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Abstract. A positive topological entropy is examined for impulsive differential equa-
tions via the associated Poincaré translation operators on compact subsets of Euclidean
spaces and, in particular, on tori. We will show the conditions under which the impul-
sive mapping has the forcing property in the sense that its positive topological entropy
implies the same for its composition with the Poincaré translation operator along the
trajectories of given systems. It allows us to speak about chaos for impulsive differential
equations under consideration. In particular, on tori, there are practically no implicit re-
strictions for such a forcing property. Moreover, the asymptotic Nielsen number (which
is in difference to topological entropy a homotopy invariant) can be used there effec-
tively for the lower estimate of topological entropy. Several illustrative examples are
supplied.

Keywords: topological entropy, impulsive differential equation, Poincaré’s operator,
asymptotic Nielsen number, Lefschetz number, Carathéodory periodic solution.

2020 Mathematics Subject Classification: Primary 34B37, 34C28, 37B40; Secondary
34C40, 37D45.

1 Introduction

The main aim of the present paper is to establish a positive topological entropy for impulsive
differential equations via the associated Poincaré translation operators along their trajectories.
We will present, under natural assumptions, the relationship for the topological entropies of
given impulsive maps and their compositions with the Poincaré operators, from which a pos-
itive topological entropy of the composition, determining chaos for the impulsive differential
equations, is implied by the one of the impulsive map. On tori, the Ivanov theorem (see
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[13, 17]), using effectively the asymptotic Nielsen number (which is in difference to topolog-
ical entropy a homotopy invariant), is applied for the lower estimate of topological entropy.
Moreover, this application can be expressed on tori in terms of the Lefschetz numbers which
are significantly easier for calculations.

Although various sorts of chaos have been already investigated for impulsive differential
equations (see e.g. [1, 5, 6, 18, 24], and the references therein), as far as we know, a topological
entropy has been examined, with only a few exceptions like [3], exclusively for non-impulsive
differential equations and dynamical systems (see e.g. [11, 14, 22, 25, 27], and the references
therein). That is why we would like, besides other things, to eliminate here this handicap.

For this goal, we will firstly recall Bowen’s definition of a topological entropy [7], jointly
with its basic properties. We will also recall the Ivanov theorem [13] and its consequences
on tori. For the systems of ordinary differential equations on Rn and Rn/Zn, we will define
the associated Poincaré translation operators along the trajectories and point out the relation-
ship between Carathéodory periodic solutions and periodic points of the Poincaré operators.
Before a separate formulation of the main theorems about a positive topological entropy for
impulsive differential equations on Euclidean spaces and tori, we will deduce mentioned cru-
cial relationship for topological entropies of impulsive maps and their compositions with the
Poincaré operators. The obtained results will be illustrated by simple examples and com-
mented by concluding remarks.

2 Preliminaries

Although the topological entropy, which is a central notion of our paper, was defined by
Bowen [7] (cf. also [2, p. 188], [23, pp. 369–370]) for uniformly continuous maps, we will
restrict ourselves (from the practical reasons) to a subclass of continuous maps on compact
metric spaces. For more details about the topological entropy, see e.g. [19].

Definition 2.1. Let (X, d) be a compact metric space and f : X → X be a continuous map.
A set S ⊂ X is called (n, ε)-separated for f , for a positive integer n and ε > 0, if for every
pair of distinct points x, y ∈ S, x 6= y, there is at least one k with 0 ≤ k < n such that
d
(

f k(x), f k(y)
)
> ε. Then, denoting the number of different orbits of length n by

r(n, ε, f ) := max {#S : S ⊂ X is an (n, ε)-separated set for f } ,

where #S stands for the cardinality (i.e. the number of elements) of S, the topological entropy
h( f ) of f is defined as

h( f ) := lim
ε→0

[
lim sup

n→∞

1
n

log(r(n, ε, f ))
]

.

It will be convenient to recall the following properties of topological entropy. The first
lemma justifies Definition 2.1 in the sense that the metric d in the notation of h( f ) can be
omitted.

Lemma 2.2 (cf. e.g. [19, Proposition 3.1.2], [26, Corollary 7.5.2]). If X is a compact metrisable
space and d′ is any metric on X, then h( f ) = hd′( f ) holds for any continuous map f : X → X, where
hd′( f ) denotes the topological entropy of f on X calculated with any specific metric d′.

Lemma 2.3 (cf. e.g. [2, Lemma 4.1.10], [23, Theorem IX.1.3]). Let f be a continuous map on X.
Assume X = X1 ∪ · · · ∪ Xk is a decomposition into disjoint closed invariant subsets which are a
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positive distance apart. Then

h( f ) = max
j=1,...,k

h
(

f
∣∣

Xj

)
.

Lemma 2.4 (cf. e.g. [2, Lemma 4.1.5], [23, Theorem IX.1.4]). Let f be a continuous map on a
compact metric space X. Let Ω ⊂ X be the nonwandering points of f , i.e. the points p ∈ Ω such that,
for every neighbourhood U of p, there is an integer n > 0 such that f n(U)∩U 6= ∅. Then the entropy
h( f ) of f equals the entropy of f restricted to its nonwandering set Ω, namely h( f ) = h

(
f
∣∣
Ω

)
.

Lemma 2.5 (cf. e.g. [23, Theorem IX.1.5]). Let f be a continuous map on a compact metric space X
for which the nonwandering set Ω consists of a finite number of periodic orbits. Then the topological
entropy h( f ) of f is zero, h( f ) = 0. In particular, the same is true, provided

⋂∞
j=0 f j(X) is finite (see

e.g. [2, p. 194]).

Before formulating the following lemma, let us recall that a map s : X → Y is uniformly
finite to one if s−1(y) has a finite number of points for each y ∈ Y, and there is a bound on the
number of elements in s−1(y) which is independent of y ∈ Y.

Lemma 2.6 (cf. e.g. [23, Theorem IX.1.8]). Assume that f : X → X and g : Y → Y are continuous
maps, where (X, d) and (Y, d′) are compact metric spaces with metrics d and d′, respectively. Assume
s : X → Y is a semi-conjugacy from f to g, i.e. (i) s is continuous, (ii) s is “onto”, (iii) s ◦ f = g ◦ s,
that is uniformly finite to one. Then h( f ) = h(g).

If X is a compact polyhedron, then we can apply in the form of proposition the following
Jiang’s slight generalization (see [17]) of the Ivanov theorem [13], for the lower estimate of the
topological entropy. For the definition and properties of the Nielsen number, which is unlike
to topological entropy a homotopy invariant, see e.g. [9, 15].

Proposition 2.7. Suppose X is a compact polyhedron and, in particular (for our needs), the torus
X = Rn/Zn. Let f : X → X be a continuous map. Then for any continuous map g : X → X
homotopic to f (i.e. g ∼ f ), the topological entropy h(g) satisfies h(g) ≥ log N∞( f ), where

N∞( f ) := max
{

1, lim sup
m→∞

(
N( f m)

) 1
m

}
is the asymptotic Nielsen number of f and N( f m) is the standard Nielsen number of the m-th iterate
of f . Thus, if N∞( f ) > 1, then

h(g) ≥ lim sup
m→∞

1
m

log N( f m) > 0

holds for any g ∼ f .

Remark 2.8. For the torus X = Rn/Zn, we have still (see [8])

N( f ) = |λ( f )| ,

where λ( f ) denotes the Lefschetz number of f (for its definition and properties, see e.g. [9]), by
which the inequality

h(g) ≥ log N∞( f ) (2.1)

can be rewritten into

h(g) ≥ log max
{

1, lim sup
m→∞

|λ( f m)|
1
m

}
, (2.2)

which is significantly easier for verification.
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Hence, if
lim sup

m→∞
|λ( f m)|

1
m > 1,

then
h(g) ≥ lim sup

m→∞

1
m

log |λ( f m)| > 0

holds for any g ∼ f .
If, in particular, f : Rn/Zn → Rn/Zn is an endomorphism defined by an integer matrix

A, whose eigenvalues are λ1, . . . , λn, then (see e.g. [16, Example, p. 192])

N∞( f ) =


1, if λ( f ) = 0

∏
|λk |>1

|λk| , otherwise, (2.3)

and λ( f ) = det(I − A) = Πn
k=1(1− λk), where λ( f ) stands for the Lefschetz number of f .

Now, consider the vector differential equation

x′ = F(t, x), (2.4)

where F : R×Rn → Rn is the Carathéodory mapping such that F(t, x) ≡ F(t + ω, x), for some
given ω > 0, i.e.

(i) F(·, x) : [0, ω]→ Rn is measurable, for every x ∈ Rn,

(ii) F(t, ·) : Rn → Rn is continuous, for almost all (a.a.) t ∈ [0, ω].

Let, furthermore (2.4) satisfy a uniqueness condition and all solutions of (2.4) entirely exist on
the whole line (−∞, ∞).

By a (Carathéodory) solution x(·) of (2.4), we understand a locally absolutely continuous
function, i.e. x ∈ ACloc(R, Rn), which satisfies (2.4) for a.a. t ∈ R.

We can associate to (2.4) the Poincaré translation operator Tω : Rn → Rn along its trajectories
as follows:

Tω(x0) := {x(ω) : x(·) is a solution of (2.4) such that x(0) = x0} . (2.5)

It is well known (see e.g. [20, Chapter 1.1] that Tω is a homeomorphism such that Tk
ω = Tkω,

for every k ∈N.
Assuming still that

F(t, . . . , xj, . . . ) ≡ F(t, . . . , xj + 1, . . . ), j = 1, . . . , n, (2.6)

where x = (x1, . . . , xn), we can also consider (2.4) on the torus Rn/Zn, which can be endowed
with the metric

d̂(x, y) := min {dEucl(a, b) : a ∈ [x], b ∈ [y]} ,

for all x, y ∈ Rn/Zn, where dEucl(a, b) :=
√

∑n
j=1(aj − bj)2, for all a, b ∈ Rn.

The associated Poincaré translation operator T̂ω : Rn/Zn → Rn/Zn along the trajectories of
(2.4), considered on Rn/Zn, takes the form T̂ω := τ ◦ Tω, where Tω was defined in (2.5), and
τ : Rn → Rn/Zn, x → [x] := {y ∈ Rn : (y− x) ∈ Zn} is the natural (canonical) projection. It is
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well known (see e.g. [10, Chapter XVII]) that T̂ω is also a homeomorphism such that T̂k
ω = T̂kω,

for every k ∈N. In particular, for n = 1, T̂ω is an orientation-preserving homeomorphism.
One can easily detect the one-to-one correspondence between the kω-periodic solutions of

(2.4), i.e. x(t) ≡ x(t + kω) but x(t) 6≡ x(t + jω) for j < k, and k-periodic points of Tω, i.e
x0 = Tk

ω(x0) but x0 6= T j
ω(x0) for j < k, where x0 = x(0) and j, k are positive integers.

The same correspondence holds between kω-periodic solutions x̂(·) := τ ◦ x(·) of (2.4),
considered on Rn/Zn, and k-periodic points x̂0 = τ ◦ x0 of T̂ω := τ ◦ Tω, where x̂0 = x̂(0).

The impulsive differential equations, i.e. the differential equations (2.4) with impulses
at t = tj := jω, j ∈ Z, will be considered separately on the spaces Rn and Rn/Zn. Their
solutions will be also understood in the same Carathéodory sense, i.e. x ∈ AC[tj, tj+1], j ∈ Z.

3 Topological entropy for impulsive differential equations on Rn

Consider the vector impulsive differential equation{
x′ = F(t, x), t 6= tj := jω, for some given ω > 0,

x(t+j ) = I(x(t−j )), j ∈ Z,
(3.1)

where F : R×Rn → R is the Carathéodory mapping such that F(t, x) ≡ F(t + ω, x), equation
(2.4) satisfies a uniqueness condition and a global existence of all its solutions on (−∞, ∞). Let,
furthermore, I : Rn → Rn be a compact continuous impulsive mapping such that K0 := I(Rn)

and I(K0) = K0.

Proposition 3.1. Let Tω : Rn → Rn be the associated Poincaré translation operator along the trajec-
tories of (2.4), defined in (2.5), such that K1 := Tω(K0) and K0 ⊂ K1. Then the equality

h
(

I
∣∣
K1
◦ Tω

∣∣
K0

)
= h

(
I
∣∣
K0

)
(3.2)

holds for the topological entropies h of the maps I
∣∣
K1
◦ Tω

∣∣
K0

: K0 → K0 and I
∣∣
K0

: K0 → K0.

Proof. We have the diagram

K0

Tω

��

Tω // K1
I // K0

Tω

��

K1
I // K0

Tω

OO

Tω // K1,

where K0, K1 ⊂ Rn are compact subsets, and Tω

∣∣
K0

: K0 → K1 is (i) continuous, (ii) “onto”

and uniformly finite to one, (iii) Tω

∣∣
K0
◦
(

I
∣∣
K1
◦ Tω

∣∣
K0

)
=
(
Tω

∣∣
K0
◦ I
∣∣
K1

)
◦ Tω

∣∣
K0

, i.e. it is a
semi-conjugacy.

Thus, applying Lemma 2.6, we obtain that

h
(

I
∣∣
K1
◦ Tω

∣∣
K0

)
= h

(
Tω

∣∣
K0
◦ I
∣∣
K1

)
.

Endowing K0, K1 with the respective metrics d, d′, where

d(x, y) := dEucl(x, y), for all x, y ∈ K0,

d′(x, y) := dEucl (Tω(x), Tω(y)) , for all x, y ∈ K0,

d′(x′, y′) := dEucl
(
x′, y′

)
, for all x′ (= Tω(x)) , y′ (= Tω(y)) ∈ K1,
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we can write in this notation that

h
(

Tω

∣∣
K0
◦ I
∣∣
K1

)
= hd′

(
I
∣∣
K1

)
, resp. h

(
I
∣∣
K1
◦ Tω

∣∣
K0

)
= hd′

(
I
∣∣
K1

)
, (3.3)

where the lower index d′ denotes the respective metric.
We can also write that

hd′
(

I
∣∣
K1

)
= hd′

(
I
∣∣
Tω(K0)

)
= hd′

(
I
∣∣
K0

)
. (3.4)

Furthermore, since the topological entropy of given continuous maps on compact metric
spaces does not depend, according to Lemma 2.2, on the used metrics, we get still that

hd′
(

I
∣∣
K0

)
= h

(
I
∣∣
K0

)
. (3.5)

Summing up the relations (3.3)–(3.5), we arrive at (3.2), as claimed.

Remark 3.2. It can be readily seen from (3.2) that a positive topological entropy holds for
I
∣∣
K1
◦ Tω

∣∣
K0

, when h
(

I
∣∣
K0

)
> 0 and K0 ⊂ K1, which is a rather implicit condition. Since K1 \ K0

is the wandering set for I, condition (3.2) is in a certain sense sharp (cf. also (3.3)). On the
other hand, if K0 contains only a finite number of periodic orbits for I

∣∣
K0

, then according to

Lemma 2.5, h
(

I
∣∣
K0

)
= 0, by which also h

(
I
∣∣
K1
◦ Tω

∣∣
K0

)
= 0.

Corollary 3.3. Consider the scalar impulsive differential equation, i.e. (3.1) for n = 1. If [a, b] ⊂
[Tω(a), Tω(b)] holds for the Poincaré translation operator Tω along the trajectories of (2.4), defined in
(2.5), where [a, b] = I([a, b]), then condition (3.2) takes the form

h
(

I
∣∣
[Tω(a),Tω(b)]

◦ Tω

∣∣
[a,b]

)
= h

(
I
∣∣
[a,b]

)
. (3.6)

Proof. Since Tω : R → R must be, under a uniqueness condition, strictly increasing, we have
that K1 = [Tω(a), Tω(b)], where K0 = [a, b]. In this notation, K0 ⊂ K1, and condition (3.2) takes
the form (3.6).

Definition 3.4. We say that the vector impulsive differential equation (3.1) exhibits chaos in
the sense of a positive topological entropy h if h

(
I
∣∣
K1
◦ Tω

∣∣
K0

)
> 0 holds for the composition of

the associated Poincaré translation operator Tω along the trajectories of (2.4), defined in (2.5),
with the compact impulsive mapping I : Rn → Rn, where K0 := I(Rn) and K1 := Tω(K0).

Theorem 3.5. The vector impulsive differential equation (3.1) exhibits, under the above assumptions,
chaos in the sense of Definition 3.4, if I(K0) = K0 and K0 ⊂ K1, where K0 := I(Rn) and K1 :=
Tω(K0), jointly with h

(
I
∣∣
K0

)
> 0.

Proof. The proof follows directly from the inequality (3.2) in Proposition 3.1.

Corollary 3.6. The scalar (n = 1) impulsive differential equation (3.1) exhibits, under the above
assumptions, chaos in the sense of Definition 3.4, provided h

(
I
∣∣
[a,b]

)
> 0 holds, jointly with I(R) =

I([a, b]) = [a, b] ⊂ [Tω(a), Tω(b)].

Proof. The proof follows directly from the equality (3.6) in Corollary 3.3, where K0 = [a, b] and
K1 = [Tω(a), Tω(b)].

The following simple illustrative examples demonstrate an application of Corollary 3.6 to
scalar (n = 1) linear and semi-linear impulsive differential equations.
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Example 3.7. Consider the linear impulsive equationx′ = p(t)x + q(t), t 6= tj := jω, for some given ω > 0,

x(t+j ) = I(x(t−j )), j ∈ Z,
(3.7)

where p, q : R → R are measurable functions such that p(t) ≡ p(t + ω), q(t) ≡ q(t + ω), and
the compact (continuous) impulsive function I : R → R satisfies I(R) = [a, b] and I([a, b]) =
[a, b].

Since the general solution of x′ = p(t)x + q(t) reads

x(t) = x(0) e
∫ t

0 p(s)ds +
∫ t

0
e
∫ t

s p(r)dr q(s)ds,

the required inclusion [a, b] ⊂ [Tω(a), Tω(b)] in Corollary 3.6 takes the form

a ≥ a e
∫ ω

0 p(t)dt +
∫ ω

0
e
∫ ω

s p(r)dr q(s)ds,

b ≤ b e
∫ ω

0 p(t)dt +
∫ ω

0
e
∫ ω

s p(r)dr q(s)ds.

Specially, for a = 0, b = 1:

0 ≥
∫ ω

0
e
∫ ω

s p(r)dr q(s)ds, 1 ≤ e
∫ ω

0 p(t)dt +
∫ ω

0
e
∫ ω

s p(r)dr q(s)ds.

In order to satisfy the first inequality, we can assume that q(t) ≤ 0, for a.a. t ∈ [0, ω]. The
second inequality can be then more restrictively rewritten into

e
∫ ω

0 p(t)dt ≥ 1 +
∣∣∣∣∫ ω

0
e
∫ ω

0 p(r)dr q(s)ds
∣∣∣∣ .

Denoting P :=
∣∣∫ ω

0 p(t)dt
∣∣ and Q :=

∣∣∫ ω
0 q(t)dt

∣∣, we can rewrite it finally as

eP(1−Q) ≥ 1, resp. Q ≤ eP−1
eP ,

jointly with q(t) ≤ 0, for a.a. t ∈ [0, ω].
(3.8)

Specially, for p(t) ≡ p > 0, we can require that

Q ≤ epω −1
epω

and q(t) ≤ 0,

for a.a. t ∈ [0, ω], or −p e−pω ≤ q(t) ≤ 0, for a.a. t ∈ [0, ω].
Thus, the linear impulsive equation (3.7) exhibits chaos in the sense of Definition 3.4,

provided (3.8) holds jointly with h
(

I
∣∣
[0,1]

)
> 0.

The last inequality is satisfied, for instance, for the 1-periodically extended tent map I(x) ≡
I(x + 1), where

I(x) :=

2x, for x ∈
[
0, 1

2

]
,

2(1− x), for x ∈
[ 1

2 , 1
]

,

because I(R) = I([0, 1]) = [0, 1] and (cf. (3.6))

h
(

I
∣∣
[Tω(0),Tω(1)]

◦ Tω

∣∣
[0,1]

)
= h

(
I
∣∣
[0,1]

)
= log 2.

For the last inequality, see e.g. [19, Corollary 15.2.14].
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Example 3.8. Consider the semi-linear impulsive equationx′ = p(t, x)x + q(t, x), t 6= tj := jω, for some given ω > 0,

x(t+j ) = I(x(t−j )), j ∈ Z,
(3.9)

where p, q : R2 → R are Carathéodory functions such that p(t, x) ≡ p(t + ω, x), q(t, x) ≡
q(t + ω, x), and the compact (continuous) impulsive function I : R→ R satisfies I(R) = [a, b]
and I([a, b]) = [a, b].

Since the solutions x0(·), x1(·) of x′ = p(t, x)x + q(t, x) such that x0(0) = 0, x1(0) = 1 can
be implicitly expressed as

x0(t) =
∫ t

0
e
∫ t

s p(r,x0(r))dr q(s, x0(s))ds,

x1(t) = e
∫ t

0 p(s,x1(s))ds +
∫ t

0
e
∫ t

s p(r,x1(r))dr q(s, x1(s))ds,

one can proceed in a similar way as in Example 3.7.
Hence, the required inclusion [0, 1] ⊂ [Tω(0), Tω(1)] (for a = 0, b = 1) in Corollary 3.6

takes this time the form

0 ≥
∫ ω

0
e
∫ ω

s p(r,x0(r))dr q(s, x0(s))ds,

1 ≤ e
∫ ω

0 p(t,x1(t))dt +
∫ ω

0
e
∫ ω

s p(r,x1(r))dr q(s, x1(s))ds.

In order to satisfy the first inequality, we can assume that q(t, x) ≤ 0, for a.a. t ∈ [0, ω] and
all x ∈ R. The second inequality can be then more restrictively rewritten into

e
∫ ω

0 p(t,x1(t))dt ≥ 1 +
∣∣∣∣∫ ω

0
e
∫ ω

s p(r,x1(r))dr q(s, x1(s))ds
∣∣∣∣ .

Assuming still the existence of real constants p0, p1, q1 such that

0 < p0 ≤ p(t, x) ≤ p1 and |q(t, x)| ≤ q1, for a.a. t ∈ [0, ω] and all x ∈ R,

we still require that

q1 ≤
ep0ω −1
ω ep1ω

,

i.e. jointly with q(t, x) ≤ 0,

− ep0ω −1
ω ep1ω

≤ q(t, x) ≤ 0, for a.a. t ∈ [0, ω] and all x ∈ R, (3.10)

where 0 < p0 ≤ p(t, x), for a.a. t ∈ [0, ω] and all x ∈ R.
Thus, the semi-linear impulsive equation (3.9) exhibits chaos in the sense of Definition 3.4,

provided (3.10) holds jointly with h
(

I
∣∣
[0,1]

)
> 0. This inequality can be satisfied like in Exam-

ple 3.7, for instance, for the 1-periodically extended tent map.

Now, we would like to apply Theorem 3.5 to the nonlinear vector impulsive differential
equation (3.1).
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Example 3.9. Consider (3.1), where F and I are as above, and assume that{
f j(t, . . . , xj, . . . ) > 0 holds for all xj ≥ bj, j = 1, . . . , n,

f j(t, . . . , xj, . . . ) < 0 holds for all xj ≤ aj, j = 1, . . . , n,
(3.11)

uniformly for a.a. t ∈ [0, ω] and all the remaining components of x = (x1, . . . , xn), where
F(t, x) = ( f1(t, x), . . . , fn(t, x))T and

(
I(Rn) =

)
K0 := [a1, b1]× · · · × [an, bn], I(K0) = K0.

Since, in view of (3.11), the inequalities xj(ω, aj) ≤ aj and xj(ω, bj) ≥ bj, j = 1, . . . , n, hold
for all the components of the solutions x(·, a) and x(·, b) such that x(0, a) = a and x(0, b) = b,
where a = (a1, . . . , an), b = (b1, . . . , bn), the particular inclusion K0 ⊂ K1 is satisfied, where
K0 := [a1, b1]× · · · × [an, bn] and K1 := Tω(K0).

Thus, the vector impulsive equation (3.1) exhibits, according to Theorem 3.5, chaos in the
sense of Definition 3.4, provided (3.11) holds jointly with h

(
I
∣∣
K0

)
> 0, where K0 := [a1, b1]×

· · · × [an, bn]. This inequality can be satisfied, for instance when K0 := [0, 1]n (i.e. for [aj, bj] =

[0, 1], j = 1, . . . , n), for the Cartesian product I of 1-periodically extended tent maps, because
I ([0, 1]n) = [0, 1]n and (see e.g. [26])

h
(

I
∣∣
K1
◦ Tω

∣∣
[0,1]n

)
= h

(
I
∣∣
[0,1]n

)
= n log 2.

Remark 3.10. Observe that condition (3.11) imposed on the equations (3.7) and (3.9) takes the
simple forms p(t) + q(t) > 0, q(t) < 0, for a.a. t ∈ [0, ω], resp. p(t, 1) + q(t, 1) > 0, q(t, 0) < 0,
for a.a. t ∈ [0, ω].

4 Topological entropy for impulsive differential equations on
Rn/Zn

Consider (3.1) and assume additionally that (2.6) holds jointly with

I(. . . , xj, . . . ) ≡ I(. . . , xj + 1, . . . ) (mod 1), j = 1, . . . , n, (4.1)

where x = (x1, . . . , xn).
Because of the commutative diagram

Rn

τ
��

Tω // Rn I //

τ
��

Rn

τ
��

Rn/Zn T̂ω // Rn/Zn Î // Rn/Zn,

where τ is the natural (canonical) projection, T̂ω := τ ◦ Tω : Rn/Zn → Rn/Zn, where
Tω : Rn → Rn is the Poincaré translation operator along the trajectories of (2.4), defined in
(2.5), and Î = τ ◦ I : Rn/Zn → Rn/Zn, where I : Rn → Rn is the impulsive mapping in (3.1),
we can advantageously consider (3.1) on the torus Rn/Zn, in the metric

d̂ : Rn/Zn ×Rn/Zn →
[

0,
√

n
2

]
,

where d̂(x, y) := min {dEucl(a, b) : a ∈ [x], b ∈ [y]}.
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Since T̂ω is well known (see e.g. [10, Chapter XVII]) to be a homeomorphism and, in
particular for n = 1, even an orientation-preserving homeomorphism, the composition

Î ◦ Tω := Î ◦ T̂ω : Rn/Zn → Rn/Zn

is continuous in
(

Rn/Zn, d̂
)

.
We can therefore give the following analogy of Proposition 3.1 on Rn/Zn.

Proposition 4.1. The equality
h
(

Î ◦ Tω

)
= h

(
Î
)

(4.2)

holds, under the above assumptions and Î (Rn/Zn) = Rn/Zn, for the topological entropies h of the
maps Î ◦ Tω : Rn/Zn → Rn/Zn and Î : Rn/Zn → Rn/Zn in

(
Rn/Zn, d̂

)
.

Proof. We can proceed analogously, but (since Rn/Zn is compact and Î is “onto”) in a simpler
way, as in the proof of Proposition 3.1.

We have the diagram

Rn/Zn

T̂ω
��

T̂ω // Rn/Zn Î // Rn/Zn

T̂ω
��

Rn/Zn Î // Rn/Zn

T̂ω

OO

T̂ω // Rn/Zn,

where T̂ω : Rn/Zn → Rn/Zn is a homeomorphism and “onto”.
Thus, according to Lemma 2.6, we obtain that

h
(

Î ◦ T̂ω

)
= h

(
T̂ω ◦ Î

)
.

Endowing Rn/Zn with the new metric d̂′, where

d̂′(x, y) := d̂
(
T̂ω(x), T̂ω(y)

)
, for all x, y ∈ Rn/Zn,

we have that
h
(

Î ◦ Tω

)
= h

(
T̂ω ◦ I

)
= hd̂′( Î),

where the lower index d̂′ denotes the respective metric. Furthermore, we get still, according
to Lemma 2.2,

hd̂′( Î) = h( Î),

and, after all, that
h
(

Î ◦ Tω

)
= h( Î),

i.e. (4.2), as claimed.

Definition 4.2. We say that the vector impulsive differential equation (3.1) exhibits on Rn/Zn

(cf. also (2.6), (4.1)) chaos in the sense of a positive topological entropy h if h
(

Î ◦ Tω

)
> 0 holds for

the map Î ◦ Tω : Rn/Zn → Rn/Zn in (Rn/Zn, d̂), defined above.

Theorem 4.3. The vector impulsive differential equation (3.1) exhibits on Rn/Zn, under the above
assumptions and additionally (2.6), (4.1), jointly with Î(Rn/Zn) = Rn/Zn, chaos in the sense of
Definition 4.2, provided h( Î) > 0 holds for the impulsive mapping Î : Rn/Zn → Rn/Zn in the
metric d̂.
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Proof. The proof follows directly from the equality (4.2) in Proposition 4.1.

The following corollary can help us to calculate effectively the topological entropy h( Î),
and to ensure chaos for (3.1) on Rn/Zn (cf. [6, Theorem 5.2]).

Corollary 4.4. Let Î : Rn/Zn → Rn/Zn be defined by an integer matrix A, whose eigenvalues are
λ1, . . . , λn. Then

h( Î) = ∑
|λk |>1

log |λk|

holds for the topological entropy of Î, provided ∏n
k=1(1− λk) 6= 0. Therefore, if

∑
|λk |>1

log |λk| > 0 and
n

∏
k=1

(1− λk) 6= 0,

then (3.1) exhibits on Rn/Zn under (2.6) chaos in the sense of Definition 4.2.

Proof. The first assertion is well known (see e.g. [26, p. 203] and cf. the preliminaries in Sec-
tion 2). The second part is, on this basis, an immediate consequence of Theorem 4.3.

Example 4.5. As an illustrative example of the application of Corollary 4.4, let us consider
(3.1) on R2/Z2 (i.e. for n = 2), when assuming (2.6). Let Î : R2/Z2 → R2/Z2 be defined by
the integer matrix A, whose real eigenvalues are one, say λ1, of modulus |λ1| > 1 and the
other, say λ2, with |λ2| < 1. For instance, A can take the form,

A =

(
1 1
2 1

)
,

because λ1 = 1 +
√

2, λ2 = 1−
√

2, and so (1− λ1)(1− λ2) = −2, and
∣∣λ1
∣∣ = ∣∣1 +√2

∣∣ > 1,
|λ2| =

∣∣1−√2
∣∣ < 1.

Then h( Î) = log |λ1|) = log(1 +
√

2) > 0, and (3.1) exhibits on R2/Z2, according to
Corollary 4.4, chaos in the sense of Definition 4.2.

Observe that since λ( Î) = (1− λ1)(1− λ2) 6= 0 holds for the Lefschetz number, we obtain
according to (2.3) that N∞( Î) = |λ1| = 1 +

√
2, and subsequently (see (2.1)) h( Î) ≥ log |λ1| >

0, with the same conclusion for (3.1).

Theorem 4.3 can be modified by means of Proposition 2.7 as follows.

Theorem 4.6. Consider, under the above assumptions and (2.6), (4.1), jointly with Î(Rn/Zn) =

Rn/Zn, the vector impulsive differential equation (3.1) on Rn/Zn. Assume that the impulsive map-
ping Î : Rn/Zn → Rn/Zn is homotopic to a continuous map f : Rn/Zn → Rn/Zn such that
N∞( f ) > 1, i.e. (see (2.2))

lim sup
m→∞

|λ( f m)|
1
m > 1,

where λ( f m) stands for the Lefschetz number of the m-th iterate of f .
Then h( Î) ≥ lim supm→∞

1
m log N( f m) > 0 holds, where N( f m) denotes the Nielsen number

of the m-th iterate of f , and subsequently equation (3.1) exhibits on Rn/Zn chaos in the sense of
Definition 4.2.

Proof. The proof follows directly from Theorem 4.3, on the basis of Proposition 2.7 and Re-
mark 2.8.
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Example 4.7. Consider the scalar (n = 1) impulsive differential equation (3.1) on R/Z, when
assuming (2.6). Let Î : R/Z→ R/Z be the doubling impulsive mapping, where

Î :=

{
2x, for x ∈

[
0, 1

2

]
,

2x− 1, for x ∈
[ 1

2 , 1
]

.

Since one can easily check that (see e.g. [6])

N( Îk) =
∣∣∣λ( Îk)

∣∣∣ = ∣∣∣1− 2k
∣∣∣ , k ∈N,

holds for the Nielsen and Lefschetz numbers, we obtain that

N∞( Î) = lim sup
m→∞

∣∣λ( Îm)
∣∣ 1

m = lim sup
m→∞

|1− 2m|
1
m > 1.

Thus, applying Theorem 4.6, h( Î) > 0 holds, and (3.1) exhibits on R/Z chaos in the sense of
Definition 4.2.

According to Corollary 4.4, we have h( Î) = log 2, and the same conclusion.

Remark 4.8. Observe that if I : [0, 1]→ [0, 1] is the standard tent map defined in Example 3.7,
resp. its 1-periodic extension, then Î := τ ◦ I : R/Z → R/Z takes the same form as I. Thus,
h( Î) = log 2, which is sufficient for the application of Theorem 4.3. On the other hand,

N( Îk) =
∣∣∣λ( Îk)

∣∣∣ = 1, k ∈N,

holds this time, which excludes the application of Theorem 4.6.

Example 4.9. Consider the scalar linear impulsive equation (3.7) with p(t) ≡ 0, i.e.{
x′ = q(t), t 6= tj := jω, for some given ω > 0,

x(t+j ) = I(x(t−j )), j ∈ Z,
(4.3)

where q : R→ R is a measurable function such that q(t) ≡ q(t + ω) and 1
ω

∫ ω
0 q(t)dt = 0.

(i) One can easily check that (4.3) exhibits, according to Theorem 3.5, chaos in the sense
of Definition 3.4, provided the continuous impulsive function I : R → R is compact,
I(K0) = K0 and such that h(I

∣∣
K0
) > 0, where K0 := I(R).

(ii) Furthermore, (4.3) exhibits on R/Z, according to Theorem 4.3, chaos in the sense of
Definition 4.2, provided the continuous impulsive function I : R → R satisfies I(x) ≡
I(x + 1)(mod 1), Î(R/Z) = R/Z, and h( Î) > 0, where Î := τ ◦ I : R/Z→ R/Z.

(iii) At last, (4.3) exhibits on R/Z, according to Theorem 4.6, chaos in the sense of Def-
inition 4.2, provided the continuous impulsive function I : R → R satisfies I(x) ≡
I(x + 1)(mod 1), Î(R/Z) = R/Z, and Î is homotopic to f : R/Z → R/Z (i.e. Î ∼ f )
such that

lim sup
m→∞

|λ( f m)|
1
m > 1,

where λ( f m) stands for the Lefschetz number of the m-th iterate of f .

Remark 4.10. One can easily check that since for the 1-periodically extended tent map I : R→
[0, 1], defined in Example 3.7, h(I

∣∣
[0,1]

) = h( Î) = log 2 (> 0) and lim supm→∞

∣∣λ( Îm)
∣∣ 1

m = 1,
Theorem 3.5 and 4.3 apply in (i),(ii), while Theorem 4.6 does not apply in (iii). On the other
hand, since for the doubling map I := 2x : R → R, we have I(R) = R, h( Î) = log 2 and

lim supm→∞

∣∣λ( Îm)
∣∣ 1

m = lim supm→∞ |1− 2m|
1
m > 1, Theorems 4.3 and 4.6 apply in (ii), (iii),

while Theorem 3.5 does not apply in (i).
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5 Concluding remarks

It is well known that (see e.g. the main theorem in [21]), for continuous maps on compact in-
tervals, a positive topological entropy is equivalent with Devaney’s chaos on a closed invariant
subset, i.e. (i) topological transitivity, (ii) density of periodic points, (iii) sensitive dependence
on initial conditions. Moreover, transitivity implies period six (see e.g. [12]), and subsequently
(in view of the celebrated Sharkovsky cycle coexistence theorem, cf. e.g. [2, Theorem 2.1.1]) the
coexistence of 2k-periodic points, for every k ∈N. Reversely, the existence of a periodic point
with period k 6= 2n, n ∈ N ∪ {0}, implies according to the theorem of Boven and Franks (see
e.g. [2, Theorem 4.4.20]), a positive topological entropy, and subsequently Devaney’s chaos on
a closed invariant subset. The same, except the information about period six, but “only” with
period k 6= 2n, n ∈ N ∪ {0}, is true for continuous maps on a circle, provided they possess a
fixed point (see e.g. [2]).

Thus, many results for scalar (n = 1) impulsive differential equations about Devaney’s
chaos and the coexistence of periodic solutions with various periods, including those of the
type k 6= 2n, n ∈N∪ {0}, can be also interpreted in terms of a positive topological entropy.

In higher (n > 1) dimensions, the situation is more delicate. Nevertheless, the coexistence
of infinitely many periodic solutions is also there, in view of Lemma 2.5, a necessary condition
for a positive topological entropy.

Under the assumptions of Corollary 4.4, we are able to prove like in [4, Theorem 4.3] the
coexistence of kω-periodic (mod 1) solutions of (3.1), for infinitely many k ∈ N, including
those for k 6= 2n, n ∈N∪ {0}.

In this light, at least the results about topological entropy for impulsive differential equa-
tions, obtained in higher dimensions, seem to be original.
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