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1 Introduction

Fourth-order boundary value problems with integral boundary conditions arises in the math-
ematical modeling of viscoelastic and inelastic flows, thermos-elasticity, deformation of beams
and plate deflection theory [12, 14, 22].

In [2], Cabada and Enguiça characterized the inverse positive character of operator u(4) +

M u coupled with the, so called, clamped beam boundary conditions

u(4)(t) + Mu(t) = σ(t), t ∈ I := [0, 1] (1.1)

u(0) = u(1) = u′(0) = u′(1) = 0. (1.2)
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Using oscillation theory [23], on [2] are obtained the exact values on the real parameter
M ∈ (−m4

1, m4
0), for which the related Green’s function gM is strictly positive in (0, 1)× (0, 1).

To be concise, m1
∼= 4.73004 is the first positive root of equation

cos m cosh m = 1,

and −m4
1 coincides with the first negative eigenvalue of operator u(4) coupled to boundary

conditions (1.2).
Moreover, m0 ≈ 5.553 is the smaller positive solution of equation

tanh
m√

2
= tan

m√
2

, (1.3)

and, as it is showed at [4], m4
0 is the first positive eigenvalue of operator u(4) coupled to

boundary conditions u(0) = u′(0) = u′′(0) = u(1) = 0.
These results have been extended in [7] (and further in [8]) for any n-th order linear differ-

ential operator.
The existence of positive solutions for nonlinear problems are deduced by using the upper

and lower solutions method and fixed point theorems in cones. In those cases, the nonlinearity
depends only on the function u. For these problems the dependence on the second derivative
of their nonlinearity has taken less attention.

In this work we will study the existence of positive solution of a more general fourth order
problem related to clamped beam:

u(4)(t) + Mu(t) = f (t, u(t), u′′(t)), t ∈ I, (1.4)

subject to the perturbed functional boundary conditions:

u(1) = u′(0) = u′(1) = 0, u(0) = λ
∫ 1

0
u(s)ν(s) ds. (1.5)

Where M ∈ (−m4
1, 4π4), ν ∈ L1(I) is a positive weight function a.e. on (0, 1) and λ is

a positive parameter bounded from above by a constant that will be introduced later. We
suppose that the function f satisfy the following regularity assumption

(H0) f : I × [0, ∞)×R→ [0, ∞) is a continuous function.

Equation (1.4) models the stationary states of the deflection of an elastic beam. The bound-
ary conditions (1.5) can be thought of as having the end at 1 clamped, and having some mech-
anism at end 0 that controls the displacement according to feedback from devices measuring
the displacements along parts of the beam.

This paper is a continuation of the work done in [5] for problem

u(4)(t) + Mu(t) + f (t, u(t)) = 0, t ∈ I,

subject to the perturbed functional boundary conditions:

u(0) = u′(0) = u′′(0) = 0, u(1) = λ
∫ 1

0
u(s) ds.

A standard approach to study positive solutions of a boundary value problem such as
(1.4)–(1.5) consists of finding the corresponding Green’s function GM and seek solutions as
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fixed points of the Hammerstein integral equations with kernel GM. The majority of methods
are based on classical fixed point index theory and Krasnoselskii’s fixed point theorem in a
cone. The majority of authors work in a suitable cone K in a Banach space which is made using
the property of Green’s function. Sometimes the Green’s function associated to this integral
equation can change its sign. In theses cases, the authors should work in a cone smaller than
K (see [17–19, 21]). The construction of a such cone requires more concise properties of the
Green’s function (see [3, 6, 13]).

We note that in our problem, the nonlinearity f depends on the second order derivatives.
Using the classical Krasnoselskii’s expansion/contraction theorem, we need to study the sign
of the second order derivative of the Green’s function and look for a nonnegative function φ

such that

(C1)
∣∣ ∂2GM

∂t2 (t, s)
∣∣ ≤ φ(s), (t, s) ∈ I × I,

and

(C2)
∂2GM

∂t2 (t, s) ≥ c φ(s), (t, s) ∈ [a, b]× I,

for some [a, b] ⊂ I and c ∈ (0, 1).
In our case, the explicit form of second derivative of Green’s function ∂2GM

∂t2 is very com-
plicated and the previous inequalities ((C1) and (C2)) become hard to be checked. So, we
apply an extension of Krasnoselskii’s fixed point theorem that was used in [15,16,20,24]. With
this result, we do not need to prove the inequalities (C1) and (C2). Here we need only the
conditions (C1) and (C2) for the Green’s function GM. As far as we know, Problem (1.4)–(1.5)
have not been previously studied. At the end of this paper, some examples are given to show
that the theoretical results can be computed.

This paper is organized as follows. In Section 2, we introduce some basic definitions and
lemmas to prove our main results and through this section we prove that the Green’s function
associated to (1.1), (1.5) satisfies some suitable properties. In Section 3, we show the existence
of at least one positive solution. In section 4, some examples are presented to illustrate our
main results.

2 Preliminaries and Green’s function properties

In this section we introduce some preliminary results which will be used along the paper.
First, we provide some background definitions cited from cone theory in Banach spaces. After
that, we introduce some definitions and properties of the Green’s function GM related to
problem (1.1), (1.5).

Definition 2.1. Let E be a real Banach space. A nonempty convex closed set P ⊂ E is said to
be a cone provided that

(i) αu ∈ P for all u ∈ P and all α ≥ 0;

(ii) u, −u ∈ P implies u = 0.

In the sequel, we enunciate the a fixed point theorem due to Guo and Ge [16].

Lemma 2.2 ([16, Theorem 2.1]). Let E be a Banach space and P ⊂ E a cone. Suppose α, β : E →
[0, ∞) are two continuous convex functionals satisfying

α(µu) = |µ|α(u), β(µu) = |µ|β(u), u ∈ E, µ ∈ R
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and ‖u‖ ≤ N max{α(u), β(u)}, for u ∈ E and α(u1) ≤ α(u2) for u1, u2 ∈ P, u1 ≤ u2, where N > 0
is a constant.

Let r2 > r1 > 0, L > 0 be constants and Ωi = {u ∈ E : α(u) < ri, β(u) < L}, i = 1, 2. be two
bounded open sets in E. Set Di = {u ∈ E : α(u) = ri}. Assume that T : P → P is a completely
continuous operator satisfying

(C1) α(Tu) < r1, u ∈ D1 ∩ P; α(Tu) > r2, u ∈ D2 ∩ P,

(C2) β(Tu) < L, u ∈ P,

(C3) there is a p ∈ (Ω2 ∩ P) \ {0} such that α(p) 6= 0 and α(u + µp) ≥ α(u) for all u ∈ P and
µ ≥ 0.

Then T has at least one fixed point in (Ω2 \Ω1) ∩ P.

Moreover, we enunciate the following result concerning the expression of the Green’s
function gM, related to the linear Problem (1.1), (1.5). The proof can be found in [1, 2]. To
this end, we introduce the following condition:

M < 0 and cos
(

4
√
−M

)
cosh

(
4
√
−M

)
= 1. (2.1)

Lemma 2.3. Let σ ∈ C(I) and M ∈ R. Then problem (1.1)–(1.2) has a unique solution if and only if
(2.1) does not hold.

In such a case, it is given by the following expression:

u(t) =
∫ 1

0
gM(t, s)σ(s) ds.

Here, for M = −m4 < 0, we have

gM(t, s) =

{
g1(t, s, m) if 0 ≤ s ≤ t ≤ 1

g1(s, t, m) if 0 ≤ t ≤ s ≤ 1,

with

g1(t, s, m) =
1

8m3 ((1 + e2m) cos(m)− 2em)

×
{

e−m(4s+t)(−2emt cos(mt) + e2mt + 1
)((

e5ms − em(3s+2)
)

cos(m)

+ e3sm+m − e5sm+m + e4ms (−1 + e2m) cos(m−ms) + e5ms sin(m)

+ em(3s+2) sin(m)− 2e4sm+m sin(ms)− e4ms sin(m−ms)− e4sm+2m sin(m−ms)
)

− 2em(s−t) + 2em(t−s) ((1 + e2m) cos(m)− 2em)
+ e−m(4s+t)

((
e5ms + em(3s+2)

)
cos(m)− e3sm+m − e5sm+m − 2e4sm+m cos(ms)

+ e4ms cos(m−ms) + e4sm+2m cos(m−ms)− e5ms sin(m) + em(3s+2) sin(m)

+ e4ms sin(m−ms)− e4sm+2m sin(m−ms)
) (

2emt sin(mt)− e2mt + 1
)

− 4 sin(m(t− s)
((

1 + e2m) cos(m)− 2em)}.
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If M = 0, it is given by

g0(t, s) = −1
6

{
s2(t− 1)2(2ts + s− 3t) if 0 ≤ s ≤ t ≤ 1,

t2(s− 1)2(2ts + t− 3s) if 0 < t ≤ s ≤ 1.

Moreover, when M = m4 > 0 it follows the expression

gM(t, s) =

{
g2(t, s, m) if 0 ≤ s ≤ t ≤ 1

g2(s, t, m) if 0 ≤ t ≤ s ≤ 1,

g2(t, s, m) =
e−

m(−6+3s+t)√
2

2
√

2m3
(

1 + e2
√

2m + 2e
√

2m
(
−2 + cos

(√
2m
))){− 2

(
−1 + e

√
2mt
)

×
((

e
√

2m(−2+s) − e2
√

2m(−1+s)
)

cos
(

m(−2 + s)√
2

)
+
(
−e
√

2m(−2+s) + e2
√

2m(−1+s)
)

× cos
(

ms√
2

)
+
(

e
√

2m(−2+s) − e
√

2m(−1+s) + e2
√

2m(−1+s) − e
√

2m(−3+2s)
)

× sin
(

ms√
2

))
sin
(

mt√
2

)
+

((
e
√

2m(−2+s) + e2
√

2m(−1+s)
)

cos
(

m(−2 + s)√
2

)
+
(
−2e

√
2m(−2+s) + e

√
2m(−1+s) − 2e2

√
2m(−1+s) + e

√
2m(−3+2s)

)
cos

(
ms√

2

)
+
(
−e
√

2m(−2+s) + e2
√

2m(−1+s)
)

sin
(

m(−2 + s)√
2

)
+
(

e
√

2m(−1+s) − e
√

2m(−3+2s)
)

× sin
(

ms√
2

))((
−1 + e

√
2mt
)

cos
(

mt√
2

)
−
(

1 + e
√

2mt
)

sin
(

mt√
2

))}
.

Using the expressions given in Lemma 2.3, coupled to the definition of a Green’s function
[8] and, as a particular case of [8, Theorem 2.14 and Theorem 5.1], we deduce the following
properties for function gM:

Corollary 2.4. Assuming that condition (2.1) does not hold. Then, function gM, defined in Lemma 2.3,
satisfies the following properties:

1. gM is symmetric, that is gM(t, s) = gM(s, t), for all t, s ∈ I.

2. gM(0, s) = ∂gM
∂t (0, s) = gM(1, s) = ∂gM

∂t (1, s) = 0, for all s ∈ I.

3. gM(t, 1) = ∂gM
∂s (t, 1) = gM(t, 0) = ∂gM

∂s (t, 0) = 0, for all t ∈ I.

Moreover, if M ∈ (−m4
1, m4

0) the following inequalities are fulfilled:

4. gM(t, s) > 0 for all t, s ∈ (0, 1).

5. ∂2gM
∂t2 (0, s) > 0 and ∂2gM

∂t2 (1, s) > 0, for all s ∈ (0, 1).

6. ∂2gM
∂s2 (t, 1) > 0 and ∂2gM

∂s2 (t, 0) > 0, for all t ∈ (0, 1).

To obtain the expression of the solution of Problem (1.1),(1.5), we must study the solution
of a suitable non-homogeneous boundary value problem as follows
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Lemma 2.5 ([2, Theorem 3.12]). The following problem:
u(4)(t) + Mu(t) = 0, t ∈ I,

u(1) = u′(0) = u′(1) = 0,

u(0) = 1,

(2.2)

has no solution if and only (2.1) holds.
In any other case, it has a unique solution, denoted by wM, which is given by the following expres-

sion:

wM(t) =



cos
(

mt√
2

)
cosh

(
m(t−2)√

2

)
− sin

(
mt√

2

)
sinh

(
m(t−2)√

2

)
cos

(√
2m
)
+ cosh

(√
2m
)
− 2

+

(
cos(m(t−2)√

2
)− 2 cos( mt√

2
)
)

cosh
(

mt√
2

)
cos

(√
2m
)
+ cosh

(√
2m
)
− 2

+
sin
(

m(t−2)√
2

)
sinh

(
mt√

2

)
cos

(√
2m
)
+ cosh

(√
2m
)
− 2

if m > 0 and M = m4,

(t− 1)2(1 + 2t) if M = 0,

− cos(m−mt) + cosh(m)(cos(mt)− cosh(mt))
2 cos(m) cosh(m)− 2

+
cos(m) cosh(mt)− sin(mt) sinh(m)

2 cos(m) cosh(m)− 2

+
(sin(m) + sinh(m)) sinh(mt))

2 cos(m) cosh(m)− 2
if m > 0 and M = −m4.

(2.3)

In [2, Theorem 3.12] it is proved that if M > 0, then wM(t) > 0 for all t ∈ [0, 1) if and only
M ∈ (0, 4π4]. It is obvious that w0(t) > 0 for all t ∈ [0, 1).

To study the sign in the negative case, M = −m4, we must introduce the concept of
disconjugate equation given in [10].

Definition 2.6. Let ak ∈ Cn−k(I) for k = 1, . . . , n. The general n-th order linear differential
equation u(n)(t) + a1(t) u(n−1)(t) + · · ·+ an−1(t) u′(t) + an(t) u(t) = 0 defined on any arbitrary
interval [a, b] is said to be disconjugate on an interval J ⊂ [a, b] if every non trivial solution
has, at most, n− 1 zeros on J, multiple zeros being counted according to their multiplicity.

Moreover, we use the characterization for an equation to be disconjugate given in [9, The-
orem 2.1] for a general nth order linear equation. Next, we enunciate the particular case for
operator u(4) + M u.

Lemma 2.7. The linear equation u(4)(t) + M u(t) = 0 is disconjugate on the interval I if and only if
M ∈ (−m4

1, m4
0).

As a consequence, due to the continuity of the expression of wM with respect to M, since
w′′0 (1) = 6, we have that if there is some M̄ ∈ (−m4

1, 0) for which wM̄ takes some negative
values on (0, 1), then it must exists M∗ ∈ (M̄, 0) such that one of the two following situations
holds:
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There is t0 ∈ (0, 1) such that wM∗(t0) = w′M∗(t0) = wM∗(1) = w′M∗(1) = 0,

which contradicts Lemma 2.7, or

wM∗(1) = w′M∗(1) = w′′M∗(1) = 0.

But, in this last case, we have that

w′′−m4(1) =
m2(cos(m)− cosh(m))

cos(m) cosh(m)− 1
,

which never takes the value zero for m > 0.
Therefore, if M ∈ (−m4

1, 0) then wM(t) > 0 for all t ∈ [0, 1).
From the expression of w′′M(1) we have that wM < 0 in a neighborhood of t = 1 for M

smaller and close enough to −m4
1.

Now, suppose that there is some M1 < −m4
1 for wich wM1 > 0 on [0, 1). Let−m4

1 < M2 < 0,
we have that for all t ∈ [0, 1), the following property is fulfilled:

w(4)
M2

(t)− w(4)
M1

(t) = −M2 (wM2 − wM1)(t)− (M2 −M1)wM1(t) < −M2 (wM2 − wM1)(t).

Now, since wM2 − wM1 satisfies the boundary conditions (1.2), from Corollary 2.4, we de-
duce that 0 < wM2 < wM1 on (0, 1). But this contradicts the fact that

lim
M→−m4+

1

{wM(t)} = +∞, for all t ∈ (0, 1).

So, we have proved the following result:

Lemma 2.8. wM > 0 on [0, 1) if and only if M ∈ (−m4
1, 4π4).

Now, by denoting

CM =
∫ 1

0
wM(τ)ν(τ) dτ, (2.4)

we are in a position to obtain the explicit expression of the Green’s function related to the
equation (1.1) coupled to boundary conditions (1.5). The result is the following.

Lemma 2.9. Let σ ∈ L1(I), λ > 0 and M ∈ R be such that (2.1) does not hold. Then problem
u(4)(t) + Mu(t) = σ(t), t ∈ I,

u′(0) = u(1) = u′(1) = 0,

u(0) = λ
∫ 1

0
u(s)ν(s) ds

(2.5)

has a unique solution if and only if
λ CM 6= 1.

In such a case, it is given by the following expression

uM(t) =
∫ 1

0
GM(t, s)σ(s) ds

where

GM(t, s) = gM(t, s) +
λwM(t)
1− λCM

∫ 1

0
gM(τ, s)ν(τ) dτ, (2.6)

wM and CM are defined in (2.3) and (2.4) respectively and gM is showed in Lemma 2.3.
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Proof. Since (2.1) does not hold, we have that Problems (1.1)–(1.2) and (2.2) are uniquely solv-
able. Let vM and wM be the unique solutions of each problem respectively. Then, it is clear
that

uM(t) = vM(t) + λ wM(t)
∫ 1

0
uM(s)ν(s) ds

is the unique solution of problem (2.5).
As a consequence, for all t ∈ I, the following equalities are fulfilled:

uM(t) =
∫ 1

0
gM(t, s)σ(s) ds + λwM(t)

∫ 1

0
uM(s)ν(s) ds. (2.7)

Let AM =
∫ 1

0 uM(τ)ν(τ) dτ, then, from the previous equality, we deduce that

AM =
∫ 1

0

∫ 1

0
gM(τ, s)ν(τ)σ(s) ds dτ + λAM

∫ 1

0
wM(τ)ν(τ) dτ

or, which is the same,

AM =

∫ 1

0
σ(s)

∫ 1

0
gM(τ, s)ν(τ) dτ ds

1− λ
∫ 1

0 wM(τ)ν(τ) dτ
.

Replacing this value in (2.7), we arrive at the following expression for function uM:

uM(t) =
∫ 1

0
gM(t, s)σ(s) ds + λwM(t)

∫ 1

0
σ(s)

∫ 1

0
gM(τ, s)ν(τ) dτ ds

1− λ
∫ 1

0 wM(τ)ν(τ) dτ
,

and the proof is concluded.

Assuming that (2.1) does not hold, let zM be the unique solution of the following boundary
value problem:

z(4)(t) + Mz(t) = ν(t) t ∈ I, z(0) = z(1) = z′(0) = z′(1) = 0, (2.8)

which is given by the following expression

zM(t) =
∫ 1

0
gM(t, s)ν(s) ds.

Moreover, if M ∈ (−m4
1, m4

0), since ν(t) > 0 a.e. t ∈ (0, 1), from Corollary 2.4, we have that
zM(t) > 0 for all t ∈ (0, 1), z′′M(0) > 0 and z′′M(1) > 0.

We point out that, by direct computations, it is possible to obtain the explicit expression of
function zM for any particular choice of function ν.

A careful analysis of the Green’s function GM allows us to deduce the following result:

Theorem 2.10. Let GM(t, s) be the Green’s function related to problem (1.1), (1.5) given by expression
(2.6). Then if M ∈ (−m4

1, 4π4) and λ ∈ (0, 1/CM) we have that GM(t, s) > 0 for all (t, s) ∈
(0, 1)× (0, 1). Moreover there exist R > 0 and h ∈ C(I), such that h(1) = 0 and h > 0 on [0, 1), for
which the following inequalities are fulfilled:

h(t)
λ

1− λ CM
zM(s) ≤ GM(t, s) ≤ R

λ

1− λ CM
zM(s), for all (t, s) ∈ I × I. (2.9)
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Proof. First, notice that 4π4 < m4
0. So, since M ∈ (−m4

1, 4π4) we have, from Corollary 2.4,
that gM > 0 on (0, 1) × (0, 1) and, as a direct consequence of λ ∈ (0, 1/CM) and the fact
that wM > 0 on [0, 1) for all M ∈ (−m4

0, 4π4) (Lemma 2.8), we conclude, from (2.6), that
GM(t, s) > 0 for all (t, s) ∈ (0, 1)× (0, 1).

Now, we denote by

ϕ(t, s) =
GM(t, s)
GM(0, s)

=
1− λCM

λ

gM(t, s)∫ 1

0
gM(s, r)ν(r) dr

+ wM(t). (2.10)

It is clear that function ϕ is continuous on [0, 1]× (0, 1), ϕ(0, s) = 1 and ϕ(1, s) = 0 for all
s ∈ I.

Using the properties of gM showed in Lemma 2.3 and those of zM previously explained,
by means of L’Hôpital’s rule, we deduce, for all t ∈ (0, 1):

lim
s→0+

gM(t, s)∫ 1

0
gM(s, r)ν(r) dr

= lim
s→0+

gM(t, s)
zM(s)

= lim
s→0+

∂2gM
∂s2 (t, s)
z′′M(s)

=

∂2gM
∂s2 (t, 0)
z′′M(0)

> 0.

Thus,

lim
s→0+

ϕ(t, s) =
1− λCM

λ

 ∂2gM
∂s2 (t, 0)
z′′M(0)

+ wM(t) := l1(t) > 0 for all t ∈ [0, 1).

Analogously, if t ∈ (0, 1), we have

lim
s→1−

gM(t, s)∫ 1

0
gM(s, r)ν(r) dr

= lim
s→1−

gM(t, s)
zM(s)

= lim
s→1−

∂2gM
∂s2 (t, s)
z′′M(s)

=

∂2gM
∂s2 (t, 1)
z′′M(1)

> 0

and

lim
s→1−

ϕ(t, s) =
1− λCM

λ

 ∂2gM
∂s2 (t, 1)
z′′M(1)

+ wM(t) := l2(t) > 0 for all t ∈ [0, 1).

The limits l1(t) and l2(t) exist and are finite, so ϕ has removable discontinuities at s = 0, 1,
and we can extend it to a function ϕ̃ ∈ C(I × I).

Therefore h(t) = mins∈[0,1] ϕ̃(t, s) is a continuous function such that

h(1) = 0 and 0 < h(t) ≤ ϕ̃(t, s) ≤ R for all (t, s) ∈ [0, 1)× [0, 1],

where R = max(t,s)∈I×I ϕ̃(t, s).

Corollary 2.11. Let GM(t, s) be Green’s function related to problem (1.1), (1.5) given by expression
(2.6). Then if M ∈ (−m4

1, 4π4) and λ ∈ (0, 1/CM) we have that for all positive constant δ ∈ (0, 1)
there exists γ(δ) ∈ (0, 1) for which the following inequality is fulfilled:

γ(δ)
λ

1− λ CM
zM(s) ≤ GM(t, s), for all (t, s) ∈ [0, δ]× I. (2.11)

Proof. The result follows from the fact that function h is continuous on I and strictly positive
on [0, 1).
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3 Existence of positive solutions

In this section, we are concerned with the existence of positive solutions of the boundary value
problem (1.4)–(1.5). Firstly, we shall give a result of completely continuous operator. Then, we
shall derive the existence results. Consider the vectorial space

E = {u ∈ C2(I); u′(0) = u′(1) = 0}

with the weighted norm ‖u‖ = ‖u‖∞ + ‖u′′‖∞.
Since, for any u ∈ E, and all t ∈ I, it is satisfied that

u′(t) =
∫ t

0
u′′(s) ds.

We deduce that

‖u‖ ≤ ‖u‖∞ + ‖u′‖∞ + ‖u′′‖∞ ≤ ‖u‖∞ + 2 ‖u′′‖∞ ≤ 2 ‖u‖,
we have that ‖ · ‖ is an equivalent norm to the usual one in E. As consequence, E is a Banach
Space with the weighted norm ‖ · ‖.

The following result is a direct consequence of the results showed in previous sections.
Let T the operator from E to E defined by

(T u)(t) =
∫ 1

0
GM(t, s) f (s, u(s), u′′(s)) ds. (3.1)

Lemma 3.1. Assume that f satisfies condition (H0), then, u ∈ C2(I) is a solution of (1.4)–(1.5) if
and only if u is a fixed point of operator T defined on (3.1).

Now, by considering function h and constant R, obtained in Theorem 2.10, we look for the
fixed points of operator T at the following cone,

K =

{
u ∈ C2(I) and u(t) ≥ h(t)

R
‖u‖∞ for all t ∈ I

}
. (3.2)

Lemma 3.2. If condition (H0) is fulfilled, then operator T : K → K, defined in (3.1), is completely
continuous.

Proof. From the non-negativeness of functions f and GM we deduce that (T u)(t) ≥ 0 for all
t ∈ I and u ∈ K. Using that GM ∈ C2(I × I), from the continuity of function f we deduce
the completely continuous character of operator T as a direct application of Arzelà–Ascoli
Theorem [11].

Let u ∈ K, by (2.9), we have that the following inequalities are fulfilled for all t ∈ I

(T u)(t) =
∫ 1

0
GM(t, s) f (s, u(s), u′′(s)) ds

≥ h(t)
λ

1− λ CM

∫ 1

0
zM(s) f (s, u(s), u′′(s)) ds

≥ h(t)
R

∫ 1

0
max

t∈I
{GM(t, s)} f (s, u(s), u′′(s)) ds

≥ h(t)
R

max
t∈I

∫ 1

0
GM(t, s) f (s, u(s), u′′(s)) ds

=
h(t)

R
‖T u‖∞.
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Moreover, from Corollary 2.4, (2), we have that

(T u)′(0) = (T u)′(1) = 0,

and, as a consequence, T u ∈ K for all u ∈ K and the proof is complete.

In the sequel, for any pair δ, γ satisfying (2.11) we introduce the following cone as follows:

Kδ
γ =

{
u ∈ K and mint∈[0,δ] u(t) ≥ γ

R
‖u‖∞

}
. (3.3)

As in the proof of Lemma 3.2, one can verify the following result.

Lemma 3.3. Assuming condition (H0), we have that T(Kδ
γ) ⊂ Kδ

γ.

Define the convex functionals α(u) = ‖u‖∞, β(u) = ‖u′′‖∞. Then, we have that

‖u‖ ≤ 2 max{α(u), β(u)},

α(µu) = |µ|α(u), β(µu) = |µ|β(u), u ∈ E, µ ∈ R,

and since for all u ∈ K, it is satisfied that u ≥ 0 on I, we have that if u1, u2 ∈ K are such that
u1 ≤ u2 on I, then α(u1) ≤ α(u2).

In the following, we introduce the positive constants:

m = max
t∈I

∫ δ

0
GM(t, s) ds, (3.4)

M1 = max
t∈I

∫ 1

0
GM(t, s) ds (3.5)

and

M2 = max
t∈I

∫ 1

0

∣∣∣∣∂2GM

∂t2 (t, s)
∣∣∣∣ ds. (3.6)

We suppose that there are L > b > γ
R b > c > 0 such that f satisfies the following growth

conditions:

(H1) f (t, u, v) < c
M1

, for (t, u, v) ∈ I × [0, c]× [−L, L],

(H2) f (t, u, v) ≥ b
m , for (t, u, v) ∈ I × [ γ

R b, b]× [−L, L],

(H3) f (t, u, v) < L
M2

, for (t, u, v) ∈ I × [0, b]× [−L, L].

Theorem 3.4. Assume that conditions (H0)–(H3) are fulfilled. Then the boundary value problem
(1.4)–(1.5) has at least one positive solution u satisfying

c < ‖u‖∞ < b, ‖u′′‖∞ < L.

Proof. Take

Ω1 = {u ∈ E : ‖u‖∞ < c, ‖u′′‖∞ < L}, Ω2 = {u ∈ E : ‖u‖∞ < b, ‖u′′‖∞ < L}

two boundary open sets in E, and

D1 = {u ∈ E : ‖u‖∞ = c}, D2 = {u ∈ E : ‖u‖∞ = b}.
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As in [16], we define the following double truncated continuous function as follows:

f ∗(t, u, v) =

{
f (t, u, v) if (t, u, v) ∈ I × [0, b]×R,

f (t, b, v) if (t, u, v) ∈ I × [b, ∞)×R,

and

f1(t, u, v) =


f ∗(t, u,−L) if (t, u, v) ∈ I × [0, ∞)× (−∞,−L],

f ∗(t, u, v) if (t, u, v) ∈ I × [0, ∞)× [−L, L],

f ∗(t, u, L) if (t, u, v) ∈ I × [0, ∞)× [L, ∞).

As a direct consequence, we have that f1 satisfies the following properties:

(H1
1) f1(t, u, v) < c

M1
, for (t, u, v) ∈ I × [0, c]×R,

(H1
2) f1(t, u, v) ≥ b

m , for (t, u, v) ∈ I × [ γ
R b, ∞)×R,

(H1
3) f1(t, u, v) < L

M2
, for (t, u, v) ∈ I × [0, ∞)×R.

Now, we define the operator

(T1 u)(t) =
∫ 1

0
GM(t, s) f1(s, u(s), u′′(s)) ds,

whose fixed points coincide with the solutions of problem

u(4)(t) + Mu(t) = f1(t, u(t), u′′(t)), t ∈ I, (3.7)

coupled to boundary conditions (1.5).
As in Lemmas 3.2 and 3.3 it is not difficult to verify that T1 : Kδ

γ → Kδ
γ is a completely

continuous operator.
Let p = 1

2 b ∈ (Ω2 ∩ Kδ
γ) \ {0}. It is easy to see that α(u + µp) ≥ α(u) for all u ∈ Kδ

γ and
µ ≥ 0.

In view of (H1) and α(u) = c, u ∈ D1 ∩ Kδ
γ, we have that

α(T1u) = max
t∈I

∣∣∣∣∫ 1

0
GM(t, s) f1(s, u(s), u′′(s)) ds

∣∣∣∣ < max
t∈I

∫ 1

0
GM(t, s)

c
M1

ds ≤ c.

Hence, α(T1u) < c.
Therefore, using (H2) and the fact that u(s) ≥ γ

R α(u) for all s ∈ [0, δ], we have for all
u ∈ D2 ∩ Kδ

γ the following inequality is fulfilled

α(T1u) = max
t∈I

∣∣∣∣∫ 1

0
GM(t, s) f1(s, u(s), u′′(s)) ds

∣∣∣∣ > max
t∈I

∫ δ

0
GM(t, s)

b
m

ds ≥ b.

Hence, α(T1u) > b.

β(T1u) = max
t∈I

∣∣∣∣∫ 1

0

∂2GM

∂t2 (t, s) f1(s, u(s), u′′(s)) ds
∣∣∣∣ < max

t∈I

∫ 1

0

∣∣∣∣∂2GM

∂t2 (t, s)
∣∣∣∣ L

M2
ds ≤ L.

Hence, β(T1u) < L.
Therefore, u is a positive solution for the boundary value problem (3.7), (1.5) satisfying

c < ‖u‖∞ < b, ‖u′′‖∞ < L.

From the definition of function f1, we conclude that the obtained solutions are also solu-
tions of (1.4)–(1.5) and the proof is complete.
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4 Examples

In the sequel, we will obtain the different bounds and results for the particular case when
M = 0 and ν(t) = 1 for all t ∈ I. That is, we want to prove the existence of positive solutions
of the problem:

L0u(t) = u(4)(t) = f (t, u(t), u′′(t)), t ∈ [0, 1] (4.1)

subject to the boundary conditions:

u(1) = u′(0) = u′(1) = 0, u(0) = λ
∫ 1

0
u(s) ds. (4.2)

It is immediate to verify that

C0 :=
∫ 1

0
(t− 1)2(1 + 2t)dt =

1
2

.

As a consequence: 0 < λ < 2.
Now, let us obtain the correspondent δ, γ and R. The expression of the related Green’s

function is given in Lemma 2.3.
Using the notation in Theorem 2.10, we have

ϕ̃(t, s) =


φ1(t, s) if 0 < s < t < 1,

ψ1(t) if s = 0,

ψ2(t) if s = 1,

φ2(t, s) if 0 < t ≤ s < 1.

So we have

φ1(t, s) =
(−1 + t)2 (−4(s + 2st)− 4t(−3 + λ) + λ + s2(1 + 2t)λ

)
(−1 + s)2λ

,

φ2(t, s) =
2t3(−2 + λ) + 2st2(−3 + 2t)(−2 + λ) + s2(−1 + t)2(1 + 2t)λ

s2λ
,

ψ1(t) =
(−1 + t)2(−4t(−3 + λ) + λ)

λ

and

ψ2(t) = 1 +
t2(12− 9λ + 4t(−3 + 2λ))

λ
.

It is clear that

∂ϕ̃

∂s
(t, s) =


∂φ1(t,s)

∂s if 0 < s < t < 1,

0 if s = 0 or s = 1,
∂φ2(t,s)

∂s if 0 < t ≤ s < 1,

where
∂φ1(t, s)

∂s
= −2(−1 + t)2(1 + s + 2(−2 + s)t)(−2 + λ)

(−1 + s)3λ

and

∂φ2(t, s)
∂s

= −2t2(−3s + 2(1 + s)t)(−2 + λ)

s3λ
.
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Let α1(t) = 4t−1
2t+1 and α2(t) = 2t

3−2t , it is obvious that

∂φ1(t, s)
∂s

= 0 if and only if s = α1(t)

and
∂φ2(t, s)

∂s
= 0 if and only if s = α2(t).

• If t ∈ [0, 1
4 ], in this case φ1(t, ·) is decreasing on [0, t] and φ2(t, ·.) is decreasing on [t, 1] .

In this case for all t ∈ [0, 1
4 ], maxs∈I ϕ̃(t, s) = ψ1(t) and h(t) = mins∈I ϕ̃(t, s) = ψ2(t).

• If t ∈ [ 1
4 , 1

2 ], α1(t) ∈ [0, t] in this case φ1(t, ·) is increasing on [0, α1(t)] and it is decreasing
on [α1(t), t] and φ2(t, ·.) is decreasing on [t, 1]. Then for all t ∈ [ 1

4 , 1
2 ] we have

max
s∈I

ϕ̃(t, s) = φ1(t, α1(t)) =
(−1 + t)(1 + 2t)(−2 + 4t(−1 + λ)− λ)

2λ
(4.3)

and
h(t) = min

s∈I
ϕ̃(t, s) = min {ψ1(t), ψ2(t)} = ψ2(t). (4.4)

• If t ∈ [ 1
2 , 3

4 ], α2(t) ∈ [t, 1] in this case φ2(t, ·.) is increasing on [t, α2(t)] and is decreasing
on [α2(t), 1] and φ1(t, ·) is increasing on [0, t]. Then for all t ∈ [ 1

2 , 3
4 ] we have

max
s∈I

ϕ̃(t, s) = φ2(t, α2(t)) =
2λ + t(−3 + 2t)(−6 + 4t + 3λ)

2λ
(4.5)

and
h(t) = min

s∈I
ϕ̃(t, s) = min {ψ1(t), ψ2(t)} = ψ1(t). (4.6)

• If t ∈ [ 3
4 , 1], in this case φ1(t, ·) is increasing on [0, t] and φ2(t, ·.) is increasing on [t, 1].

In this case for all t ∈ [ 3
4 , 1], maxs∈I ϕ̃(t, s) = ψ2(t) and h(t) = ψ1(t).

In conclusion we obtain

max
s∈I

ϕ̃(t, s) =


ψ1(t) if t ∈

[
0, 1

4

]
,

φ1(t, α1(t)) if t ∈
[ 1

4 , 1
2

]
,

φ2(t, α2(t)) if t ∈
[ 1

2 , 3
4

]
,

ψ2(t) if t ∈
[ 3

4 , 1
]

,

and

min
s∈I

ϕ̃(t, s) =

{
ψ2(t) if t ∈

[
0, 1

2

]
,

ψ1(t) if t ∈
[ 1

2 , 1
]

.

Let R1 = maxt∈[ 1
4 , 1

2 ]
φ1(t, α1(t)), R2 = maxt∈[ 1

2 , 3
4 ]

φ2(t, α2(t)), R3 = maxt∈[0, 1
4 ]

ψ1(t) and R4 =

maxt∈[ 3
4 ,1] ψ2(t). We deduce that R = max(t,s)∈I×I ϕ̃(t, s) = max {R1, R2, R3, R4} and

γ = min
t∈[0,δ]

h(t) =

{
min {1, ψ2(δ)} if δ ∈

(
0, 1

2

]
,

min {1, ψ1(δ)} if δ ∈
[ 1

2 , 1
)

.

Choosing δ = 0.9 and λ = 1. By computation we obtain
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R = max {1.6875, 1, 1.6875, 1} = 1.6875, γ = mint∈[0,δ] h(t) = 0.082, γ
R = 0.0485926.

By simple calculation, we have that M2 = maxt∈I
∫ 1

0

∣∣∣ ∂2G0
∂t2 (t, s)

∣∣∣ ds ≈ 0.1, m =

maxt∈I
∫ δ

0 G0(t, s) ds ≈ 0.00417006 and M1 = maxt∈I
∫ 1

0 G0(t, s) ds ≈ 0.0042.

Example 4.1. Let

f (t, u, v) =
t

100
+ 4.71241u + 0.000416894 u3 + (0.00521618 + 0.000125066 u2)

|v|
90

.

Choosing b = 60, γ
R b = 2.91556, γ

Rm = 11.6527, c = 0.5 and L = 400. By simple calculation,
f satisfy (H0) and we have that:

f (t, u, v) ≤ 2.38958 <
c

M1
= 119.048 for all (t, u, v) ∈ I × [0, c]× [−L, L],

f (t, u, v) ≥ 13.7496 >
γ

Rm
= 11.6527 for all (t, u, v) ∈ I ×

[γ

R
b, b
]
× [−L, L]

and

f (t, u, v) ≤ 374.828 <
L

M2
= 4000 for all (t, u, v) ∈ I × [0, b]× [−L, L].

With the use of Theorem 3.4, the boundary value problem (1.4)–(1.5) has at least one
positive solution u satisfying

0.5 < ‖u‖∞ < 60, ‖u′′‖∞ < 400.

Example 4.2. Let
f (t, u, v) = a(t)u + b(t)u3 + c(t)|v|α, α ∈ (0, 1)

where

a(t) =


t + 10 if t ∈ [0, 1

2 ],

−t + 11 if t ∈ [ 1
2 , 3

4 ],

3t + 8 if t ∈ [ 3
4 , 1],

b(t) =

{
et if t ∈ [0, 1

2 ],

2e
1
2 t if t ∈ [ 1

2 , 1]

and

c(t) =


(

10−3

9

)α 1
2α

if t ∈ [0, 1
2 ],(

10−3

9

)α

tα if t ∈ [ 1
2 , 1].

For this we have, for all t ∈ [0, 1], 10 ≤ a(t) ≤ 11, 1 ≤ b(t) ≤ 2e
1
2 and

( 10−3

9

)α 1
2α ≤ c(t) ≤( 10−3

9

)α. Choosing c = 1, b = 30, γ
R b = 1.457778 and L = 9× 103. By simple calculation, we

have that:

f (t, u, v) ≤ 15.2974 <
c

M1
= 238.09 for all (t, u, v) ∈ I × [0, c]× [−L, L],

f (t, u, v) ≥ 17.6757 >
γ

Rm
= 11.6527 for all (t, u, v) ∈ I ×

[γ

R
b, b
]
× [−L, L]

and

f (t, u, v) ≤ 89361.9486 <
L

M2
= 90000 for all (t, u, v) ∈ I × [0, b]× [−L, L].

With the use of Theorem 3.4, the boundary value problem (1.4)–(1.5) has at least one
positive solution u satisfying

1 < ‖u‖∞ < 30, ‖u′′‖∞ < 9× 103.



16 A. Cabada and R. Jebari

References

[1] A. Cabada, J. A. Cid, B. Máquez-Villamarín, Computation of Green’s functions for
boundary value problems with Mathematica, Appl. Math. Comput. 219(2012), 1919–1936.
https://doi.org/10.1016/j.amc.2012.08.035; MR2983897

[2] A. Cabada, R. R. Enguiça, Positive solutions of fourth order problems with clamped
beam boundary conditions, Nonlinear Anal. 74(2011), 3112–3122. https://doi.org/10.
1016/j.na.2011.01.027; MR2793550

[3] A. Cabada, R. Enguiça, L. López-Somoza, Positive solutions for second-order boundary-
value problems with sign changing Green’s functions, Electronic J. Differential Equations
2017, No. 245, 1–17. MR3711198

[4] A. Cabada, C. Fernández-Gómez, Constant sign solutions of two-point fourth order
problems; Appl. Math. Comput. 263(2015), 122–133. https://doi.org/10.1016/j.amc.
2015.03.112; MR3348530

[5] A. Cabada, R. Jebari, Multiplicity results for fourth order problems related to the theory
of deformations beams, Discrete Contin. Dyn. Syst. Ser. B 25(2020), No. 2, 489–505. https:
//doi.org/10.3934/dcdsb.2019250; MR4043575

[6] A. Cabada, L. López-Somoza, F. Minhós, Existence, non-existence and multiplicity re-
sults for a third order eigenvalue three-point boundary value problem, J. Nonlinear Sci.
Appl. 10(2017), 5445–5463. https://doi.org/10.22436/jnsa.010.10.28; MR3725419

[7] A. Cabada, L. Saavedra, The eigenvalue characterization for the constant sign Green’s
functions of (k, n − k) problems, Bound. Value Probl. 2016, No. 44, 35 pp. https://doi.
org/10.1186/s13661-016-0547-1; MR3459347

[8] A. Cabada, L. Saavedra, Characterization of constant sign Green’s function for a two-
point boundary-value problem by means of spectral theory, Electron. J. Differential Equa-
tions 2017, No. 146, 1–96. MR3690173

[9] A. Cabada, L. Saavedra, Characterization of non-disconjugacy for a one parame-
ter family of nth-order linear differential equations, Appl. Math. Lett. 65(2017), 98–105.
https://doi.org/10.1016/j.aml.2016.10.01; MR3575178

[10] W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag,
Berlin-New York, 1971. https://doi.org/10.1007/BFb0058618; MR0460785

[11] K. Deimling, Nonlinear functional analysis, Springer, Berlin, 1985. https://doi.org/10.
1007/978-3-662-00547-7; MR787404

[12] E. Feireisl, Nonzero time periodic solutions to an equation of Petrovsky type with non-
linear boundary conditions: slow oscillations of beams on elastic bearings, Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (4) 20(1993), 133–146. MR1216001

[13] C. Gao, F. Zhang, R. Ma, Existence of positive solutions of second-order periodic bound-
ary value problems with sign-changing Green’s function, Acta Math. Appl. Sin. Engl. Ser.
33(2017), 263–268. https://doi.org/10.1007/s10255-017-0657-2; MR3646983

https://doi.org/10.1016/j.amc.2012.08.035
https://www.ams.org/mathscinet-getitem?mr=2983897
https://doi.org/10.1016/j.na.2011.01.027
https://doi.org/10.1016/j.na.2011.01.027
https://www.ams.org/mathscinet-getitem?mr=2793550
https://www.ams.org/mathscinet-getitem?mr=3711198
https://doi.org/10.1016/j.amc.2015.03.112
https://doi.org/10.1016/j.amc.2015.03.112
https://www.ams.org/mathscinet-getitem?mr=3348530
https://doi.org/10.3934/dcdsb.2019250
https://doi.org/10.3934/dcdsb.2019250
https://www.ams.org/mathscinet-getitem?mr=4043575
https://doi.org/10.22436/jnsa.010.10.28
https://www.ams.org/mathscinet-getitem?mr=3725419
https://doi.org/10.1186/s13661-016-0547-1
https://doi.org/10.1186/s13661-016-0547-1
https://www.ams.org/mathscinet-getitem?mr=3459347
https://www.ams.org/mathscinet-getitem?mr=3690173
https://doi.org/10.1016/j.aml.2016.10.01
https://www.ams.org/mathscinet-getitem?mr=3575178
https://doi.org/10.1007/BFb0058618
https://www.ams.org/mathscinet-getitem?mr=0460785
https://doi.org/10.1007/978-3-662-00547-7
https://doi.org/10.1007/978-3-662-00547-7
https://www.ams.org/mathscinet-getitem?mr=787404
https://www.ams.org/mathscinet-getitem?mr=1216001
https://doi.org/10.1007/s10255-017-0657-2
https://www.ams.org/mathscinet-getitem?mr=3646983


Clamped beam equation with integral boundary conditions 17

[14] M. R. Grossinho, T. F. Ma, Symmetric equilibria for a beam with a nonlinear elastic
foundation, Portugal. Math. 51(1994), 375–393. MR1295208

[15] Y. Ji, Y. Guo, Chang-long Yu, Positive solutions to (n − 1, 1) m-point boundary value
problems with dependence on the first order derivative, Appl. Math. Mech. (English Ed.)
30(2009), No. 4, 527–536. https://doi.org/10.1007/s10483-009-0413-x; MR2513432

[16] Y. Guo, W. Ge, Positive solutions for three-point boundary value problems with de-
pendence on the first order derivative, J. Math. Anal. Appl. 290(2004), 291–301. https:
//doi.org/10.1016/j.jmaa.2003.09.061; MR2032241

[17] G. Infante, Positive solutions of nonlocal boundary value problems with singularities,
Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications.
7th AIMS Conference, suppl. (2009), 377–384. https://doi.org/10.3934/proc.2009.
2009.377; MR2641414

[18] G. Infante, F. Minhós, Nontrivial solutions of systems of Hammerstein integral equa-
tions with first derivative dependence, Mediterr. J. Math. 14(2017), Paper No. 242, 18 pp.
https://doi.org/10.1007/s00009-017-1044-1; MR3735472

[19] G. Infante, J. R. L. Webb, Nonzero solutions of Hammerstein integral equations with
discontinuous kernels, J. Math. Anal. Appl. 272(2002), 30–42. https://doi.org/10.1016/
S0022-247X(02)00125-7; MR1930701

[20] Y. Liu, Z. Weiguo, L. Xiping, A sufficient condition for the existence of a positive solution
for a nonlinear fractional differential equation with the Riemann–Liouville derivative,
Appl. Math. Lett. 25(2012), 1986–1992. https://doi.org/10.1016/j.aml.2012.03.018;
MR2957792

[21] F. Minhós, R. de Sousa, On the solvability of third-order three point systems of dif-
ferential equations with dependence on the first derivative, Bull. Braz. Math. Soc. (N.S.)
48(2017), 485–503. https://doi.org/10.1007/s00574-016-0025-5; MR3712344

[22] G. Perla Menzala, E. Zuazua, Explicit exponential decay rates for solutions of von
Kármán’s system of thermoelastic plates, C. R. Acad. Sci. Paris Sér. I Math. 324(1997), 49–
54. https://doi.org/10.1016/S0764-4442(97)80102-4; MR1435586

[23] J. Schröder, On linear differential inequalities, J. Math. Anal. Appl. 22(1968), 188–216.
https://doi.org/10.1016/0022-247X(68)90169-8; MR223935

[24] X. Yang, Z. Wei, W. Dong, Existence of positive solutions for the boundary value prob-
lem of nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul.
17(2012), 85–92. https://doi.org/10.1016/j.cnsns.2011.05.007; MR2825989

https://www.ams.org/mathscinet-getitem?mr=1295208
https://doi.org/10.1007/s10483-009-0413-x
https://www.ams.org/mathscinet-getitem?mr=2513432
https://doi.org/10.1016/j.jmaa.2003.09.061
https://doi.org/10.1016/j.jmaa.2003.09.061
https://www.ams.org/mathscinet-getitem?mr=2032241
https://doi.org/10.3934/proc.2009.2009.377
https://doi.org/10.3934/proc.2009.2009.377
https://www.ams.org/mathscinet-getitem?mr=2641414
https://doi.org/10.1007/s00009-017-1044-1
https://www.ams.org/mathscinet-getitem?mr=3735472
https://doi.org/10.1016/S0022-247X(02)00125-7
https://doi.org/10.1016/S0022-247X(02)00125-7
https://www.ams.org/mathscinet-getitem?mr=1930701
https://doi.org/10.1016/j.aml.2012.03.018
https://www.ams.org/mathscinet-getitem?mr=2957792
https://doi.org/10.1007/s00574-016-0025-5
https://www.ams.org/mathscinet-getitem?mr=3712344
https://doi.org/10.1016/S0764-4442(97)80102-4
https://www.ams.org/mathscinet-getitem?mr=1435586
https://doi.org/10.1016/0022-247X(68)90169-8
https://www.ams.org/mathscinet-getitem?mr=223935
https://doi.org/10.1016/j.cnsns.2011.05.007
https://www.ams.org/mathscinet-getitem?mr=2825989

	Introduction
	Preliminaries and Green's function properties
	Existence of positive solutions
	Examples

