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Abstract. In this paper, we study the existence of infinitely many nodal solutions for
the following quasilinear elliptic equation{

−∇ ·
[
φ′(|∇u|2)∇u

]
+ |u|α−2u = f (u), x ∈ RN ,

u(x)→ 0, as |x| → ∞,

where N ≥ 2, φ(t) behaves like tq/2 for small t and tp/2 for large t, 1 < p < q < N,
f ∈ C1(R+, R) is of subcritical, q ≤ α ≤ p∗q′/p′, let p∗ = Np

N−p , p′ and q′ be the
conjugate exponents respectively of p and q. For any given integer k ≥ 0, we prove that
the equation has a pair of radial nodal solution with exactly k nodes.
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1 Introduction

In this paper, we consider the following quasilinear elliptic equation

−∇ ·
[
φ′(|∇u|2)∇u

]
+ |u|α−2u = f (u), x ∈ RN , (1.1)

where N ≥ 2, φ ∈ C2(R+, R+) has a different growth near zero and infinity. Quasilinear
equation of form (1.1) can be transformed into different differential equations corresponding
to various types of φ. For example, when φ(t) = 2[(1 + t)

1
2 − 1] and α = 2, equation (1.1)

corresponds to the prescribed mean curvature equation or the capillary surface equation

−∇ ·
( ∇u√

1 + |∇u|2
)
+ u = f (u), x ∈ RN .

Such problem has been deeply studied since last century, under different assumptions on the
nonlinearity f , the existence and nonexistence of solutions have been investigated by many
authors, see [3, 5, 8, 27] for example.
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Equation (1.1) also related to (p, q)-Laplacian equations. In fact, if φ(t) = 2
p t

p
2 + 2

q t
q
2 , then

equation (1.1) becomes

− ∆pu− ∆qu + |u|α−2u = f (u) in RN , (1.2)

where ∆pu = div(|∇u|p−2∇u), 1 < p < q < N and α > 2 satisfies some conditions. Equation
(1.2) originates from the following reaction diffusion system

∂u
∂t

= div
[
D(u)∇u

]
+ c(x, u), (1.3)

where D(u) = (|∇u|p−2 + |∇u|q−2). This system has a wide range of application in physics
and related sciences such as biophysics, plasma physics and chemical reaction design. In such
applications, the function u describes a concentration; the first term on the right hand side of
(1.3) corresponds to diffusion with a diffusion coefficient D(u), whereas the second one is the
reaction and relates to source and loss processes. Typically, in chemical and biological appli-
cations, the reaction term c(x, u) has a polynomial form with respect to the concentration u.
For more mathematical and physical background of equations (1.2)–(1.3), we refer the reader
to the papers [9, 24, 25, 31] and the references therein. In particular, when p = q = α = 2,
equation (1.2) reduced to

− ∆u + u = f (u) in RN . (1.4)

There has been plenty of results on the existence, nonexistence and multiplicity of positive or
sign-changing solutions for equation (1.4), see [2, 6, 7, 10, 17] and the references therein.

If p = q = α 6= 2, then equation (1.2) becomes into the following general p-Laplacian
equation

− ∆pu + |u|p−2u = f (u) in RN , (1.5)

which was studied by many authors. Many results for equation (1.4) has been extended to
equation (1.5). Deng, Guo and Wang in [12] proved the existence of nodal solutions for p-
Laplacian equations with critical growth. Recently in [13], Deng, Li and Shuai studied the
existence of solutions for a class of p-Laplacian equations with critical growth and potential
vanishing at infinity.

Recently, Azzollini et al. [1] studied the following quasilinear elliptic equation{
−∇ · [φ′(|∇u|2)∇u] + |u|α−2u = |u|s−2u, x ∈ RN ,

u(x)→ 0, as |x| → ∞,
(1.6)

where N ≥ 2, φ(t) behaves like tq/2 for small t and tp/2 for large t, 1 < p < q < N, 1 <

α ≤ p∗q′/p′ and max{q, α} < s < p∗ = Np
N−p , with being p′, q′ are the conjugate exponents

of p, q respectively. The authors in [1] found a sort of Orlicz–Sobolev space in which the
energy functional is well defined. They also proved that the Orlicz–Sobolev space compactly
embedded into certain Lebesgue spaces. Then, they obtained the existence of a sequence of
nontrivial radial solutions for equation (1.6) besides a nontrivial non-negative radial solution.
General quasilinear elliptic problems of (1.1) have been intensively studied, see for example,
[1, 11, 15, 16, 18, 28] and the references therein.

Motivated by the above results, in this paper, we intend to find nodal solutions for the
following quasilinear elliptic equation{

−∇ ·
[
φ′(|∇u|2)∇u

]
+ |u|α−2u = f (u), x ∈ RN ,

u(x)→ 0, as |x| → ∞,
(1.7)
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where N ≥ 2, φ(t) behaves like tq/2 for small t and tp/2 for large t, 1 < p < q < N, q ≤ α ≤
p∗q′/p′, and the function f satisfies some conditions given by ( f1)-( f3) in this paper. Similar
as [1], we impose some restrictions on φ, let φ ∈ C2(R+, R+) such that

(Φ1) φ(0) = 0;

(Φ2) there exists a positive constant C such that{
Ct

p
2−1 ≤ φ′(t), if t ≥ 1,

Ct
q
2−1 ≤ φ′(t), if 0 ≤ t ≤ 1;

(Φ3) there exists a positive constant C such that{
φ(t) ≤ Ct

p
2 , if t ≥ 1,

φ(t) ≤ Ct
q
2 , if 0 ≤ t ≤ 1;

(Φ4) there exists α < θ such that φ′(t)/t
θ−2

2 is strictly decreasing for all t > 0;

(Φ5) the map t 7→ φ(t2) is convex.

We also assume the nonlinearity f satisfies:

( f1) f (t) = o(tα−1), as t→ 0+;

( f2) f (t) = o(tp∗−1), as t→ +∞;

( f3) there exists α < θ such that

0 < (θ − 1) f (t) ≤ f ′(t)t, for all t > 0.

Before we present our main result, we give some notions and definitions. In the following, we
use ‖u‖q to denote the Lq(RN) norm.

Definition 1.1 (See [1, Definition 2.1]). Let 1 < p < q and Ω ⊂ RN . Denote Lp(Ω) + Lq(Ω)

the completion of C∞
c (Ω, R) in the norm

‖u‖Lp(Ω)+Lq(Ω) = inf
{
‖v‖Lp(Ω) + ‖w‖Lq(Ω) | v ∈ Lp(Ω), w ∈ Lq(Ω), u = v + w

}
.

Next, we denote ‖u‖p,q = ‖u‖Lp(RN)+Lq(RN). Moreover, in [4], it has shown that Lp(Ω) +

Lq(Ω) can be characterized as an Orlicz spaces.

Definition 1.2 (See [1, Definition 2.3]). Let α > 1, the Orlicz–Sobolev space W(RN) is the
completion of C∞

c (RN , R) in the norm

‖u‖ = ‖u‖α + ‖∇u‖p,q.

By Theorem 2.8 of [1], the spaceW(RN) can be precise description by

W(RN) =
{

u ∈ Lα(RN) ∩ Lp∗(RN) | ∇u ∈ Lp(RN) + Lq(RN)
}

.

In the following, we define(
C∞

c (RN , R)
)

r =
{

u ∈ C∞
c (RN , R) | u is radially symmetric

}
.
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ThenWr(RN) is the completion of
(
C∞

c (RN , R)
)

r in the norm ‖ · ‖, namely

Wr(R
N) =

(
C∞

c (RN , R)
)

r

‖·‖
.

Thus, Wr(RN) coincides with the set of radial functions of W(RN). Define the energy func-
tional I corresponding to equation (1.7) by

I(u) =
1
2

∫
RN

φ(|∇u|2)dx +
1
α

∫
RN
|u|α dx−

∫
RN

F(u)dx, u ∈ Wr(R
N),

where F(u) =
∫ u

0 f (z)dz. The well-posedness and regularity of I(u) are given by Proposi-
tion 3.1 in [1] and hypotheses ( f1)–( f2).

A function u ∈ Wr(RN) is called a weak solution of equation (1.7) if for all ϕ ∈ C∞
0 (RN , R),

it holds ∫
RN

φ′(|∇u|2)∇u∇ϕ dx +
∫

RN
|u|α−2uϕ dx−

∫
RN

f (u)ϕ dx = 0.

In particular, for u ∈ Wr(RN), we denote

γ(u) = 〈I′(u), u〉 =
∫

RN
φ′(|∇u|2)|∇u|2 dx +

∫
RN
|u|α dx−

∫
RN

f (u)u dx.

Now we state our main result. We denote u+ = max{u, 0} and u− = min{u, 0}.
Theorem 1.3. Suppose 1 < p < q < min{N, p∗}, q ≤ α ≤ p∗q′/p′, (Φ1)–(Φ5) and ( f1)–( f3)

hold, then there exists a pair of radial solutions u±k of equation (1.7) with the following properties:

(i) u−k (0) < 0 < u+
k (0),

(ii) u±k possess exactly k nodes ri with 0 < r1 < r2 < · · · < rk < +∞, and u±k (x)||x|=ri
= 0,

i = 1, 2, . . . , k.

Remark 1.4. The solutions uk obtained in Theorem 1.3, as we will see, is the least energy radial
solution of equation (1.7) and changes sign exactly k (k ∈ {0, 1, 2, . . . }) times. We should point
out that α < p∗. The existence of u0 had been proved by the Mountain Pass Theorem in [1].

Remark 1.5. Like [1], a specific example of the function φ(t) is

φ(t) =
2
p

[(
1 + t

q
2
) p

q − 1
]
.

In this paper, we prove by constrained minimization method in a special space in which
each function changes sign k(k ∈ {0, 1, 2, . . . }) times. We first prove the existence of minimizer
and then verify that the minimizer is indeed a solution to equation (1.7) by analyzing the least
energy related to the minimizer. Here, we have to point out that it is hard to obtain radial
solutions with a prescribed number of nodes by gluing method as in Bartsch–Willem [6] and
Cao–Zhu [10]. Because, we obtain that all weak solutions of (1.7) by Lemma 2.7 are only of
class C1,γ

loc (R
N), and it is not enough to glue the functions in each annuli by matching the

normal derivative at each junction point. We will follow the approach explored by Z. Liu and
Z.-Q. Wang [21,22], see Section 3 for more details. Moreover, we introduce some new analysis
techniques and establish better inequalities.

This paper is organized as follows. In Section 2, we give some preliminary results, which
are crucial to prove our main results. In Section 3, we will prove our main theorem.

Throughout this paper, we denote “ → ” and “ ⇀ ” as the strong convergence and the
weak convergence, respectively. We use 〈·, ·〉 to denote the duality pairing between Wr(RN)

and W ′
r(R

N). We employ C or Cj, j = 1, 2, . . . to denote the generic constant which may vary
from line to line.
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2 Some preliminary lemmas

In this section, let us first recall some known facts about (1.7). From [1], we introduce the
embedding result on Wr(RN) and a uniform decaying estimate on the functions of Wr(RN).
The proof of lemmas can be found in the corresponding references.

Lemma 2.1 (see [1, Remark 2.7]). If 1 < p < min{q, N} and 1 < p∗ q′
p′ , then for every α ∈

(
1, p∗ q′

p′
]
,

Wr(RN) is continuously embedded into Lτ(RN) with α ≤ τ ≤ p∗.

Lemma 2.2 (see [1, Theorem 2.11]). If 1 < p < q < N and 1 < p∗ q′
p′ , then for every α ∈

(
1, p∗ q′

p′
]
,

Wr(RN) is compactly embedded into Lτ(RN) with α < τ < p∗.

Lemma 2.3 (see [1, Lemma 2.13]). If 1 < p < q < N, there exists C > 0 such that for every
u ∈ Wr(RN)

|u(x)| ≤ C

|x|
N−q

q

‖∇u‖p,q, for |x| ≥ 1.

Let Ω be one of the following domains:

{x ∈ RN : |x| < R1}, {x ∈ RN : 0 < R2 ≤ |x| < R3 < ∞}, {x ∈ RN : |x| ≥ R4 > 0}.

Thus, we first consider the existence of positive least energy solution for{
−∇ · [φ′(|∇u|2)∇u] + |u|α−2u = f (u), x ∈ Ω,

u
∣∣
∂Ω = 0.

(2.1)

Define
IΩ(u) =

1
2

∫
Ω

φ(|∇u|2)dx +
1
α

∫
Ω
|u|α dx−

∫
Ω

F(u)dx,

γΩ(u) = 〈I′Ω(u), u〉 =
∫

Ω
φ′(|∇u|2)|∇u|2 dx +

∫
Ω
|u|α dx−

∫
Ω

f (u)u dx

and
M(Ω) =

{
u ∈ Wr(Ω) : u 6≡ 0, u|∂Ω = 0, γΩ(u) = 0

}
.

Then we have the following lemmas.

Lemma 2.4. Suppose 1 < p < q < min{N, p∗}, q ≤ α ≤ p∗q′/p′, (Φ1)–(Φ5) and ( f1)–( f3) hold
and u ∈ Wr(Ω). Then there exists a unique t > 0 such that tu ∈ M(Ω).

Proof. For fixed u ∈ Wr(Ω) with u 6≡ 0, tu is contained in M(Ω) if and only if

γΩ(tu) =
∫

Ω
φ′(|t∇u|2)|t∇u|2 dx +

∫
Ω
|tu|α dx−

∫
Ω

f (tu)tu dx = 0. (2.2)

Hence, the problem is reduced to verify that there is only one solution of equation (2.2) with
t > 0. Since 1 < p < q ≤ α and

φ(t2) '
{

tp, if |t| � 1,

tq, if |t| � 1.

By ( f1)–( f2), for any ε > 0, there exists a constant Cε > 0 and α < s < p∗ such that

f (u)u ≤ ε|u|α + Cε|u|s. (2.3)
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It is easy to see that IΩ(tu) → 0 as t → 0 and IΩ(tu) → −∞ as t → +∞. We have that IΩ

possesses a global maximum point t ∈ (0,+∞), i.e., tu ∈ M(Ω).
It remains to show the uniqueness of t. We shall divide our proof into two cases.

Case 1. u ∈ M(Ω). First of all, we note that it follows from γΩ(u) = 0 that∫
Ω

φ′(|∇u|2)|∇u|2 dx +
∫

Ω
|u|α dx−

∫
Ω

f (u)u dx = 0. (2.4)

We now prove that t = 1 is the unique number such that tu ∈ M(Ω). In fact, if t > 0 such that
γΩ(tu) = 0, then we have∫

Ω
φ′(|t∇u|2)|t∇u|2 dx +

∫
Ω
|tu|α dx−

∫
Ω

f (tu)tu dx = 0. (2.5)

Furthermore, combining equation (2.4) and (2.5), we have∫
Ω

[
φ′(t2|∇u|2)t2|∇u|2 − tθφ′(|∇u|2)|∇u|2

]
dx

+
∫

Ω

[
(tα − tθ)|u|α +

(
tθ f (u)− f (tu)tu

)]
dx = 0.

(2.6)

On one hand, by ( f3), we can get that
f (t)
tθ−1

is increasing for all t > 0. On the other hand, by (Φ4), we can deduce that

φ′(t2)

tθ−2

is strictly decreasing for all t > 0. Assume t > 1 for a while, then we get

f (u)
uθ−1 ≤

f (tu)
|tu|θ−1 ,

φ′(t2|∇u|2)
tθ−2|∇u|θ−2 <

φ′(|∇u|2)
|∇u|θ−2 ,

that is
tθ f (u)− f (tu)tu ≤ 0 (2.7)

and
φ′(t2|∇u|2)t2|∇u|2 − tθφ′(|∇u|2)|∇u|2 < 0. (2.8)

Since α < θ, the left side of equation (2.6) is negative, which gives a contradiction. With a
similar argument, the case t < 1 is also contradictory. Thus we deduce that t = 1.

Case 2. u 6∈ M(Ω). If there exist t1, t2 > 0 such that t1u, t2u ∈ M(Ω), we have

t2

t1
(t1u) = t2u ∈ M(Ω).

Noticing t1u ∈ M(Ω), by Case 1, we obtain t1 = t2. This completes the proof of Lemma 2.4.

Lemma 2.5. Suppose 1 < p < q < min{N, p∗}, q ≤ α ≤ p∗q′/p′, (Φ1)–(Φ5) and ( f1)–( f3) hold
and u ∈ M(Ω), t ∈ (0, ∞) and t 6= 1, then IΩ(tu) < IΩ(u).
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Proof. Define a function in (0, ∞) by g(t) = IΩ(tu)

g(t) = IΩ(tu) =
1
2

∫
Ω

φ(t2|∇u|2)dx +
tα

α

∫
Ω
|u|α dx−

∫
Ω

F(tu)dx.

Then
g′(t) =

∫
Ω

tφ′(t2|∇u|2)|∇u|2 dx + tα−1
∫

Ω
|u|α dx−

∫
Ω

f (tu)u dx.

By the fact u ∈ M(Ω), i.e.,∫
Ω

φ′(|∇u|2)|∇u|2 dx +
∫

Ω
|u|α dx−

∫
Ω

f (u)u dx = 0,

using a similar argument to Lemma 2.4, we obtain g′(t) > 0 for 0 < t < 1 and g′(t) < 0 for
t > 1. Hence g(t) < g(1), that is IΩ(tu) < IΩ(u) for t ∈ (0, ∞) and t 6= 1.

Next we consider the following minimization problem

c̃ = inf
M(Ω)

IΩ(u).

M(Ω) is nonempty inWr(Ω) by Lemma 2.4. Here we denote

‖u‖Ω = ‖u‖Lα(Ω) + ‖∇u‖Lp(Ω)+Lq(Ω),

and
Λu = {x ∈ Ω : |u| > 1}, Λc

u = {x ∈ Ω : |u| ≤ 1}.

Lemma 2.6. Suppose 1 < p < q < min{N, p∗}, q ≤ α ≤ p∗q′/p′, (Φ1)–(Φ5) and ( f1)–( f3) hold,
then c̃ can be achieved by some positive function ũ which is a solution of equation (2.1).

Proof. We use the minimization method. The proof can be divided into two steps.

Step 1. c̃ is attained. By the definition of c̃, there exists a sequence {ũn} ⊂ M(Ω) such that

IΩ(ũn) = c̃ + o(1), γΩ(ũn) = 0,

i.e.,

IΩ(ũn) =
1
2

∫
Ω

φ(|∇ũn|2)dx +
1
α

∫
Ω
|ũn|α dx−

∫
Ω

F(ũn)dx = c̃ + o(1),

∫
Ω

φ′(|∇ũn|2)|∇ũn|2 dx +
∫

Ω
|ũn|α dx−

∫
Ω

f (ũn)ũn dx = 0.

By the Proposition 2.2 of [1], we have

‖ũn‖Lp(Ω)+Lq(Ω) ≤ max
{
‖ũn‖Lp(Λũn )

, ‖ũn‖Lq(Λc
ũn )

}
.

It follows from (Φ4) that φ′′(t)t < θ−2
2 φ′(t) for all t > 0. Moreover, φ(0) = 0, we see that

φ′(t)t < θ
2 φ(t). There exists 0 < µ < 1 such that

φ′(t)t ≤ θµ

2
φ(t), for all t ≥ 0.
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Thus, by (Φ2) and the fact that ũn ∈ Lp(Λũn)∩ Lq(Λc
ũn
) (see Proposition 2.2 (iv) in [1]), we get

c̃ + o(1) = IΩ(ũn)−
1
θ
〈I′Ω(ũn), ũn〉

≥
∫

Ω

[1
2

φ(|∇ũn|2)−
1
θ

φ′(|∇ũn|2)|∇ũn|2
]

dx +
(1

α
− 1

θ

) ∫
Ω
|ũn|α dx

≥ 1− µ

2

∫
Ω

φ(|∇ũn|2)dx +
(1

α
− 1

θ

) ∫
Ω
|ũn|α dx

≥ C1

∫
Λc
∇ũn

|∇ũn|q dx + C2

∫
Λ∇ũn

|∇ũn|p dx +
(1

α
− 1

θ

) ∫
Ω
|ũn|α dx

≥ C
[

min
{
‖∇ũn‖q

Lp(Ω)+Lq(Ω)
, ‖∇ũn‖p

Lp(Ω)+Lq(Ω)

}
+ ‖ũn‖α

Lα(Ω)

]
≥ C‖ũn‖α

Ω.

(2.9)

Since C > 0, it is easy to verify {ũn} is bounded in M(Ω). Then by Proposition 2.5 of [1] and
Lemma 2.1, there exists ũ ∈ Wr(Ω) such that

ũn ⇀ ũ, weakly inWr(Ω),

ũn → ũ, in Ls(Ω),

ũn → ũ, a.e. in Ω,

where α < s < p∗. By Theorem A.2 in [34], we can deduce that

f (ũn)ũn → f (ũ)ũ in L1(Ω).

Since γΩ(ũn) = 0, we first prove ũ 6≡ 0. In fact, by equation (2.3) , Lemma 2.1 and inequality
(2.9), we have

Cε‖ũn‖s
Ω+ ε‖ũn‖α

Ω ≥
∫

Ω
f (ũn)ũn dx =

∫
Ω

φ′(|∇ũn|2)|∇ũn|2 dx+
∫

Ω
|ũn|α dx≥ C‖ũn‖α

Ω. (2.10)

Since s > α, we have ‖ũn‖Ω ≥ C3 > 0. Hence

Cε‖ũ‖s
Ω + ε‖ũ‖α

Ω + o(1) ≥ o(1) +
∫

Ω
f (ũ)ũ dx =

∫
Ω

φ′(|∇ũn|2)|∇ũn|2 dx +
∫

Ω
|ũn|α dx

≥ C‖ũn‖α
Ω ≥ C3,

we get ũ 6≡ 0.
According to Lemma 2.4, there exists a unique t̄ > 0 which satisfies γΩ(t̄ũ) = 0. Using the

condition (Φ5), then

1
2

∫
Ω

φ(t̄2|∇ũ|2)dx ≤ lim inf
n→∞

1
2

∫
Ω

φ(t̄2|∇ũn|2)dx.

By the definition of c̃ and equation (2), we have

c̃ ≤ IΩ(t̄ũ) =
1
2

∫
Ω

φ(t̄2|∇ũ|2)dx +
t̄α

α

∫
Ω
|ũ|α dx−

∫
Ω

F(t̄ũ)dx

≤ lim inf
n→∞

∫
Ω

[
1
2

φ(t̄2|∇ũn|2) +
t̄α

α
|ũn|α − F(t̄ũn)

]
dx

≤ lim inf
n→∞

IΩ(t̄ũn) ≤ lim inf
n→∞

IΩ(ũn) = c̃.



Infinitely many nodal solutions for a class of quasilinear elliptic equation 9

Thus we get
IΩ(t̄ũ) = c̃,

and c̃ is attained by t̄ũ.

Step 2. In the following, we prove that t̄ũ is a radial solution of equation (2.1), which is similar
to the Lemma 2.7 of [14]. For simplicity, we denote ũ to t̄ũ. Suppose ũ ∈ M(Ω), IΩ(ũ) = c̃,
but the conclusion of the lemma is not true. Then we can find a function ϕ ∈ W ′r(RN) such
that

〈I′Ω(ũ), ϕ〉 =
∫

Ω
φ′(|∇ũ|2)∇ũ∇ϕ dx +

∫
Ω
|ũ|α−2ũϕ dx−

∫
Ω

f (ũ)ϕ dx ≤ −1. (2.11)

Choosing ε > 0 small enough such that

〈
I′Ω(tũ + σϕ), ϕ

〉
≤ −1

2
, ∀ |t− 1|+ |σ| ≤ ε.

Let η be a cut-off function such that

η(t) =

{
1, |t− 1| ≤ 1

2 ε,

0, |t− 1| ≥ ε.

We estimate
sup

t
IΩ(tũ + εη(t)ϕ).

If |t− 1| ≤ ε, then

IΩ (tũ + εη(t)ϕ) = IΩ(tũ) +
∫ 1

0
〈I′Ω(tũ + σεη(t)ϕ), εη(t)ϕ〉dσ

≤ IΩ(tũ)−
1
2

εη(t).
(2.12)

For |t− 1| ≥ ε, η(t) = 0, and the above estimate is trivial. Now, since ũ ∈ M(Ω), for t 6= 1, we
get IΩ(tũ) < IΩ(ũ) by Lemma 2.5. Hence it follows from equation (2.12) that

IΩ (tũ + εη(t)ϕ) ≤
{

IΩ(tũ) < IΩ(ũ), t 6= 1,

IΩ(ũ)− 1
2 εη(1) = IΩ(ũ)− 1

2 ε, t = 1.

In any case, we have IΩ(tũ + εη(t)ϕ) < IΩ(ũ) = c̃. In particular,

sup
0≤t≤2

IΩ (tũ + εη(t)ϕ) < c̃.

Since ũ ∈ M(Ω), we have∫
Ω

φ′(|∇ũ|2)|∇ũ|2 dx +
∫

Ω
|ũ|α dx−

∫
Ω

f (ũ)ũ dx = 0. (2.13)

Let
h(t) =

∫
Ω

[
φ′(|∇(tũ + εη(t)ϕ)|2)|∇(tũ + εη(t)ϕ)|2 + |tũ + εη(t)ϕ|α

− f (tũ + εη(t)ϕ)(tũ + εη(t)ϕ)
]

dx.
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Without loss of generality, we assume ε < 1
4 . For t = 2, we have η(2) = 0, thus from (2.7)-(2.8)

and (2.13)

h(2) =
∫

Ω

[
4φ′(4|∇ũ|2)|∇ũ|2 + 2α|ũ|α − f (2ũ)2ũ

]
dx

=
∫

Ω

[
4φ′(4|∇ũ|2)|∇ũ|2 − 2θφ′(|∇ũ|2)|∇ũ|2

]
dx +

∫
Ω
(2α − 2θ)|ũ|α dx

+
∫

Ω

[
2θ f (ũ)ũ− f (2ũ)2ũ

]
dx

< 0.

For t = 1
2 , we have

h
(

1
2

)
=
∫

Ω

[
1
4

φ′
(

1
4
|∇ũ|2

)
|∇ũ|2 + 1

2α
|ũ|α − f

(
1
2

ũ
)

1
2

ũ
]

dx

=
∫

Ω

[
1
4

φ′
(

1
4
|∇ũ|2

)
|∇ũ|2 − 1

2θ
φ′(|∇ũ|2)|∇ũ|2

]
dx +

∫
Ω

(
1
2α
− 1

2θ

)
|ũ|α dx

+
∫

Ω

[
1
2θ

f (ũ)ũ− f
(

1
2

ũ
)

1
2

ũ
]

dx

> 0.

Consequently, we can find t̃ ∈ ( 1
2 , 2) such that h(t̃) = 0. It implies t̃ũ + εη(t̃)ϕ ∈ M(Ω), which

contradicts with (2.11). From this, ũ is a solution for equation (2.1).
If α ≥ q, we infer that the solution ũ is positive by Theorem 1 of [30]. Thus, we complete

the proof.

We shall show anyWr(RN)-solution of the equation (1.7) is C1,γ
loc (R

N)-solution of the equa-
tion (1.7).

Lemma 2.7. Assume u be a weak solution of (1.7), 1 < p < q < min{N, p∗}, q ≤ α ≤ p∗q′/p′,
u ∈ Wr(RN), (Φ1)–(Φ5) and ( f1)–( f3) hold, then u ∈ C1,γ

loc (R
N) for some 0 < γ < 1.

Proof. We first prove by the Moser’s iteration that u ∈ L∞(RN), then belongs to C1,γ
loc (R

N).
Since u ∈ Wr(RN), u ∈ Lp∗(RN). For r > 0 to be determined later, taking ϕ = |uT|pru as a
test function with

uT =


T, u > T,

u, |u| ≤ T,

−T, u < −T.

Moreover, without any loss of generality, we shall assume that T > 1. Then ∇u∇ϕ =

pr|uT|pr|∇uT|2 + |uT|pr|∇u|2, u is a weak solution of equation (1.7), i.e.,∫
RN

φ′(|∇u|2)∇u∇ϕ dx +
∫

RN
|u|α−2uϕ dx =

∫
RN

f (u)ϕ dx.

We have

(pr + 1)
∫
|u|≤T

φ′(|∇u|2)|∇u|2|uT|pr dx

+
∫
|u|>T

φ′(|∇u|2)|∇u|2|uT|pr dx +
∫

RN
|u|α|uT|pr dx =

∫
RN

f (u)u|uT|pr dx.
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Define A =
{

x ∈ RN : |u| ≤ T
}
∩Λc

∇u and B =
{

x ∈ RN : |u| ≤ T
}
∩Λ∇u, then∫

RN
f (u)u|uT|pr dx ≥ (pr + 1)

∫
|u|≤T

φ′(|∇u|2)|∇u|2|uT|pr dx +
∫
|u|≤T

|u|α|uT|pr dx

≥ C(1 + r)1−p min
{ ∫

A
|∇|u|1+r|p dx,

∫
B
|∇|u|1+r|q dx

}
+

1
T(α−p)r

∫
|u|≤T

||u|1+r|α dx

≥ C(1 + r)1−p
[
‖∇|u|1+r‖q

Lp(|u|≤T)+Lq(|u|≤T) + ‖|u|
1+r‖α

Lα(|u|≤T)

]
≥ C(1 + r)1−p‖|u|1+r‖p

Lp∗ (|u|≤T)

≥ C(1 + r)1−p
( ∫
|u|≤T

|u|(1+r)p∗ dx
) p

p∗
.

Set d = 1 + r = Np−(N−p)(s−p)
(N−p)p > 1, s ∈ (α, p∗). Let T → +∞, by equation (2.3) and Hölder

inequality, we have∫
RN

f (u)u|uT|pr dx ≤ Cε

∫
RN
|u|s−p|u|pr+p dx + ε

∫
RN
|u|α−p|u|pr+p dx

≤ Cε

( ∫
RN
|u|p∗ dx

) p∗−pd
p∗
( ∫

RN
|u|p∗ dx

) pd
p∗

+ε
( ∫

RN
|u|ᾱ dx

) p∗−pd
p∗
( ∫

RN
|u|p∗ dx

) pd
p∗

≤ C
( ∫

RN
|u|p∗ dx

) pd
p∗

,

where α < ᾱ = (α−p)(Np)
(N−p)(s−p) < p∗. Then we get

( ∫
RN
|u|p∗d dx

) p
p∗ ≤ C(1 + r)p−1

∫
RN

f (u)u|uT|pr dx ≤ C(1 + r)p−1
( ∫

RN
|u|p∗ dx

) pd
p∗

.

Hence ( ∫
RN
|u|p∗d dx

) 1
p∗d ≤ C(1 + r)

p−1
pd
( ∫

RN
|u|p∗ dx

) 1
p∗

.

Therefore ( ∫
RN
|u|p∗dk

dx
) 1

p∗dk ≤
(
Πk

i=1Cdi) 1
di
( ∫

RN
|u|p∗ dx

) 1
p∗

.

Since Π∞
i=1(Cdi)

1
di ≤ C∗ for some constant C∗ > 0, we then deduce that u ∈ L∞(RN). Suppose

u is a weak solution of the equation (1.7) and u ∈ Wr(RN), we have that u ∈ C1,γ
loc (R

N) for
some γ > 0 by Chapter 4 of [19] or [33].

3 Existence of sign-changing solutions

In this section, we construct infinitely many nodal solutions for equation (1.7). For any given
k numbers rj (j = 1, . . . , k) such that 0 < r1 < r2 < · · · < rk < +∞, we denote r0 = 0, rk+1 = ∞,

Ω1 =
{

x ∈ RN : |x| < r1
}

and Ωj =
{

x ∈ RN : rj−1 < |x| < rj
}

.
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We will always extend uj ∈ Wr(Ωj) to Wr(RN) by setting uj ≡ 0 for x ∈ RN\Ωj for every
uj, j = 1, 2, . . . , k + 1. For convenience, we use I(uj) to replace IΩj(uj) and γ(uj) to replace
γΩj(uj). Define

Y±k (r1, r2, . . . , rk+1) =

{
u ∈ Wr(R

N) | u = ±
k+1

∑
j=1

(−1)j−1uj, uj ≥ 0,

uj 6≡ 0, uj ∈ Wr(Ωj), j = 1, 2, . . . , k + 1
}

,

M±k =
{

u ∈ Wr(R
N) | ∃ 0 = r0 < r1 < r2 < · · · < rk < rk+1 = +∞,

such that u ∈ Y±k (r1, r2, . . . , rk+1) and uj ∈ M(Ωj), j = 1, 2, . . . , k + 1
}

.

Note that M±k 6= ∅, k = 1, 2, . . . In order to prove the existence of non-negative critical points
of energy functional I, similar to [6] or [10], we only need to extend f (u) as follows

f+(u) :=

{
f (u), if u ≥ 0,

− f (−u), if u < 0,

thus the oddness assumption on nonlinear term is actually unnecessary. The function I+(u)
is defined onWr(RN) by

I+(u) =
1
2

∫
RN

φ(|∇u|2)dx +
1
α

∫
RN
|u|α dx−

∫
RN

F+(u)dx,

c+k = infu∈M+
k

I+(u) in the same way as those in [10]. For M−k , we can complete the proof in
the same way. By the arguments of the Section 2, it is not difficult to verify that

∀ u =
k+1

∑
j=1

(−1)j−1uj ∈ M+
k ⇔ I(u) = max

αj>0
1≤j≤k+1

I
( k+1

∑
j=1

αjǔj

)
,

where ǔj = (−1)j−1uj.
Set

ck = inf
u∈M+

k

I(u), k = 1, 2, . . .

Lemma 3.1. ck is attained provided that 1 < p < q < min{N, p∗}, q ≤ α ≤ p∗q′/p′, (Φ1)–(Φ5)
and ( f1)–( f3) hold.

Proof. We prove by induction that for each k there exists ūk ∈ M+
k such that

I(ūk) = ck.

For k = 0 or Ω = RN , we can directly derive from Lemma 2.6. We discuss the case k ≥ 1 in
the following.

First, we prove I is bounded from below on M+
k by a positive constant. Let ū ∈ M+

k , then
ū = ∑k+1

j=1 (−1)j−1ūj and ūj ∈ M(Ωj), j = 1, 2, . . . , k + 1. By the similar arguments of inequality
(2.10), we have ‖ūj‖Ωj ≥ Cj. It follows from the same computations in (2.9) that

I(ū) = I
( k+1

∑
j=1

(−1)j−1ūj

)
=

k+1

∑
j=1

I(ūj) ≥ C
k+1

∑
j=1
‖ūj‖α

Ωj
≥ C

k+1

∑
j=1

Cα
j = C̄. (3.1)
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There exists a positive constant C̄ > 0 such that I(ū) ≥ C̄, for all ū ∈ M+
k .

Second, we suppose the conclusion is true for k − 1 and let {ūm}m≥1 be a minimizing
sequence of ck in M+

k , that is

lim
m→∞

I(ūm) = ck, ūm ∈ M+
k , m = 1, 2, . . .

ūm corresponding to k nodes, r1
m, r2

m, . . . , rk
m, with 0 < r1

m < r2
m < · · · < rk

m < ∞, set

Ωi
m =

{
x ∈ RN : ri−1

m < |x| < ri
m
}

,

and

ūi
m =

{
ūm, if x ∈ Ωi

m,

0, if x 6∈ Ωi
m.

We can select a subsequence {ri
m} such that limm→∞ ri

m = ri, and 0 ≤ r1 ≤ r2 ≤ · · · ≤ rk ≤ +∞.
Now we give the following claims.

Claim 1: Under the assumptions of Lemma 3.1, ri 6= ri−1, i = 1, 2, . . . , k. Here we denote
r0 = 0.

If ri = ri−1 for some i ∈ {1, . . . , k}. Suppose there exists i0 ∈ {1, . . . , k} such that ri0 = ri0−1,
then limm→∞ ri0

m = limm→∞ ri0−1
m . We denote the measure of Ωi0

m by |Ωi0
m|, so that |Ωi0

m| → 0 as
m→ ∞. Since ūi0

m ∈ M(Ωi0
m), by Proposition 2.2 of [1] and Lemma 2.1, we have

‖ūi0
m‖α

Ωi0
m
≤ C

{
‖∇ūi0

m‖
q

Lp(Ωi0
m )+Lq(Ωi0

m )
+ ‖ūi0

m‖α

Ωi0
m

}
≤ C

{
max

{ ∫
{x∈Ωi0

m :|∇ūi0
m |≤1}

|∇ūi0
m|q dx,

∫
{x∈Ωi0

m :|∇ūi0
m |>1}

|∇ūi0
m|p dx

}
+
∫

Ωi0
m

|ūi0
m|α dx

}
≤ C

{ ∫
Ωi0

m

φ′(|∇ūi0
m|2)|∇ūi0

m|2 dx +
∫

Ωi0
m

|ūi0
m|α dx

}
≤ C

∫
Ωi0

m

f (ūi0
m)ū

i0
m dx

≤ Cε

∫
Ωi0

m

|ūi0
m|s dx + ε

∫
Ωi0

m

|ūi0
m|α dx

≤ Cε

∫
Ωi0

m

|ūi0
m|s dx + ε‖ūi0

m‖α.

Let ε = 1
2 , then

‖ūi0
m‖α

Ωi0
m
≤ C

(∫
Ωi0

m

|ūi0
m|p

∗
dx
) s

p∗

|Ωi0
m|

1− s
p∗ ≤ C‖ūi0

m‖s
Ωi0

m
|Ωi0

m|
1− s

p∗ .

Since C is positive constants and α < s < p∗, we deduce that

‖ūi0
m‖Ωi0

m
→ ∞, as m→ ∞.

By inequality (3.1),
I(ūi0

m)→ ∞, as m→ ∞. (3.2)

From the inductive assumption and equation (3.2), for ε > 0 fixed we can choose L > 0 such
that

I(ūi0
m) > ck − ck−1 + ε, |I(ūm)− ck| < ε, as m ≥ L.
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Then we define v̄(x) ∈ M+
k−1 by

v̄(x) =


ūl

m(x), if x ∈ Ωl
m as l < i,

0, if x ∈ Ωi0
m,

ūl
m(x), if x ∈ Ωl

m as l > i.

Hence
I(v̄(x)) = I(ūm)− I(ūi0

m) < ck + ε− (ck − ck−1 + ε) = ck−1, as m ≥ L,

which contradicts with ck−1 = infu∈M+
k−1

I(u). Thus ri 6= ri−1, i = 1, 2, . . . , k. Then the proof of
Claim 1 is completed.

Claim 2: Under the assumptions of Lemma 3.1, rk < ∞.
If rk → ∞, then rk

m → ∞. It follows from Claim 1 and ūk
m ∈ M(Ωk

m) that

‖ūk
m‖α

Ωk
m
≤ C

{
max

{ ∫
{x∈Ωk

m :|∇ūk
m|≤1}

|∇ūk
m|q dx,

∫
{x∈Ωk

m :|∇ūk
m|>1}

|∇ūk
m|p dx

}
+
∫

Ωk
m

|ūk
m|α dx

}
≤ C

{ ∫
Ωk

m

φ′(|∇ūk
m|2)|∇ūk

m|2 dx +
∫

Ωk
m

|ūk
m|α dx

}
≤ Cε

∫
Ωk

m

|ūk
m|s dx + ε

∫
Ωk

m

|ūk
m|α dx.

Using Lemma 2.3, we deduce that

‖ūk
m‖α

Ωk
m
≤ C‖ūk

m‖s−α
Ωk

m

∫
Ωk

m

|ūk
m|α|x|

(q−N)(s−α)
q dx ≤ C‖ūk

m‖s
Ωk

m
|rk

m|
(q−N)(s−α)

q ,

so ‖ūk
m‖Ωk

m
≥ C|rk

m|
N−q

q . By inequality (3.1) we find

I(ūk
m)→ ∞, as m→ ∞. (3.3)

Similar to the proof of Claim 1, we can obtain rk < ∞. Claim 2 is therefore proved.
From the above two claims, by selecting a subsequence, we may assume that limm→∞ ri

m =

ri, and clearly 0 < r1 < r2 < · · · < rk < ∞. Define Ωi = {x ∈ RN | ri−1 < |x| < ri}, for all
i = 1, 2, . . . , k + 1, r0 = 0, rk+1 = +∞. Lemma 2.6 implies that c̄ = infu∈M(Ωi) I(u) is attained
by some positive function ûi which satisfies the following boundary value problem{

−∇ · [φ′(|∇u|2)∇u] + |u|α−2u = f (u), x ∈ Ωi,

u|∂Ωi = 0.

Define ūk = ∑k+1
i=1 (−1)i−1ûi(x), (ûi = 0, x 6∈ Ωi). Thus ūk ∈ M+

k .
We define functions vi

m : [ri−1, ri]→ R such thatvi
m := ai

mūi
m

(
ri

m−ri−1
m

ri−ri−1 (t− ri−1) + ri−1
m

)
, for i = 1, . . . , k,

vk+1
m := ak+1

m ūk+1
m

(
rk

m
rk t
)

,

where r0
m = 0, rk+1

m = ∞ and ai
m is a unique positive real number such that vi

m ∈ M(Ωi), for
all i = 1, 2, . . . , k + 1. For m large enough, we can compute that∫

Ωi
φ′(|∇vi

m|2)|∇vi
m|2 dt =

∫
Ωi

m

φ′(|ai
m|2|∇ūi

m|2)|ai
m|2|∇ūi

m|2 dx + o(1),
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∫
Ωi
|vi

m|α dt = |ai
m|α

∫
Ωi

m

|ūi
m|α dx + o(1),

∫
Ωi

f (vi
m)v

i
m dt =

∫
Ωi

m

f (ai
mūi

m)ai
mūi

m dx + o(1).

Since vi
m ∈ M(Ωi), it follows∫

Ωi
m

φ′(|ai
m|2|∇ūi

m|2)|ai
m|2|∇ūi

m|2 dx + |ai
m|α

∫
Ωi

m

|ūi
m|α dx−

∫
Ωi

m

f (ai
mūi

m)ai
mūi

m dx = o(1), (3.4)

for all i = 1, 2, . . . , k + 1. Note that it also holds∫
Ωi

m

φ′(|∇ūi
m|2)|∇ūi

m|2 dx +
∫

Ωi
m

|ūi
m|α dx−

∫
Ωi

m

f (ūi
m)ū

i
m dx = 0, (3.5)

for each i. Using an argument similar to that in the proof of Lemma 2.4, by (3.4) and (3.5), we
can obtain that limm→∞ ai

m = 1 for all i. Therefore we deduce that

lim
m→∞

I
(

ai
mūi

m(x)
)
= lim

m→∞
I
(

ūi
m(x)

)
.

On the other hand, since I(ûi) = infu∈M(Ωi) I(u) and ai
mūi

m(x) ∈ M(Ωi), we have

I(ûi) ≤ I
(

ai
mūi

m(x)
)

.

Thus
lim

m→∞
I
(

ūi
m(x)

)
≥ I(ûi),

and

ck = lim
m→∞

I(ūm(x)) = lim
m→∞

k+1

∑
i=1

I(ūi
m(x)) ≥

k+1

∑
i=1

I(ûi) = I(ūk).

Since ūk ∈ M+
k , which means that ck is attained.

Now, we begin to prove Theorem 1.3. Because the weak solutions of (1.7) are of class
C1,γ

loc (R
N), as stated in Lemma 2.7. We apply some ideas of in [21,22,35] to prove the minimizer

of ck is the weak solution of (1.7) instead of glue the function in each annuli by matching the
normal derivative at each junction point.

Proof of Theorem 1.1. By Lemma 3.1, there exists ūk ∈ M+
k which attains ck. Thus we get k

nodes:

r1, r2, · · · , rk, 0 < r1 < r2 < · · · < rk < +∞, Ωi = {x ∈ RN : ri−1 < |x| < ri}

and

(ūk)
i =

{
ūk(x), x ∈ Ωi,

0, x 6∈ Ωi.

For convenience, u := ūk, and u satisfies equation (1.7) in {x ∈ RN : |x| 6= ri, i = 1, 2, . . . , k}.
In order to show that u is a critical point of I. We assume by contradiction that there exists

ψ ∈ W ′r(RN) such that
〈I′(u), ψ〉 = −2.
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Similarly to the proof of Step 2 in Lemma 2.6 we choose δ ∈ (0, 1) such that if s =

(s1, s2, . . . , sk+1) ∈ D and 0 ≤ ε ≤ δ, then〈
I′
(

k+1

∑
i=1

siui + εψ

)
, ψ

〉
< −1,

where
D = {(s1, . . . , sk+1) ∈ Rk+1 : |si − 1| ≤ δ, for all i ∈ {1, . . . , k + 1}}.

There is a sufficiently small ε such that ∑k+1
i=1 siui + εψ changes sign exactly k times with k

nodes 0 < r1(s, ε) < · · · < rk(s, ε) < ∞. Here rj(s, ε) denotes that rj depends on s, ε for all
j = 1, · · · , k. Let η ∈ C∞

0 (RN) be a cut-off function which satisfies η(s) = 0 in a neighborhood
of ∂D, η(1, . . . , 1) = 1 and 0 ≤ η(s) ≤ 1 for all s ∈ D. If δ is small enough, we see that
∑k+1

i=1 siui + δη(s)ψ also has exactly k nodes 0 < r1(s) < · · · < rk(s) < ∞ for all s ∈ D, rj(s) is
continuous about s for every j = 1, . . . , k, and〈

I′
(

k+1

∑
i=1

siui + δη(s)ψ

)
, ψ

〉
< −1. (3.6)

We claim that there exists s ∈ D such that ∑k+1
i=1 siui + δη(s)ψ ∈ M+

k . Let

Hi(s) =
∫

RN

[
φ′(|∇gi(s)|2)|∇gi(s)|2 + |gi(s)|α − f (gi(s))gi(s)

]
dx, ∀ 1 ≤ i ≤ k + 1,

and

gi(s) =

(
k+1

∑
i=1

siui + δη(s)ψ

) ∣∣∣∣
Ωi

s

,

where Ωi
s = {x ∈ RN : ri−1(s) < |x| < ri(s)} for all 1 ≤ i ≤ k + 1, r0(s) = 0 and rk+1(s) = ∞.

Suppose that s ∈ ∂D, then η(s) = 0, gi(s) = siui. For si = 1 + δ, by (2.7)–(2.8), we have

Hi(1 + δ) =
∫

Ωi

[
(1 + δ)2φ′((1 + δ)2|∇ui|2)|∇ui|2 + (1 + δ)α|ui|α − f ((1 + δ)ui)(1 + δ)ui]dx

=
∫

Ωi

[
(1 + δ)2φ′((1 + δ)2|∇ui|2)|∇ui|2 − (1 + δ)θφ′(|∇ui|2)|∇ui|2

]
dx

+
∫

Ωi
((1 + δ)α− (1 + δ)θ)|ui|α dx+

∫
Ωi

[
(1 + δ)θ f (ui)ui− f ((1 + δ)ui)(1 + δ)ui]dx

< 0.

For si = 1− δ, we get

Hi(1− δ) =
∫

Ωi

[
(1− δ)2φ′((1− δ)2|∇ui|2)|∇ui|2 + (1− δ)α|ui|α − f ((1− δ)ui)(1− δ)ui]dx

=
∫

Ωi

[
(1− δ)2φ′((1− δ)2|∇ui|2)|∇ui|2 − (1− δ)θφ′(|∇ui|2)|∇ui|2

]
dx

+
∫

Ωi
((1− δ)α− (1− δ)θ)|ui|α dx+

∫
Ωi

[
(1− δ)θ f (ui)ui− f ((1− δ)ui)(1− δ)ui]dx

> 0.

By the homotopy invariance of the topological degree (or Miranda’s Theorem [23]), we see that
there exists s ∈ D such that Hi(s) = 0 for all 1 ≤ i ≤ k + 1. That is ∑k+1

i=1 siui + δη(s)ψ ∈ M+
k .
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From the claim, we get I
(

∑k+1
i=1 siui + δη(s)ψ

)
≥ ck. On the other hand, by (3.6), there holds

that

I
( k+1

∑
i=1

siui + δη(s)ψ
)
= I
( k+1

∑
i=1

siui
)
+
∫ 1

0

〈
I′
( k+1

∑
i=1

siui + σδη(s)ψ
)

, δη(s)ψ
〉

dσ

≤ I
( k+1

∑
i=1

siui
)
− δη(s).

If si = 1 for all 1 ≤ i ≤ k + 1, then we have

ck ≤ I
( k+1

∑
i=1

ui
)
− δη(1, . . . , 1) = ck − δ,

which is impossible. If si 6= 1 for some 1 ≤ i ≤ k + 1, then we obtain

ck ≤ I
( k+1

∑
i=1

siui
)
=

k+1

∑
i=1

∫
Ωi

[
φ′
(

s2
i |∇ui|2

)
s2

i |∇ui|2 + sα
i |ui|α − f (siui)(siui)

]
dx

=
k+1

∑
i=1

IΩi(siui) <
k+1

∑
i=1

IΩi(u
i) = I

( k+1

∑
i=1

ui
)
= ck,

which is also a contradiction.
Therefore, the function u is indeed a radial solution of (1.7), which changes sign exactly k

times. We complete the proof.
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