomes

v = f
(

x, (−∆)−1v,∇(−∆)−1v,−v
)
+ g
(

x, (−∆)−1v,∇(−∆)−1v
)

.

As noted above, this equation will be solved in a Lebesgue space Lq(Ω) with q ≥ (2∗)′. We
assume in addition that q ≤ 2, which implies L2(Ω) ⊂ Lq(Ω).

Let A, B : Lq(Ω)→ Lq(Ω) be given by

A(v) = f
(
·, (−∆)−1v,∇(−∆)−1v,−v

)
B(v) = g

(
·, (−∆)−1v,∇(−∆)−1v

)
.

Clearly we need some additional conditions on f and g to guarantee that the two operators
are well-defined from Lq(Ω) to itself, and then, wishing to apply Theorem 1.3 or Theorem 1.4
we have to guarantee that A is a contraction, and B is completely continuous.

We begin by a technical lemma concerning the embedding constants. By an embedding
constant for a continuous embedding X ⊂ Y of two Banach spaces (X, |·|X) and (Y, |·|Y), we
mean a number c > 0 such that

|x|Y ≤ c|x|X for every x ∈ X.

Note that if c is an embedding constant for the inclusion X ⊂ Y, then c is also an embedding
constant for the dual inclusion Y′ ⊂ X′. Indeed, for any u ∈ Y′, one has

|u|X′ = sup
x∈X
x 6=0

|(u, x)|
|x|X

≤ sup
x∈X
x 6=0

|(u, x)|
c−1|x|Y

≤ c sup
x∈Y
x 6=0

|(u, x)|
|x|Y

= c|u|Y′ .

Recall that, according to the Poincaré inequality, the best (smallest) embedding constant for the
inclusions H1

0(Ω) ⊂ L2(Ω) and L2(Ω) ⊂ H−1(Ω) is 1/
√

λ1, where λ1 is the first eigenvalue
of the Dirichlet problem for the operator −∆.

Lemma 2.1. Let (2∗)′ ≤ q ≤ 2 and let c1, c2, c3 be embedding constants for the inclusions

H1
0(Ω) ⊂ Lq(Ω), L2(Ω) ⊂ Lq(Ω), Lq(Ω) ⊂ H−1(Ω). (2.2)

Then one may consider

c2 = c1
√

λ1, c3 =
1

c1λ1
.

Proof. From H1
0(Ω) ⊂ L2(Ω) ⊂ Lq(Ω), if u ∈ H1

0(Ω), one has

|u|Lq ≤ c2|u|L2 ≤
c2√
λ1
|u|H1

0
,

hence c1 = c2/
√

λ1, or c2 = c1
√

λ1. To prove the second equality, let u ∈ H1
0(Ω). On the one

hand, using twice Poincaré’s inequality, we have

|u|H−1 ≤
1√
λ1
|u|L2 ≤

1
λ1
|u|H1

0
,

and on the other hand,
|u|H−1 ≤ c3|u|Lq ≤ c1c3|u|H1

0
.

Hence c1c3 = 1/λ1.
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The next lemma guarantees that the operator A is a contraction.

Lemma 2.2. Assume that there exist constants a, b, c ≥ 0 such that

| f (x, y, z, w)− f (x, y, z, w)| ≤ a|y− y|+ b|z− z|+ c|w− w|

for all y, y, w, w ∈ R; z, z ∈ Rn and a.a. x ∈ Ω. Also assume that f (·, 0, 0, 0) ∈ L2(Ω). If

l :=
a

λ1
+

b√
λ1

+ c < 1,

then A is a contraction on the space Lq(Ω) for any q ∈ [1, 2].

Proof. From the basic result about Nemytskii’s operator (see, a.e., [16]), we have that A maps
Lq(Ω) to itself. Let v, w ∈ Lq(Ω). Then using the embedding constants for the inclusions (2.2)
and the relationships between them given by Lemma 2.1, we have

|A(v)− A(w)|Lq ≤ a
∣∣∣(−∆)−1(v− w)

∣∣∣
Lq
+ b
∣∣∣∇(−∆)−1(v− w)

∣∣∣
Lq
+ c|v− w|Lq

≤ ac1

∣∣∣(−∆)−1(v− w)
∣∣∣

H1
0

+ bc2

∣∣∣∇(−∆)−1(v− w)
∣∣∣

L2
+ c|v− w|Lq

= ac1|v− w|H−1 + bc2

∣∣∣(−∆)−1(v− w)
∣∣∣

H1
0

+ c|v− w|Lq

= (ac1 + bc2)|v− w|H−1 + c|v− w|Lq

≤ ((ac1 + bc2)c3 + c)|v− w|Lq

=

(
a

λ1
+

b√
λ1

+ c
)
|v− w|Lq .

Furthermore, we have the following result about the complete continuity of the operator
B on the space Lq(Ω).

Lemma 2.3. Assume that there exist constants a0, b0 ≥ 0; α ∈ [1, 2∗/(2∗)′), β ∈ [1, 2/(2∗)′); and
function h ∈ L2(Ω) such that

|g(x, y, z)| ≤ a0|y|α + b0|z|β + h(x) (2.3)

for all y ∈ R, z ∈ Rn and a.a. x ∈ Ω. Then the operator B : Lq(Ω) → Lq(Ω) is well-defined and
completely continuous for

q = min
{

2∗

α
,

2
β

}
. (2.4)

Proof. First note that the restrictions on α and β imply that q given by (2.4) satisfies (2∗)′ <
q ≤ 2.

Now the operator B is the composition NPJ of three operators

J : Lq(Ω)→ H−1(Ω), J(v) = v
P : H−1(Ω)→ L2∗(Ω)× L2(Ω; Rn), P(v) =

(
(−∆)−1v, ∇(−∆)−1v

)
N : L2∗(Ω)× L2(Ω; Rn)→ Lq(Ω), N(u, v) = g(·, u, v).

Here J is completely continuous since the embedding Lq(Ω) ⊂ H−1(Ω) is compact(
q > (2∗)′

)
, and obviously, the linear operator P is bounded. Next we show that N is well-

defined, continuous and bounded (maps bounded sets into bounded sets). According to the
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basic result about Nemytskii’s operator, this happens if we have a growth condition on g of
the form

|g(x, w1, w2)| ≤ a0|w1|
2∗
q + b0|w2|

2
q + h0(x) (w1 ∈ R, w2 ∈ Rn, a.a. x ∈ Ω) (2.5)

with a0, b0 ∈ R+ and h0 ∈ Lq(Ω). From (2.4), we have

1 ≤ α ≤ 2∗

q
, 1 ≤ β ≤ 2

q
.

Then the exponents α, β in (2.3) can be replaced by the larger ones 2∗/q and 2/β and thus the
growth condition (2.3) implies (2.5), with a suitable function h0 that incorporates h. Hence N
has the desired properties.

The above properties of the operators J, P and N imply that B is well-defined and com-
pletely continuous from Lq(Ω) to itself.

It remains to find a priori bounds of the solutions as required by Remark 1.5.

Lemma 2.4. Under the assumptions of Lemmas 2.2 and 2.3, if in addition g satisfies the sign condition

yg(x, y, z) ≤ 0 (2.6)

for all y ∈ R, z ∈ Rn and a.a. x ∈ Ω, then the sets of solutions of the equations

v = λA
(

1
λ

v
)
+ λB(v) (λ ∈ (0, 1)) (2.7)

and of the equations

v = A(v) + λB(v) (λ ∈ (0, 1)) (2.8)

are bounded in Lq(Ω).

Proof. We shall prove the statement for the family of equations (2.7). The proof is similar for
(2.8).

Step 1: We first prove the boundedness of the solutions in H−1(Ω). Let v ∈ Lq(Ω) be any
solution of (2.7). Since v ∈ H−1(Ω), we may write

(
v, (−∆)−1v

)
= λ

(
A
(

1
λ

v
)

, (−∆)−1v
)
+ λ

(
B(v), (−∆)−1v

)
. (2.9)

On the left side we have
∣∣∣(−∆)−1v

∣∣∣2
H1

0

which is equal to |v|2H−1 . Also, from (2.6) we have

(
B(v), (−∆)−1v

)
=
∫

Ω
g
(

x, (−∆)−1v,∇(−∆)−1v
)
(−∆)−1v ≤ 0.
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Next, using the Lipschitz property of f , and denoting γ0 := | f (·, 0, 0, 0)|L2 we obtain

λ

(
A
(

1
λ

v
)

, (−∆)−1v
)

= λ
∫

Ω
f
(

x,
1
λ
(−∆)−1v,

1
λ
∇(−∆)−1v,− 1

λ
v
)
(−∆)−1v

≤
∫

Ω

(
a
∣∣∣(−∆)−1v

∣∣∣+ b
∣∣∣∇(−∆)−1v

∣∣∣+ c|v|+ | f (x, 0, 0, 0)|
)∣∣∣(−∆)−1v

∣∣∣
≤ a

∣∣∣(−∆)−1v
∣∣∣2

L2
+ b
∣∣∣∇(−∆)−1v

∣∣∣
L2

∣∣∣(−∆)−1v
∣∣∣

L2

+ c
∫

Ω
|v|
∣∣∣(−∆)−1v

∣∣∣+ γ0

∣∣∣(−∆)−1v
∣∣∣

L2

≤ a
λ1

∣∣∣(−∆)−1v
∣∣∣2

H1
0

+
b√
λ1

∣∣∣(−∆)−1v
∣∣∣2

H1
0

+ c
∫

Ω
|v|
∣∣∣(−∆)−1v

∣∣∣+ 1√
λ1

γ0

∣∣∣(−∆)−1v
∣∣∣

H1
0

=
a

λ1
|v|2H−1 +

b√
λ1
|v|2H−1 + c

∫
Ω
|v|
∣∣∣(−∆)−1v

∣∣∣+ 1√
λ1

γ0|v|H−1 .

Since ∫
Ω
|v|
∣∣∣(−∆)−1v

∣∣∣ = (v, s(−∆)−1v
)

,

where function s has only two values ±1 giving the sign of v(−∆)−1v, we then have∫
Ω
|v|
∣∣∣(−∆)−1v

∣∣∣ ≤ |v|H−1

∣∣∣s(−∆)−1v
∣∣∣

H1
0

= |v|H−1

∣∣∣(−∆)−1v
∣∣∣

H1
0

= |v|2H−1 .

It follows that

λ

(
A
(

1
λ

v
)

, (−∆)−1v
)
≤
(

a
λ1

+
b√
λ1

+ c
)
|v|2H−1 + d|v|H−1 ,

where d = γ0/
√

λ1. Thus (2.9) gives

|v|2H−1 ≤ l|v|2H−1 + d|v|H−1

which based on l < 1 implies that
|v|H−1 ≤ C1, (2.10)

where C1 = d/(1− l) does not depend on λ.
Step 2. |B(v)|Lq ≤ C2 for some constant C2. Indeed, one has

|B(v)|Lq ≤ a0

∣∣∣∣∣∣(−∆)−1v
∣∣∣α∣∣∣

Lq
+ b0

∣∣∣∣∣∣∣∇(−∆)−1v
∣∣∣β∣∣∣∣

Lq
+ |h|Lq (2.11)

Furthermore, since αq ≤ 2∗, we have the continuous embedding H1
0(Ω) ⊂ Lαq(Ω), and so for

some constant c, we have∣∣∣∣∣∣(−∆)−1v
∣∣∣α∣∣∣

Lq
=
∣∣∣(−∆)−1v

∣∣∣α
Lαq
≤ c
∣∣∣(−∆)−1v

∣∣∣α
H1

0

= c|v|αH−1 . (2.12)
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Similarly, since βq ≤ 2, we have∣∣∣∣∣∣∣∇(−∆)−1v
∣∣∣β∣∣∣∣

Lq
=
∣∣∣∇(−∆)−1v

∣∣∣β
Lβq
≤ c
∣∣∣∇(−∆)−1v

∣∣∣β
L2

(2.13)

= c
∣∣∣(−∆)−1v

∣∣∣β
H1

0

= c|v|βH−1 .

Now (2.10)–(2.13) lead to the conclusion at Step 2.
Step 3. |v|Lq ≤ C for some constant C. Indeed, if γ = | f (·, 0, 0, 0)|Lq , then one has

|v|Lq ≤ λ

∣∣∣∣A( 1
λ

v
)∣∣∣∣

Lq
+ λ|B(v)|Lq ≤ l|v|Lq + γ + |B(v)|Lq .

Hence
|v|Lq ≤

1
1− l

(|B(v)|Lq + γ),

which together with the result at Step 2 gives the conclusion with C = (C2 + γ) /(1− l).

The above lemmas together with Theorem 1.3 (or alternatively, Theorem 1.4) and Re-
mark 1.5 allow us to state the following existence result.

Theorem 2.5. If f and g satisfy the conditions in Lemmas 2.2–2.4, then problem (2.1) has at least one
solution u ∈ H1

0(Ω) with ∆u ∈ Lq(Ω), where q = min{2∗/α, 2/β}.

Remark 2.6. The sign condition (2.6) can be replaced by

yg(x, y, z) ≤ σy2

for all y ∈ R, z ∈ Rn and a.a. x ∈ Ω, for some σ < (1− l)λ1.

Remark 2.7. If g(x, y, z) has a linear growth in y, z with constants a0 and b0, and

a + a0

λ1
+

b + b0√
λ1

+ c < 1,

then the conclusion of Theorem 2.5 can be obtain using Krasnoselskii’s theorem, without a
sign condition on g. This happens, since in this case, it is possible to find a ball of Lq(Ω) of a
sufficiently large radius such that the strong invariance condition of Krasnoselskii’s theorem
is fulfilled.

Finally we would like to mention that the result can be adapted to a general elliptic opera-
tor replacing the Laplacian, and the technique is possible to be used for treating other classes
of implicit differential equations.
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