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Abstract. In this paper we give a new sufficient condition in order that all nontrivial
Kneser solutions of the quasilinear ordinary differential equation

D(αn, αn−1, . . . , α1)x = (−1)n p(t)|x|βsgn x, t ≥ a, (1.1)

are singular. Here, D(αn, αn−1, . . . , α1) is the nth-order iterated differential operator
such that

D(αn, αn−1, . . . , α1)x = D(αn)D(αn−1) · · ·D(α1)x

and, in general, D(α) is the first-order differential operator defined by D(α)x =
(d/dt) (|x|αsgn x) for α > 0. In the equation (1.1), the condition α1α2 · · · αn > β is
assumed. If α1 = α2 = · · · = αn = 1, then one of the results of this paper yields a
well-known theorem of Kiguradze and Chanturia.
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1 Introduction

For a positive constant α, let D(α) be the first-order differential operator defined by

D(α)x =
d
dt

(|x|αsgn x) ,

and for n positive constants α1, α2, . . . , αn let D(αi, αi−1, . . . , α1) be the ith-order iterated differ-
ential operator defined by

D(αi, αi−1, . . . , α1)x = D(αi)D(αi−1) · · ·D(α1)x, i = 0, 1, 2, . . . , n.

Here, if i = 0, then D(αi, . . . , α1)x is interpreted as x.
In this paper we consider nth-order quasilinear ordinary differential equations of the form

D(αn, αn−1, . . . , α1)x = (−1)n p(t)|x|βsgn x, t ≥ a, (1.1)

where it is assumed that
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(a) n ≥ 2 is an integer;

(b) α1, α2, . . . , αn and β are positive constants;

(c) p(t) is a continuous function on an interval [a, ∞), and p(t) ≥ 0 on [a, ∞), and p(t) 6≡ 0
on [a1, ∞) for any a1 ≥ a.

By a solution x(t) of (1.1) on [a, ∞) we mean that

D(α1)x(t), D(α2)D(α1)x(t) = D(α2, α1)x(t), . . . ,

D(αn)D(αn−1) · · ·D(α1)x(t) = D(αn, αn−1, . . . , α1)x(t)

are well-defined and continuous on [a, ∞) and x(t) satisfies (1.1) at every point t ∈ [a, ∞). A
function x(t) is said to be a Kneser solution of (1.1) on [a, ∞) if x(t) is a solution of (1.1) on
[a, ∞) and satisfies

(−1)iD(αi, . . . , α1)x(t) ≥ 0, t ≥ a, i = 0, 1, 2, . . . , n− 1. (1.2)

To shorten notation, we set

D(αi, . . . , α1)x(t) = Dix(t) for i = 0, 1, 2, . . . , n.

Then, the equation (1.1) may be expressed as

Dnx = (−1)n p(t)|x|βsgn x, t ≥ a, (1.3)

and the condition (1.2) is rewritten in the form

(−1)iDix(t) ≥ 0, t ≥ a, i = 0, 1, 2, . . . , n− 1.

Suppose that x(t) is a function on [a, ∞) such that D(α)x(t), α > 0, is well-defined and
continuous on [a, ∞). It is easily seen that if D(α)x(t) ≥ 0 [resp. > 0, ≤ 0, < 0] on [a, ∞), then
x(t) is increasing [resp. strictly increasing, decreasing, strictly decreasing] on [a, ∞).

If x(t) is a nonnegative solution of (1.3) on [a, ∞), then (−1)nDnx(t) = p(t)x(t)β ≥ 0 on
[a, ∞). Therefore, if x(t) is a Kneser solution of (1.3) on [a, ∞), then (−1)iDix(t) is (nonnegative
and) decreasing on [a, ∞) (i = 0, 1, 2, . . . , n− 1).

Now, for the positive constants α1, α2, . . . , αn appearing in (1.1), we put

µn = α2 +
(
α2α3 + α3

)
+
(
α2α3α4 + α3α4 + α4

)
+ · · ·+

(
α2α3 · · · αn + α3α4 · · · αn + · · ·+ αn−1αn + αn

)
,

(1.4)

νn = α2α3 · · · αn + α3α4 · · · αn + · · ·+ αn−1αn + αn, (1.5)

ξn = α1 + α1α2 + α1α2α3 + · · ·+ α1α2 · · · αn−1 + α1α2 · · · αn. (1.6)

Very recently, Naito and Usami ([6, Theorem 4.1]) have proved that, for each A > 0, the
equation (1.1) has at least one Kneser solution x(t) on [a, ∞) such that x(a) = A. For the case
α1α2 · · · αn ≤ β, any nontrivial Kneser solution x(t) of (1.1) on [a, ∞) satisfies

(−1)iDix(t) > 0 (t ≥ a) for i = 0, 1, 2, . . . , n− 1

([6, the paragraph after the proof of Theorem 5.1]). However, for the case α1α2 · · · αn > β, a
Kneser solution x(t) of (1.1) on [a, ∞) may be singular in the sense that

x(t) > 0 (a ≤ t < b) and x(t) = 0 (t ≥ b)
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for some finite number b > a. Such a solution is often said to be a first kind singular solution
of (1.1). It is known ([6, Theorem 6.1]) that if α1α2 · · · αn > β and p(b) > 0 (b > a), then (1.1)
always has at least one singular Kneser solution x(t) such that{

(−1)iDix(t) > 0 (a ≤ t < b) for i = 0, 1, 2, . . . , n− 1, and

x(t) = 0 (t ≥ b).
(1.7)

In particular, if p(t) is positive on [a, ∞), then for any b (> a) (1.1) has a singular Kneser
solution x(t) which satisfies (1.7). Note that, by putting xi = (Di−1x)αi∗ (i = 1, 2, . . . , n), the
scalar equation (1.1) is equivalent to the n-dimensional system

x′1 = x(1/α2)∗
2 ,

...

x′n−1 = x(1/αn)∗
n ,

x′n = (−1)n p(t)x(β/α1)∗
1 .

Then, applying Theorem 1 of Čanturia [2] to this n-dimensional system, we find that if p(t)
is positive on [a, ∞), then for any b (> a) there is a′ (a ≤ a′ < b) such that (1.1) has a
singular Kneser solution which is defined on [a′, ∞) and satisfies (1.7) with a replaced by a′.
Theorem 6.1 of [6] shows that a′ can be taken as a′ = a.

If p(t) is large enough in a neighborhood of ∞, then all nontrivial Kneser solutions of (1.1)
on [a, ∞) are singular. In fact, making use of Theorem 2 of Čanturia [2], we have the following
theorem.

Theorem A. Let α1α2 · · · αn > β. Let νn be the number defined by (1.5). If

lim inf
t→∞

tνn+1 p(t) > 0, (1.8)

then all nontrivial Kneser solutions of (1.1) on [a, ∞) are singular.

A different proof of Theorem A has been given by Naito and Usami [6, Theorem 6.8].
The main purpose of this paper is to show that Theorem A can be generalized as follows.

Theorem 1.1. Let α1α2 · · · αn > β. Let µn, νn and ξn be the numbers defined by (1.4), (1.5) and (1.6),
respectively. Suppose that there exist σ > 0 and τ > 0 such that

(νn + 1)σ− µnτ − 1 ≥ 0, (1.9)(
β

α1α2 · · · αn
νn + 1

)
σ−

(
µn −

νnξn

α1α2 · · · αn

)
τ − 1 ≤ 0, (1.10)

and either ∫ ∞

a+
s−µnτ+(νn+1)σ−1 p(s)σds = ∞ (a+ > max{a, 0}), (1.11)

or
lim sup

t→∞
tµnτ

∫ ∞

t
s−µnτ+(νn+1)σ−1 p(s)σds > 0. (1.12)

Then, all nontrivial Kneser solutions of (1.1) on [a, ∞) are singular.
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If α1 = α2 = · · · = αn = 1, then

Dix(t) = x(i)(t) (i = 0, 1, 2, . . . , n),

and so (1.1) is reduced to

x(n) = (−1)n p(t)|x|βsgn x, t ≥ a. (1.13)

If n = 2 and α1 = 1, α2 = α > 0, then (1.1) is the second-order quasilinear differential equation

(|x′|αsgn x′)′ = p(t)|x|βsgn x, t ≥ a. (1.14)

Results on the problem of existence and asymptotic behavior of Kneser solutions of (1.13) are
summarized and proved in the book of Kiguradze and Chanturia [3]. This problem has also
been studied by Mizukami, Naito and Usami [4] for (1.14), and by Naito and Usami [6] for
the general equation (1.1).

The proof of Theorem 1.1 is given in the next Section 2. In Section 3, Theorem 1.1 are
restated in several ways, and some important corollaries are mentioned.

A function x(t) is said to be a strongly increasing solution of the equation

Dnx = p(t)|x|βsgn x, t ≥ a, (1.15)

on [a, b) (a < b ≤ ∞) if x(t) is a nontrivial solution of (1.15) on [a, b) and satisfies

Dix(t) ≥ 0 (a ≤ t < b) for all i = 0, 1, 2, . . . , n− 1.

Suppose that x(t) is a strongly increasing solution of (1.15) on [a, b), and let [a, b) be the
maximal interval of existence of x(t). If b is finite, then x(t) is called singular. A singular
strongly increasing solution is often said to be a second kind singular solution of (1.15). There
is a remarkable duality between Kneser solutions of (1.3) and strongly increasing solutions of
(1.15) (see [5, 6]). In the paper [7] we have established a new sufficient condition in order that
all strongly increasing solutions of (1.15) are singular. The present paper corresponds to [7].

2 Proof of Theorem 1.1

Let us begin with the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof is done by contradiction. Suppose that (1.1) has a Kneser so-
lution x(t) on [a, ∞) such that x(t) > 0 for t ≥ a. As mentioned in the preceding section,
(−1)iDix(t) is decreasing on [a, ∞) (i = 0, 1, 2, . . . , n− 1). Furthermore, by (1.1), we easily see
that

(−1)iDix(t) > 0, t ≥ a (i = 0, 1, 2, . . . , n− 1). (2.1)

Define λ1, λ2, . . . , λn−1 and λn by

λ1 =
1
νn

α2 · · · αn(1− σ + µnτ)−
(
α2 + α2α3 + · · ·+ α2 · · · αn−1αn

)
τ,

λ2 =
1
νn

α3 · · · αn(1− σ + µnτ)−
(
α3 + α3α4 + · · ·+ α3 · · · αn−1αn

)
τ,

...

λn−1 =
1
νn

αn(1− σ + µnτ)− αnτ, and

λn = σ,
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where σ and τ are positive constants satisfying (1.9) and (1.10). It is easy to see that

λ1 + λ2 + · · ·+ λn = 1, and (2.2)

λi − αi+1λi+1 = −αi+1τ (i = 1, 2, . . . , n− 2). (2.3)

We have
λi > 0 (i = 1, 2, . . . , n). (2.4)

To see this, note that the condition (1.10) is rewritten as

β

α1
σ + τ − λ1 ≤ 0. (2.5)

(The left-hand side of (1.10) multiplied by (α2 · · · αn)/νn is equal to the left-hand side of (2.5).)
It follows from (2.5) that

λ1 ≥
β

α1
σ + τ > 0.

By induction, (2.3) gives

λi+1 =
λi

αi+1
+ τ > 0 for i = 1, 2, . . . , n− 2.

Obviously, λn = σ > 0. Thus we have (2.4).
Next, define the function y(t) by

y(t) = x(t)α1 [−D1x(t)]α2 [D2x(t)]α3 · · · [(−1)n−1Dn−1x(t)]αn

for t ≥ a. By (2.1), we have y(t) > 0 (t ≥ a). It is easy to find that the derivative y′(t) of y(t)
is calculated as

y′(t) = −
[
−D1x(t)

x(t)α1
+

D2x(t)
[−D1x(t)]α2

+ · · ·+ (−1)nDnx(t)
[(−1)n−1Dn−1x(t)]αn

]
y(t), t ≥ a. (2.6)

As a general inequality we have

uλ1
1 uλ2

2 · · · u
λn
n ≤ λ1u1 + λ2u2 + · · ·+ λnun

for ui ≥ 0, λi > 0, ∑n
i=1 λi = 1 (see, for example, [1, pp. 13–14]). This inequality may be

written equivalently as

Λvλ1
1 vλ2

2 · · · v
λn
n ≤ v1 + v2 + · · ·+ vn with Λ = λ−λ1

1 λ−λ2
2 · · · λ−λn

n (2.7)

for vi ≥ 0, λi > 0, ∑n
i=1 λi = 1. Therefore, by (2.6) and by (2.7) of the case

vi =
(−1)iDix(t)

[(−1)i−1Di−1x(t)]αi
(i = 1, 2, . . . , n),

we get

y′(t) ≤−Λ

[
−D1x(t)

x(t)α1

]λ1[
D2x(t)

[−D1x(t)]α2

]λ2

· · ·
[

(−1)nDnx(t)
[(−1)n−1Dn−1x(t)]αn

]λn

y(t)

=−Λx(t)−α1λ1 [−D1x(t)]λ1−α2λ2 · · · [(−1)n−2Dn−2x(t)]λn−2−αn−1λn−1

× [(−1)n−1Dn−1x(t)]λn−1−αnλn [(−1)nDnx(t)]λn y(t)
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for t ≥ a. Then, on account of (1.3) and (2.3), we see that

y′(t) ≤−Λx(t)−α1λ1+α1τ+βλn x(t)−α1τ[−D1x(t)]−α2τ

· · · [(−1)n−2Dn−2x(t)]−αn−1τ[(−1)n−1Dn−1x(t)]−αnτ

× [(−1)n−1Dn−1x(t)]αnτ+λn−1−αnλn p(t)λn y(t),

and, in consequence,

y′(t) ≤ −Λx(t)−α1λ1+α1τ+βσ[(−1)n−1Dn−1x(t)]αnτ+λn−1−αnσ p(t)σy(t)1−τ (2.8)

for t ≥ a. Since x(t) is decreasing on [a, ∞) and −α1λ1 + α1τ + βσ ≤ 0 (see (2.5)), we have

x(t)−α1λ1+α1τ+βσ ≥ x(a)−α1λ1+α1τ+βσ, t ≥ a. (2.9)

Next, we will claim that

lim
t→∞

tνn/αn [(−1)n−1Dn−1x(t)] = 0, (2.10)

or equivalently

εn−1(t) ≡ tα2α3···αn−1+α3···αn−1+···+αn−1+1[(−1)n−1Dn−1x(t)]→ 0 (2.11)

as t → ∞. Let i = 0, 1, 2, . . . , n− 1. Since (−1)iDix(t) is positive and decreasing on [a, ∞), the
limit

lim
t→∞

(−1)iDix(t) = `i

exists and is nonnegative. Assume that `i > 0 for some i = 1, 2, . . . , n− 1. Then it is easy to
see that

lim
t→∞

[(−1)i−1Di−1x(t)]αi

t
= −`i < 0.

This is a contradiction to the fact that [(−1)i−1Di−1x(t)]αi is positive on [a, ∞). Hence we have

lim
t→∞

(−1)iDix(t) = 0 for any i = 1, 2, . . . , n− 1, and (2.12)

lim
t→∞

x(t) = `0 ≥ 0. (2.13)

It follows from (2.13) that

x(t)α1 − `α1
0 =

∫ ∞

t
[−D1x(s)]ds, t ≥ a,

and so

x(t)α1 − `α1
0 ≥

∫ 2t

t
[−D1x(s)]ds ≥ t[−D1x(2t)], t ≥ a+. (2.14)

Here, a+ is a number such that a+ > max{a, 0}. In the same manner, it follows from (2.12)
that

[(−1)iDix(t)]αi+1 ≥ t[(−1)i+1Di+1x(2t)], t ≥ a+, (2.15)

for i = 1, 2, . . . , n− 2. By (2.14) and (2.15), we can check with no difficulty that

[x(t)α1 − `α1
0 ]α2α3···αn−1

≥ tα2α3···αn−1(2t)α3···αn−1 · · · (2n−3t)αn−1(2n−2t)[(−1)n−1Dn−1x(2n−1t)]

= 2α3···αn−1 · · · (2n−3)αn−12n−2tα2α3···αn−1+α3···αn−1+···+αn−1+1[(−1)n−1Dn−1x(2n−1t)]
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for t ≥ a+. Then, by (2.13), it is seen that (2.11) or equivalently (2.10) holds.
According to (2.10), there is a1 > a+ such that

(−1)n−1Dn−1x(t) ≤ t−νn/αn , t ≥ a1. (2.16)

Observe that (1.9) implies

αnτ + λn−1 − αnσ = −αn

νn
[(νn + 1)σ− µnτ − 1] ≤ 0,

and so (2.16) gives

[(−1)n−1Dn−1x(t)]αnτ+λn−1−αnσ ≥ t(νn+1)σ−µnτ−1, t ≥ a1. (2.17)

Then it follows from (2.8), (2.9) and (2.17) that

y′(t) ≤ −Lt(νn+1)σ−µnτ−1 p(t)σy(t)1−τ, t ≥ a1,

where L = Λx(a)−α1λ1+α1τ+βσ is a positive constant. From this inequality it follows that

y(t′)τ − y(t)τ ≤ −τL
∫ t′

t
s(νn+1)σ−µnτ−1 p(s)σds

for any t and t′ such that a1 ≤ t ≤ t′. Then, letting t′ → ∞, we find that∫ ∞

a1

s(νn+1)σ−µnτ−1 p(s)σds < ∞ (2.18)

and
y(t)τ ≥ τL

∫ ∞

t
s(νn+1)σ−µnτ−1 p(s)σds, t ≥ a1. (2.19)

Of course, (2.18) contradicts (1.11). It will be showed that (2.19) is a contradiction to (1.12). By
the definition of y(t), the inequality (2.19) gives[

x(t)α1 [−D1x(t)]α2 [D2x(t)]α3 · · · [(−1)n−1Dn−1x(t)]αn
]τ

≥ τL
∫ ∞

t
s(νn+1)σ−µnτ−1 p(s)σds, t ≥ a1.

(2.20)

As in the proof of (2.11), we can find that

εn−2(t) ≡ tα2α3···αn−2+α3···αn−2+···+αn−2+1[(−1)n−2Dn−2x(t)]→ 0,
...

ε2(t) ≡ tα2+1[(−1)2D2x(t)]→ 0,

ε1(t) ≡ t[−D1x(t)]→ 0,

as t → ∞. Set ε0(t) = x(t). From (2.20) and the definition of ε i(t) (i = 0, 1, 2, . . . , n − 1) it
follows that [

ε0(t)α1 [t−1ε1(t)]α2 [t−α2−1ε2(t)]α3 · · · [t−α2α3···αn−1−···−αn−1−1εn−1(t)]αn
]τ

≥ τL
∫ ∞

t
s(νn+1)σ−µnτ−1 p(s)σds, t ≥ a1,
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and, hence,

[ε0(t)α1 ε1(t)α2 ε2(t)α3 · · · εn−1(t)αn ]τ

≥ τLt[α2+(α2+1)α3+···+(α2α3···αn−1+···+αn−1+1)αn]τ
∫ ∞

t
s(νn+1)σ−µnτ−1 p(s)σds

= τLtµnτ
∫ ∞

t
s(νn+1)σ−µnτ−1 p(s)σds, t ≥ a1.

Since ε0(t) = x(t) is bounded on [a, ∞) and ε i(t) → 0 as t → ∞ (i = 1, 2, . . . , n − 1), we
conclude that

lim
t→∞

tµnτ
∫ ∞

t
s(νn+1)σ−µnτ−1 p(s)σds = 0,

which is a contradiction to (1.12). This finishes the proof of Theorem 1.1.

For the case n = 2, α1 = 1 and α2 = α > 0, the equation (1.1) becomes (1.14). In this case
we have

µ2 = α, ν2 = α and ξ2 = 1 + α.

Therefore Theorem 1.1 gives an extension of Theorem 3.4 of [4]. The lim inf in the condition
(3.3) of Theorem 3.4 of [4] can be replaced to lim sup.

Theorem A can easily be derived from Theorem 1.1. To see this, we first remark that

νnξn − α1α2 · · · αnµn > 0, (2.21)

where µn, νn and ξn are defined by (1.4), (1.5) and (1.6), respectively. Therefore the term
µn − [(νnξn)/(α1α2 · · · αn)] appearing in (1.10) is a negative number. Then we find that the set
of all pairs (σ, τ) ∈ (0, ∞)× (0, ∞) satisfying (1.9) and (1.10) is nonempty. More precisely, the
set is a triangle in the στ plane. Now, to prove Theorem A, suppose that (1.8) holds. There is
a constant c > 0 such that p(t) ≥ ct−νn−1 for all large t. Take a pair (σ, τ) ∈ (0, ∞)× (0, ∞)

satisfying (1.9) and (1.10). Then we get

t−µnτ+(νn+1)σ−1 p(t)σ ≥ cσt−µnτ−1

for all large t. If (1.11) does not hold, then the above inequality implies∫ ∞

t
s−µnτ+(νn+1)σ−1 p(s)σds ≥ cσ

µnτ
t−µnτ

for all large t, and, in consequence, the condition (1.12) is satisfied. Therefore we conclude
from Theorem 1.1 that all nontrivial Kneser solutions of (1.1) on [a, ∞) are singular.

3 Other forms of Theorem 1.1

For simplicity, we put

ζn =
νnξn

α1α2 · · · αnµn
− 1.

By (2.21), ζn is a positive number.
Now, let α1α2 · · · αn > β. It is easy to check that σ > 0 and τ > 0 satisfy (1.9) and (1.10) if

and only if
1

νn + 1
< σ <

1
[β/(α1α2 · · · αn)] νn + 1

(3.1)
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and

0 < τ ≤ 1
µn

min
{
(νn + 1)σ− 1,

1
ζn

[
1−

(
β

α1α2 · · · αn
νn + 1

)
σ

]}
. (3.2)

Suppose that σ > 0 satisfies (3.1). Next, choose τ > 0 so that the equality holds in the
latter inequality of (3.2), and put τ = τ(σ), that is to say, we define the number τ(σ) by

τ(σ) =
1

µn
min

{
(νn + 1)σ− 1,

1
ζn

[
1−

(
β

α1α2 · · · αn
νn + 1

)
σ

]}
. (3.3)

For this choice, the conditions (1.11) and (1.12) become∫ ∞

a+
s−µnτ(σ)+(νn+1)σ−1 p(s)σds = ∞ (a+ > max{a, 0}) (3.4)

and
lim sup

t→∞
tµnτ(σ)

∫ ∞

t
s−µnτ(σ)+(νn+1)σ−1 p(s)σds > 0, (3.5)

respectively. Therefore Theorem 1.1 produces the following result.

Theorem 3.1. Let α1α2 · · · αn > β. Suppose that σ satisfies (3.1). Define τ(σ) by (3.3). If either (3.4)
or (3.5) holds, then all nontrivial Kneser solutions of (1.1) on [a, ∞) are singular.

As an example, consider the fourth-order equation

(|x′′|αsgn x′′)′′ = κt−2(α+1)(1 + sin t)|x|βsgn x, t ≥ 1, (3.6)

where α > β > 0, and κ is a positive constant. The equation (3.6) is a special case of (1.1) with
n = 4, α1 = 1, α2 = 1, α3 = α, α4 = 1, and p(t) = κt−2(α+1)(1 + sin t). Then we have

µ4 = 2(2α + 1), ν4 = 2α + 1, ξ4 = 2(α + 1), ζ4 =
1
α

.

We can choose ε0 > 0 sufficiently small so that

1
2(α + 1)

<
1 + ε0

2(α + 1)
<

1
[β/α](2α + 1) + 1

and

ε0 < α

[
1−

(
β

α
(2α + 1) + 1

)
1 + ε0

2(α + 1)

]
.

For such ε0 > 0, put

σ =
1 + ε0

2(α + 1)
.

Then, σ satisfies (3.1), and the number τ(σ) is given by

τ(σ) =
1

2(2α + 1)
min

{
2(α + 1)σ− 1, α

[
1−

(
β

α
(2α + 1) + 1

)
σ

]}
=

ε0

2(2α + 1)
.

Moreover, we have

tµ4τ(σ)
∫ ∞

t
s−µ4τ(σ)+(ν4+1)σ−1 p(s)σds

= κ(1+ε0)/[2(α+1)]tε0

∫ ∞

t
s−1−ε0(1 + sin s)(1+ε0)/[2(α+1)]ds.
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If m = 1, 2, . . . , then∫ ∞

2mπ
s−1−ε0(1 + sin s)(1+ε0)/[2(α+1)]ds ≥

∞

∑
i=0

∫ (2(m+i)+1)π

2(m+i)π
s−1−ε0 ds

≥
∞

∑
i=0

[
(2(m + i) + 1)π

]−1−ε0 π ≥ π−ε0

∫ ∞

m

1
(2s + 1)1+ε0

ds

=
π−ε0

2ε0
(2m + 1)−ε0 ,

and so

lim inf
m→∞

(2mπ)ε0

∫ ∞

2mπ
s−1−ε0(1 + sin s)(1+ε0)/[2(α+1)]ds ≥ 1

2ε0
> 0.

Consequently, we find that

lim sup
t→∞

tµ4τ(σ)
∫ ∞

t
s−µ4τ(σ)+(ν4+1)σ−1 p(s)σds > 0.

By Theorem 3.1, it is concluded that all nontrivial Kneser solutions of (3.6) on [1, ∞) are
singular. Note that Theorem A cannot be applied to (3.6) since the lower limit as t → ∞ of
tν4+1 p(t) is equal to 0.

Now, let α1α2 · · · αn > β, and set

σn =
ζn + 1

[β/(α1α2 · · · αn)]νn + 1 + ζn(νn + 1)
. (3.7)

We have
1

νn + 1
< σn <

1
[β/(α1α2 · · · αn)] νn + 1

.

It is easily seen that if σ satisfies

σn ≤ σ <
1

[β/(α1α2 · · · αn)] νn + 1
, (3.8)

then the number τ(σ) which is defined by (3.3) is

τ(σ) =
1

µnζn

[
1−

(
β

α1α2 · · · αn
νn + 1

)
σ

]
. (3.9)

Therefore Theorem 3.1 produces the following result.

Theorem 3.2. Let α1α2 · · · αn > β. Let σ be a number satisfying (3.8), where σn is given by (3.7),
and define τ(σ) by (3.9). If either (3.4) or (3.5) holds, then all nontrivial Kneser solutions of (1.1) on
[a, ∞) are singular.

We have derived Theorem 3.1 from Theorem 1.1, and Theorem 3.2 from Theorem 3.1. We
remark here that Theorem 1.1 can be derived from Theorem 3.2. In this sense, these three
theorems are essentially identical. The following is a brief proof of the fact that Theorem 1.1
is derived from Theorem 3.2. Let σ > 0 and τ > 0 be numbers which satisfy (1.9) and (1.10).
As stated before, this is equivalent to the statement that σ and τ satisfy (3.1) and (3.2). Choose
σ∗ > 0 such that σ = σ∗ satisfies (3.8) and τ(σ∗)/σ∗ < τ/σ and σ < σ∗. Here, τ(σ∗) is given
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by (3.9) with σ = σ∗. If σ∗ is taken sufficiently close to 1/{[β/(α1α2 · · · αn)] νn + 1}, then it is
possible to choose such a number σ∗. By the Höder inequality we find that∫ t

a+
s−µnτ+(νn+1)σ−1 p(s)σds ≤ K1

(∫ t

a+
s−µnτ(σ∗)+(νn+1)σ∗−1 p(s)σ∗ds

)σ/σ∗

, t ≥ a+,

and

tµnτ
∫ ∞

t
s−µnτ+(νn+1)σ−1 p(s)σds ≤ K2

(
tµnτ(σ∗)

∫ ∞

t
s−µnτ(σ∗)+(νn+1)σ∗−1 p(s)σ∗ds

)σ/σ∗

, t ≥ a+,

where K1 and K2 are certain positive constants. Therefore, (1.11) implies (3.4) with σ = σ∗,
and (1.12) implies (3.5) with σ = σ∗. This means that Theorem 1.1 is derived from Theorem 3.2
of the case σ = σ∗.

It is also clear that if σ satisfies
1

νn + 1
< σ ≤ σn, (3.10)

then the number τ(σ) defined by (3.3) is

τ(σ) =
1

µn
[(νn + 1)σ− 1]. (3.11)

Therefore, by Theorem 3.1, we have the following result.

Corollary 3.3. Let α1α2 · · · αn > β. Let σ be a number satisfying (3.10), where σn is given by (3.7),
and define τ(σ) by (3.11). If either (3.4) or (3.5) holds, then all nontrivial Kneser solutions of (1.1) on
[a, ∞) are singular.

As mentioned before, if α1 = α2 = · · · = αn = 1, then Dix(t) = x(i)(t) (i = 0, 1, 2, . . . , n),
and (1.1) is reduced to (1.13). Note that the singularity condition (1.7) is rewritten in the form

(−1)ix(i)(t) > 0 on [a, b) (i = 0, 1, 2, . . . , n− 1) and x(t) = 0 (t ≥ b).

Moreover, in the case α1 = α2 = · · · = αn = 1, we have

µn =
n(n− 1)

2
, νn = n− 1, ξn = n, ζn = 1.

Therefore Theorem 3.2 yields the following result. For simplicity, we set ρn(σ) = µnτ(σ).

Corollary 3.4. Consider the equation (1.13). Let 0 < β < 1. Let σ be a number satisfying
2/[n + (n− 1)β + 1] ≤ σ < 1/[(n− 1)β + 1], and set ρn(σ) = 1− [(n− 1)β + 1]σ. If either∫ ∞

a+
s−ρn(σ)+nσ−1 p(s)σds = ∞ (a+ > max{a, 0})

or
lim sup

t→∞
tρn(σ)

∫ ∞

t
s−ρn(σ)+nσ−1 p(s)σds > 0,

then all nontrivial Kneser solutions of (1.13) on [a, ∞) are singular.

Corollary 3.4 has been formulated in the book of Kiguradze and Chanturia [3, Theo-
rem 11.2 (m = 0, k = 1)].

By Corollary 3.3, we have the following result.

Corollary 3.5. Consider the equation (1.13). Let 0 < β < 1. Let σ be a number satisfying 1/n <

σ ≤ 2/[n + (n− 1)β + 1]. If either∫ ∞

a
p(s)σds = ∞ or lim sup

t→∞
tnσ−1

∫ ∞

t
p(s)σds > 0,

then all nontrivial Kneser solutions of (1.13) on [a, ∞) are singular.
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