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Abstract. In this paper, we obtain the existence of positive critical point with least en-
ergy for a class of functionals involving nonlocal and supercritical variable exponent
nonlinearities by applying the variational method and approximation techniques. We
apply our results to the supercritical Schrödinger–Poisson type systems and supercriti-
cal Kirchhoff type equations with variable exponent, respectively.
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1 Introduction and main results

We divide this section into two parts. In the first part, we present a critical point theory of
abstract functional inspired by the article of Marcos do Ó, Ruf and Ubilla [21]. The second
part is devoted to introduce its applications to a class of Schrödinger–Poisson type systems
and a class of Kirchhoff type equations.

1.1 Abstract critical point theory

In the pioneering article [8], Brézis and Nirenberg considered the existence of solution to the
following nonlinear elliptic equation

−∆u = u5 + f (x, u), in Ω,

u > 0, in Ω,

u = 0, on ∂Ω,

(1.1)

where Ω is a bounded domain in R3. If f (x, u) = 0 and Ω is star shaped, a well-known
nonexistence result of Pohozaev [26] asserts that (1.1) has no solution. But the lower-order
terms perturbation can reverse this situation. Brézis and Nirenberg [8] proved the existence
of solutions to (1.1) under the assumptions on the lower-order perturbation term f (x, u). On
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the other hand, the topology and the shape of the domain can affect the existence of solution
for (1.1) with f (x, u) = 0. For example, Coron [12] used a variational approach to prove that
(1.1) is solvable if Ω exhibits a small hole. Rey [27] established existence of multiple solutions
if Ω exhibits several small holes. As Ω is an annulus, Kazdan and Warner [17] observed that
there exists a solution to (1.1) without any constraint by critical exponent.

It is worth noticing that there are also a few papers concerning on the supercritical equa-
tions except adding lower-order perturbation terms or changing the topology of region Ω.
The papers in [10, 21] considered the following nonlinear supercritical elliptic problem{

−∆u = |u|4+|x|α u, in B,

u = 0, on ∂B,
(1.2)

where B ⊂ R3 is the unit ball and 0 < α < 1. By using the mountain pass lemma and
approximation techniques, a radial positive solution for (1.2) is obtained by Marcos do Ó, Ruf
and Ubilla in [21]. Cao, Li and Liu [10] considered the existence of infinitely many nodal
solutions to (1.2) by looking for a minimizer of a constrained minimization problem in a
special space.

Let H be the subspace of H1
0(B) consisting of radially symmetric functions. From [21], we

know that (1.2) possesses a variational structure, its solutions can be found as critical points
of the functional

I0(u) =
1
2

∫
B
|∇u|2 −

∫
B

1
6 + |x|α |u|

6+|x|α , u ∈ H.

The solutions to this kind of supercritical elliptic equations involving nonlocal nonlinearities
can be found to look for the critical points of a suitable perturbation of I0,

J(u) =
1
2

∫
B
|∇u|2 + λR(u)−

∫
B

1
6 + |x|α |u|

6+|x|α , u ∈ H,

where λ ∈ R and R ∈ C(H, R). In order to obtain the nontrivial critical point of J, we need to
consider the approximation functional I : H → R associated to J given by

I(u) =
1
2

∫
B
|∇u|2 + λR(u)− 1

6

∫
B
|u|6.

In this paper, we are interested in researching the least energy critical point of J, the
following assumptions are needed:

(i) R ∈ C1(H, R+) with R+ = [0,+∞);

(ii) there exist C, q > 0 such that for t > 0,

R(tu) = tqR(u), R(u) ≤ C‖u‖q, ∀ u ∈ H;

(iii) qR(u) = 〈R′(u)u〉, u ∈ H;

(iv) if {un} is a (PS)c sequence of J for some c > 0 and un ⇀ u weakly in H as n→ ∞, then
J′(u) = 0.

Inspired by above papers, the main purpose of this paper is to consider the existence of ground
state for the functional J. Our main result reads as follows.
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Theorem 1.1. Assume that λ > 0, 2 < q < 6 or λ < 0, q > 6 and the assumptions (i)–(iv) hold.
Then the functional J possesses a (PS)c sequence with some c > 0. Moreover if the functional I satisfies
the (PS)c condition, then J admits a nontrivial critical point.

Theorem 1.2. Suppose that the assumptions of Theorem 1.1 are satisfied. If R is even and weakly
lower semicontinuous, then the functional J possesses a least energy critical point.

Remark 1.3. The variable exponent function p(x) = 6+ |x|α has a strictly supercritical growth
except the origin and a critical growth in the origin. Hence, the functional J can be regarded
as the supercritical perturbation of the functional I.

Remark 1.4. In each case of λ > 0, 0 < q < 6 or λ < 0, q > 6, we can show that J possesses the
mountain pass structure. Hence, a minimax level for the functional J can be constructed. It is
important to verify that this level lies below the non-compactness level of the functional I. It
is worthwhile pointing out that the term R affects the non-compactness level of the functional
I. In most cases, it is difficult to calculate the level of the non-compactness level accurately.

Remark 1.5. Since the method of proving (iv) is different when R is different, the condition
(iv) is needed. The weak lower semicontinuity of R guarantees the existence of a ground state
for functional J.

Remark 1.6. Relatively speaking, the condition (iv) is easy to get for some functional J in-
volving nonlocal nonlinearities. It is obvious to see from (iv) that u is a critical point of the
functional J. Hence, we just need to show that u is nontrivial.

As an application, we apply the case of λ < 0 to a class of Schrödinger–Poisson type
systems and the case of λ > 0 to a class of Kirchhoff type equations, respectively.

1.2 Applications to two nonlocal problems

As a first application, we consider the existence of nontrivial solution to the supercritical
Schrödinger–Poisson type systems with variable exponent

−∆u− φ|u|3u = |u|4+|x|α u in B,

−∆φ = |u|5 in B,

u = φ = 0 on ∂B,

(1.3)

where B ⊂ R3 is the unit ball and 0 < α < 1. The Schrödinger–Poisson system as a model
describing the interaction of a charge particle with an electromagnetic field arises in many
mathematical physics context (we refer to [7] for more details on the physical aspects). There
are a few references which investigated the well-known Schrödinger–Poisson system with
nonlocal critical growth in a bounded domain (see e.g. [3–5]). Azzollini, d’Avenia [3] consid-
ered the following problem involving the nonlocal critical growth

−∆u− φ|u|3u = λu in B,

−∆φ = |u|5 in B,

u = φ = 0 on ∂B.

(1.4)

They proved the existence of positive solution depending on the value of λ and (1.4) has no
solution for λ ≤ 0 via Pohozaev’s identity. Later, Azzollini, d’Avenia and Vaira [5] improved
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the results in [3]. They proved existence and nonexistence results of positive solutions for (1.4)
when λ is in proper region. By applying the variational arguments and the cut-off function
technique, Azzollini, d’Avenia and Luisi [4] studied the following generalized Schrödinger–
Poisson system 

−∆u + εqφ f (u) = η|u|p−1u in Ω,

−∆φ = 2qF(u) in Ω,

u = φ = 0 on ∂Ω,

where Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω, 1 < p < 5, q > 0, ε, η = ±1,
f ∈ C(R, R), F(s) =

∫ s
0 f (t)dt. In the case where f is critical growth, they obtained the

existence and nonexistence results.
In the recent years, there have been a lot of researches dealing with the Schrödinger–

Poisson systems 
−∆u + φu = f (x, u) in Ω,

−∆φ = u2 in Ω,

u = φ = 0 on ∂Ω.

(1.5)

When f (x, u) = |u|p−1u with p ∈ (1, 5), Ruiz and Siciliano [29] considered the existence,
nonexistence and multiplicity results by using variational methods. Alves and Souto [2] stud-
ied system (1.5) when f has a subcritical growth. They obtained the existence of least energy
nodal solution by using variational methods. Ba and He [6] proved the existence of ground
state solution for system (1.5) with a general 4-superlinear nonlinearity f by the aid of the
Nehari manifold. Pisani and Siciliano [25] proved the existence of infinitely many solutions
of (1.5) by means of variational methods. In [1], Almuaalemi, Chen and Khoutir obtained the
existence of nontrivial solutions for (1.5) when f has a critical growth via variational methods.

Motivated by above papers, by applying Theorems 1.1 and 1.2, we obtain the existence
of positive ground state solution for system (1.3) with both nonlinearity supercritical growth
and nonlocal critical growth. From the technical point of view, there are two difficulties to
prove our result. Firstly, the supercritical nonlinearity in the system sets an obstacle since
the bounded (PS) sequence could not converge. Secondly, due to the system has two critical
terms, it is difficult to estimate the critical level of mountain pass. In order to overcome these
difficulties, by employing the ideas of [21], we first estimate the critical level of the mountain
pass for the functional corresponding to (1.3) via approximation techniques and then show
that the level is below the non-compactness level of the functional. Finally, the existence
of positive ground state solution is obtained by applying the Nehari manifold method and
regularity theory. Hence, we have the following result:

Theorem 1.7. System (1.3) possesses at least a positive ground state solution.

Remark 1.8. By the Pohozaev’s identity used in [3], we can deduce that (1.3) has no nontrivial
solution if |x|α = 0. Hence, our result is interesting phenomena due to the nonlinearity
|u|4+|x|α u has supercritical growth everywhere in B except in the origin and critical growth in
the origin.

Next, as the second application, we consider the following Kirchhoff type equations:{
−
(
1 + b

∫
B |∇u|2dx

)
∆u = |u|4+|x|α u, in B

u = 0, on ∂B,
(1.6)
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where b > 0, 0 < α < 1. This kind of equation is related to the stationary analogue of the
equation

ρ
∂2u
∂t2 −

(
ρ0

h
+

E
2l

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣2 dx

)
∂2u
∂x2 = 0

presented by Kirchhoff in [18]. The equation extends the classical d’Alembert’s wave equation
by considering the effects of the changes in the length of the strings during the vibrations.
The solvability of the Kirchhoff type equations has been well studied in a general dimension
by many authors after Lions [20] introduced an abstract framework to this problem. By using
new analytical skills and non-Nehari manifold method, Tang and Cheng [31] obtained the
ground state sign-changing solutions for a class of Kirchhoff type problems in bounded do-
mains. In [11], Chen, Zhang and Tang considered the existence and non-existence results for
Kirchhoff-type problems with convolution nonlinearity based on variational and some new
analytical techniques. There are also many papers devoted to the existence and multiplicity
of solutions for the following critical Kirchhoff type equations with subcritical disturbance

−
(
a + b

∫
Ω |∇u|2dx

)
∆u = f (x, u) + u5 in Ω

u > 0 inΩ

u = 0 on ∂Ω,

(1.7)

where a, b are positive constants. By using concentration-compactness principle and varia-
tional method, Naimen in [22] obtained the existence and multiplicity of (1.7) with f (x, u) =
λu. Xie, Wu and Tang [34] derived the existence and multiplicity of solutions to (1.7) via
variational method by discussing the sign of a and b and adding different conditions on f .
By controlling concentrating Palais–Smale sequences, Naimen and Shibata [23] proved the
existence of two positive solutions for (1.7) with f (x, u) = uq, 1 ≤ q < 5.

In particular, there are some papers considered the equations with critical and supercritical
growth by adding the smallness of the coefficient in front of critical and supercritical which
is used to overcome the difficulty provoked by supercritical growth. By combining an appro-
priate method of truncation function with Moser’s iteration technique, Corrêa and Figueiredo
[13, 14] considered the existence of positive solution for a class of p-Kirchhoff type equations
and Kirchhoff type equations with supercritical growth, respectively.

Motivated by the above fact, we study the existence of positive ground state solution for
(1.6) with variable exponential perturbation by using the similar method introduced by Marcos
do Ó, Ruf and Ubilla in [21]. The result reads as follows.

Theorem 1.9. The equation (1.6) possesses at least a positive ground state solution.

Remark 1.10. Recall that in [22], if |x|α = 0, (1.6) has no nontrivial solution by Pohozaev’s
identity. Hence, our result is interesting phenomena for this kind of Kirchhoff type equations
due to the nonlinearity |u|4+|x|α u has supercritical growth everywhere in B except the origin
and critical growth in the origin.

Remark 1.11. Throughout the paper we denote by C > 0 various positive constants which
may vary from line to line and are not essential to the problem.

The paper is organized as follows: in Section 2, some notations and preliminary results are
presented. We obtain the existence of nontrivial critical point to the functional J in Section 3.
By using Nehari manifold method, the least energy critical point of the functional J is derived
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in Section 4. Sections 5 and 6 are devoted to show that the Theorems 1.1 and 1.2 can be
applied to the nonlinear Schrödinger–Poisson type systems and the Kirchhoff type equations,
respectively.

2 Preliminary

In this Section, we will give some notations and lemmas which will be used throughout this
paper. Let B ⊂ R3 denote the unit ball, H = H1

0,rad(B) = {u ∈ H1
0(B) : u(x) = u(|x|)} be the

Sobolev space of radial functions, with respect to the norm

‖u‖ =
(∫

B
|∇u|2

)1/2

.

Let C+(B̄) = {h : h ∈ C(B̄), h(x) > 1, x ∈ B̄}. For any h ∈ C+(B̄), we denote

h+ = sup
x∈B

h(x), h− = inf
x∈B

h(x).

Then for each p ∈ C+(B̄), the variable exponent function space Lp(x)(B) is defined as follows

Lp(x)(B) =
{

u : u is a measurable function in B such that
∫

B
|u(x)|p(x)dx < ∞

}
with the norm defined by

‖u‖Lp(x) = inf
{

λ > 0,
∫

B

∣∣∣u
λ

∣∣∣p(x)
≤ 1

}
.

We denote by Lp′(x)(B) the conjugate space of Lp(x)(B), where 1/p(x) + 1/p′(x) = 1. For any
u ∈ Lp(x)(B) and v ∈ Lp′(x)(B), there holds the Hölder type inequality∣∣∣∣∫B

uv
∣∣∣∣ ≤ ( 1

p−
+

1
p′−

)
‖u‖Lp(x)‖v‖Lp′(x) .

Lemma 2.1 ([15]). Set ρ(u) =
∫

B |u(x)|p(x). For u ∈ Lp(x)(B), we have

(1) ‖u‖Lp(x) < 1 (= 1; > 1)⇔ ρ(u) < 1 (= 1; > 1);

(2) If ‖u‖Lp(x) > 1, then ‖u‖p−

Lp(x) ≤ ρ(u) ≤ ‖u‖p+

Lp(x) ;

(3) If ‖u‖Lp(x) < 1, then ‖u‖p+

Lp(x) ≤ ρ(u) ≤ ‖u‖p−

Lp(x) .

Lemma 2.2 ([21]). Let q(x) = 6+ β|x|α, x ∈ B and α, β > 0. The following embedding is continuous:

H ↪→ Lq(x)(B).

It is easy to check by (i), Lemma 2.2 and Hölder type inequality that J is well defined on
H and J ∈ C1(H, R), and

〈J′(u), v〉 =
∫

B
∇ · u∇v + λ〈R′(u), v〉 −

∫
B
|u|4+|x|α uv, u, v ∈ H.
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In the following we define the best embedding constant S by

S = inf
u∈H\{0}

∫
B |∇u|2(∫
B |u|6

) 1
3

. (2.1)

Let χ ∈ C∞
0 (B) be a cut-off function with χ = 1 on B1/2(0) and η ∈ [0, 1] on B. Let us define

the function
Uε(x) = (3ε2)1/4(ε2 + |x|2)−1/2, ε > 0,

which satisfies the equation
−∆u = u5 on R3.

Then define uε = χ(x)Uε(x), the following estimates can be deduced via standard arguments
as ε→ 0+ (see [33]), ∫

B
|∇uε|2 = S

3
2 + O(ε),

∫
B

u6
ε = S

3
2 + O(ε3). (2.2)

3 The nontrivial critical point

In this section, we first show that the functional J possesses the mountain pass structure under
the assumption λ < 0, q > 6 or λ > 0, 0 < q < 6, respectively. And hence J has a (PS)c

sequence {un} with some c > 0. Then we prove that {un} is bounded and is also a (PS)c

sequence of I, which is a key in the existence of nontrivial critical point.

Lemma 3.1. Assume that λ < 0, q > 2 and the assumptions (i) and (ii) hold.

(a) There exist ρ1 > 0, η1 > 0 such that inf{J(u) : u ∈ H, with ‖u‖ = ρ1} > η1.

(b) There exists e1 ∈ H with ‖e1‖ > ρ1 such that J(e1) < 0.

Proof. (a) For ρ1 > 0, let
Σρ1 = {u ∈ H : ‖u‖ ≤ ρ1}.

We deduce, from the Sobolev inequality and Lemma 2.1, that for u ∈ ∂Σρ1 and C > 0,

J(u) =
1
2
‖u‖2 + λR(u)−

∫
B

1
6 + |x|α |u|

6+|x|α .

≥ 1
2
‖u‖2 + Cλ‖u‖q − C(‖u‖6 + ‖u‖7)

=
1
2

ρ2
1 + Cλρ

q
1 − Cρ6

1 − Cρ7
1.

Hence, by letting ρ1 > 0 small enough, it is easy to see that there is η1 > 0 such that (a) holds.
(b) By [21, Lemma 3.1], we know that there exists a constant C > 0 such that for ε > 0

small, ∫
B
|uε|6+|x|

α ≥
∫

B
|uε|6 + C| log ε|εα + O(ε)

= S3/2 + C| log ε|εα + O(ε).
(3.1)
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This together with (2.2) implies that for t ≥ 1 and ε > 0 small enough,

J(tuε) =
t2

2
‖uε‖2 + λtqR(uε)−

∫
B

t6+|x|α

6 + |x|α |uε|6+|x|
α

≤ t2

2
‖uε‖2 − t6

7

∫
B
|uε|6+|x|

α

≤ S3/2t2 − S3/2

14
t6 → −∞

as t → +∞. Let T > 0 and define a path h̃ : [0, 1] → H by h̃(t) = tTuε. For T > 0 large
enough, we have ∫

B
|∇h̃(1)|2 > ρ2

1, J(h̃(1)) < 0.

By taking e1 = h̃(1), then (b) is valid. The proof is completed.

Lemma 3.2. Assume that λ > 0, 0 < q < 6 and the assumptions (i) and (ii) hold.

(a) There exist ρ2 > 0, η2 > 0 such that inf{J(u) : u ∈ H, with ‖u‖ = ρ2} > η2.

(b) There exists e2 ∈ H with ‖e2‖ > ρ such that J(e2) < 0.

Proof. (a) Let us define
Σρ2 = {u ∈ H : ‖u‖ ≤ ρ2}, ρ2 > 0.

It follows from the Sobolev inequality and Lemma 2.1 that for u ∈ ∂Σρ2 and C > 0,

J(u) =
1
2
‖u‖2 + λR(u)−

∫
B

1
6 + |x|α |u|

6+|x|α

≥ 1
2
‖u‖2 − C(‖u‖6 + ‖u‖7)

=
1
2

ρ2
2 − Cρ6

2 − Cρ7
2.

Hence, by letting ρ2 > 0 small enough, it is easy to see that there is η2 > 0 such that (a) holds.
(b) By using (2.2) and (3.1) again, we have for t ≥ 1 and ε > 0 small enough,

J(tuε) =
t2

2
‖uε‖2 + λtqR(uε)−

∫
B

t6+|x|α

6 + |x|α |uε|6+|x|
α

≤ t2

2
‖uε‖2 + Cλtq‖uε‖q − t6

7

∫
B
|uε|6+|x|

α

≤ S3/2t2 + 2CλS3q/4tq − t6

14
S3/2 → −∞

as t → +∞. Let T > 0 and define a path ĥ : [0, 1] → H by ĥ(t) = tTuε. For T > 0 large
enough, we have ∫

B
|∇ĥ(1)|2 > ρ2

2, J(ĥ(1)) < 0.

By taking e2 = ĥ(1), we proof (b). The proof is completed.
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From Lemmas 3.1 and 3.2, we know that the functional J possesses the mountain pass
geometry. Then there is a (PS)c sequence {un} ⊂ H for J with the property that

J(un)→ c, ‖J′(un)‖H−1 → 0, n→ ∞,

where c is given by
c = inf

γ∈Γ
max
t∈[0,1]

J(γ(t)), (3.2)

and Γ = {γ ∈ C([0, 1], H) : γ(0) = 0, J(γ(1)) < 0}.

Lemma 3.3. Assume that λ < 0, q > 6 or λ > 0, 0 < q < 6 and the assumption (iii) holds. If
{un} ⊂ H is a (PS)c sequence for J with c > 0, then {un} is bounded in H.

Proof. For n large enough, it is easy to deduce from (iii) that

c + 1 ≥ J(un)−
1
6
〈J′(un), un〉

=
1
3
‖un‖2 + λ

(
1
q
− 1

6

)
〈R′(un), un〉+

∫
B

(
1
6
− 1

6 + |x|α

)
|un|6+|x|

α

≥ 1
3
‖un‖2,

which implies that {un} is bounded in H. The proof is completed.

Lemma 3.4 ([21]). Assume that u ∈ H. Then

|u(r)| ≤ r−1/2‖u‖, r > 0.

Proof of Theorem 1.1. By using Lemmas 3.1 and 3.2 respectively, there exists a sequence {un} ⊂
H satisfying J(un)→ c, J′(un)→ 0 as n→ ∞, where c is given in (3.2). By Lemma 3.3, {un} is
a bounded sequence in H. Passing to a subsequence if necessary, we may assume that there
exists u ∈ H such that

un ⇀ u in H, and un(x)→ u(x), a.e. x ∈ B.

If u 6= 0, then u is a nontrivial critical point of the functional J follows from the assumption
(iv). In what follows, we will deal with the case of u = 0 and show that this is impossible. In
fact, since H1

r (B\Bδ) ↪→↪→ Lp(B\Bδ), for δ ∈ (0, 1) and p ≥ 1, there holds

∫ 1

δ
|un|6+rα

r2 → 0, as n→ ∞ (3.3)

and ∫ 1

δ
|un|6r2 → 0, as n→ ∞. (3.4)

In the following, we will show that {un} is also a (PS)c sequence of I. Hence, it is sufficient
to prove

(a) J(un) = I(un) + o(1);

(b) 〈J′(un), v〉 = 〈I′(un), v〉+ o(1)‖v‖, v ∈ H.
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We first claim that (a) is valid, indeed we only need to estimate

∫
B

(
1
6
|un|6 −

1
6 + |x|α |un|6+|x|

α

)

=
∫

B

(
1
6
|un|6 −

1
6 + |x|α |un|6

)
+
∫

B

(
1

6 + |x|α |un|6 −
1

6 + |x|α |un|6+|x|
α

)
.

(3.5)

For any ε > 0, there exist δ > 0 and n1 ∈N such that for any n ≥ n1, we have, by (3.4),

∫
B

(
1
6
|un|6 −

1
6 + |x|α |un|6

)
≤ ω

36

∫ 1

0
|un|6r2+α

=
ω

36

∫ δ

0
|un|6r2+α +

ω

36

∫ 1

δ
|un|6r2+α

≤ ‖un‖6

36α
ωδα +

ω

36

∫ 1

δ
|un|6r2 ≤ ε

2
,

(3.6)

where ω is the surface area of the unit sphere in R3. Similarly, for above ε > 0, there exist
δ1 > 0 small enough and n2 ∈N such that for any n ≥ n2, it follows from (3.3) and (3.4) that

∣∣∣∣∫B

(
1

6 + |x|α |un|6 −
1

6 + |x|α |un|6+|x|
α

)∣∣∣∣
≤ ω

6

∫
[0,δ1]∩{|un|>1}

|un|6
∣∣∣|un|r

α − 1
∣∣∣ r2 +

ω

6

∫
[0,δ1]∩{|un|≤1}

|un|6
∣∣∣|un|r

α − 1
∣∣∣ r2

+
ω

6

∣∣∣∣∫ 1

δ1

|un|6(|un|r
α − 1)r2

∣∣∣∣
≤ ω

6

∫ δ1

0
|un|6r2

∣∣∣∣exp[− rα

2
log(Cr)]− 1

∣∣∣∣+ ω

18
δ3

1 +
ω

6

∣∣∣∣∫ 1

δ1

|un|6(|un|r
α − 1)r2

∣∣∣∣
≤ Cω

∫ δ1

0
|un|6r2rα| log Cr|+ ω

18
δ3

1 +
ω

6

∣∣∣∣∫ 1

δ1

|un|6(|un|r
α − 1)r2

∣∣∣∣
≤ C1ωδ1

α| log Cδ1|+
ω

18
δ3

1 +
ω

6

∣∣∣∣∫ 1

δ1

|un|6(|un|r
α − 1)r2

∣∣∣∣ ≤ ε

2
.

(3.7)

Hence, combining (3.5), (3.6) and (3.7), we have for above ε > 0, there exists n0 = max{n1, n2},
such that for any n ≥ n0,

∣∣∣∣∫B

(
1
6
|un|6 −

1
6 + |x|α |un|6+|x|

α

)∣∣∣∣ ≤ ε,

which implies that (a) is true.

Secondly, we will devoted to verify that (b) is correct. In fact, by Lemma 3.4, for 0 < η < 1
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small enough and v ∈ H,∣∣∣∣∫ η

0
|un|5|v|(|un|r

α − 1)r2
∣∣∣∣

≤
∣∣∣∣∫

[0,η]∩{|un|>1}
|un|5|v|(|un|r

α − 1)r2
∣∣∣∣+ ∣∣∣∣∫

[0,η]∩{|un|≤1}
|un|5|v|(|un|r

α − 1)r2
∣∣∣∣

≤
∫ η

0
|un|5|v|

∣∣∣(Cr)−rα/2 − 1
∣∣∣ r2 + Cη3/2‖v‖

≤
∫ η

0
|un|5|v|

∣∣∣exp(rα/2 log(Cr)−1)− 1
∣∣∣ r2 + Cη3/2‖v‖

≤ C
∫ η

0
|un|5|v|rα| log(Cr)|r2 + Cη3/2‖v‖

≤ Cηα| log(Cη)|
∫ 1

0
|un|5|v|r2 + Cη3/2‖v‖

≤ Cηα| log(Cη)|‖un‖5‖v‖+ Cη3/2‖v‖.

Hence, for any ε > 0, there exists η = η(ε) > 0 sufficiently small such that

Cηα| log(Cη)|‖un‖5‖v‖+ Cη3/2‖v‖ < ε

3
‖v‖,

and then ∣∣∣∣∫ η

0
|un|5|v|(|un|r

α − 1)r2
∣∣∣∣ < ε

3
‖v‖. (3.8)

On the other hand, it follows that for above ε > 0, there exists n1 ∈N such that for n > n1,

∫ 1

η
|un|5+rα |v|r2 ≤ C

(∫ 1

η
|un|6+rα

r2
)5/7

‖v‖ ≤ ε

3
‖v‖. (3.9)

Similarly, we have for above ε > 0, there exists n2 ∈N such that for n > n2,

∫ 1

η
|un|5|v|r2 ≤ C

(∫ 1

η
|un|6r2

)5/6

‖v‖ ≤ ε

3
‖v‖. (3.10)

Combining (3.8), (3.9) and (3.10), we obtain for ε > 0, there exists n0 = max{n1, n2} such that
for n > n0,∣∣∣∣∫ 1

0
|un|4+rα

unvr2 −
∫ 1

0
|un|4unvr2

∣∣∣∣
≤
∫ 1

0
|un|5|v|

∣∣∣|un|r
α − 1

∣∣∣ r2

≤
∫ η

0
|un|5|v|

∣∣∣|un|r
α − 1

∣∣∣ r2 +
∫ 1

η
|un|5|v|r2 +

∫ 1

η
|un|5|v||un|r

α
r2 ≤ ε‖v‖, v ∈ H,

which ensures that (b) is valid. Thereby, it is obvious that {un} is also a (PS)c sequence for
the functional I. Recall that I satisfies (PS)c condition, we have that un → u = 0 strongly in
H, which is a contradiction to I(un)→ c > 0. The proof is completed.
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4 The least energy critical point

In this section, we will use the Nehari manifold method to show the existence of nontrivial
nonnegative ground state of the functional J. In order to obtain the ground state, we need the
Nehari manifold associated with J given by

N = {u ∈ H \ {0} : 〈J′(u), u〉 = 0}.

Lemma 4.1. Assume that λ < 0, q > 2 or λ > 0, 2 < q < 6 and the assumptions (i)–(ii)
hold. Then, for each u ∈ H \ {0}, there exists a unique t(u) > 0 such that t(u)u ∈ N . Moreover,
J(t(u)u) = maxt≥0 J(tu).

Proof. (a) Let u ∈ H \ {0} be fixed. For convenience, we define the function h(t) = J(tu) for
t > 0. Note that h′(t) = 〈J′(tu), u〉 = 0 if and only if tu ∈ N . By simple calculation, we see
that when λ < 0, q > 2

h′(t) = t‖u‖2 + λqtq−1R(u)−
∫

B
t5+|x|α |u|6+|x|α

= t
(
‖u‖2 + λtq−2R(u)−

∫
B

t4+|x|α |u|6+|x|α
)

= tξ(t).

It is obvious that ξ is a non-increasing function for t > 0 and limt→0+ ξ(t) = ‖u‖2 > 0,
limt→∞ ξ(t) = −∞. Hence, there exists a unique t(u) > 0 such that h′(t(u)) = 0 and t(u)u ∈
N . Moreover, J(t(u)u) = maxt≥0 J(tu).

(b) By simple calculation, we see that for λ > 0, 2 < q < 6,

h′(t) = t‖u‖2 + λqtq−1R(u)−
∫

B
t5+|x|α |u|6+|x|α

= tq−1
(

1
tq−2 ‖u‖

2 + λqR(u)−
∫

B
t6−q+|x|α |u|6+|x|α

)
= tq−1ξ(t).

It is easy to see that ξ is a non-increasing for t > 0 and limt→0+ ξ(t) = ∞, limt→∞ ξ(t) = −∞.
Hence, there exists a unique t(u) > 0 such that h′(t(u)) = 0 and t(u)u ∈ N . In addition,
J(t(u)u) = maxt≥0 J(tu). The proof is completed.

Lemma 4.2. Assume that λ < 0, q > 6 or λ > 0, 2 < q < 6 and the assumptions (i)–(iii) hold.
Then J is bounded from below on N .

Proof. For u ∈ N , it follows from (i) and (ii) that

‖u‖2 = −λqR(u) +
∫

B
|u|6+|x|α

≤ C(‖u‖6 + ‖u‖7 + ‖u‖q),

which implies that there exists a positive constant C such that ‖u‖ ≥ C. On the other hand,
we have

J(u) = J(u)− 1
6
〈J′(u), u〉

=
1
3
‖u‖2 + λ

(
1
q
− 1

6

)
〈R′(u), u〉+

∫
B

(
1
6
− 1

6 + |x|α

)
|u|6+|x|α

≥ 1
3
‖u‖2, u ∈ N .
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Hence, J is bounded below. The proof is completed.

By Lemmas 4.1 and 4.2, we can define

c∗ = inf
u∈N

J(u), c∗∗ = inf
u∈H\{0}

max
t≥0

J(tu).

Lemma 4.3. Assume that λ < 0, q > 6 or λ > 0, 2 < q < 6 and the assumptions (i)–(iii) hold.
Then c = c∗ = c∗∗.

Proof. It follows from Lemma 4.1 that c∗ = c∗∗. In the following, we will show that c = c∗.
Indeed, let u ∈ N , by Lemmas 3.1 and 3.2 there exists some t0 > 1 such that J(t0u) < 0. Thus,
J(u) = maxt>0 J(tu) ≥ maxt∈[0,1] J(tt0u) ≥ c, which leads to c∗ ≥ c.

On the other hand, we find for u ∈ H that

J(u)− 1
6
〈J′(u), u〉 = 1

3
‖u‖2 + λ

(
1
q
− 1

6

)
〈R′(u), u〉+

∫
B

(
1
6
− 1

6 + |x|α

)
|u|6+|x|α

≥ 1
3
‖u‖2 ≥ 0.

(4.1)

Let γ ∈ Γ, then it follows from (4.1) that 〈J′(γ(1)), γ(1)〉 ≤ 6J(γ(1)) < 0. Let us define
t1 = inf{t ∈ [0, 1) : 〈J′(γ(s)), γ(s)〉 < 0, s ∈ (t, 1]}. Then 〈J′(γ(t1)), γ(t1)〉 = 0 and γ(s) 6= 0
for all s ∈ (t1, 1]. We now show that γ(t1) 6= 0. Otherwise, γ(t1) = 0 then Lemma 3.1 implies
that 〈J′(γ(s)), γ(s)〉 > 0 as s → t+1 , thus there exists δ > 0 such that t1 + δ < 1 and 〈J′(γ(t1 +

δ)), γ(t1 + δ)〉 > 0. Note that the definition of t1, there holds 〈J′(γ(t1 + δ)), γ(t1 + δ)〉 < 0.
This comes to a contradiction. Thus, we conclude that γ(t1) ∈ N and c ≥ c∗. The proof is
completed.

The following lemma can be also obtained by Implicit Function Theorem or by the Lus-
ternik Theorem. We give the other proof by applying the Lagrange multiplier method.

Lemma 4.4. Assume that λ < 0, q > 6 or λ > 0, 2 < q < 6 and the assumptions (i)–(iii) hold. If
c∗ is attained at some u ∈ N , then u is a critical point of J in H.

Proof. Let G(u) = 〈J′(u), u〉, then G ∈ C1(H, R). By Lemma 4.1, N 6= ∅. We claim that
0 /∈ ∂N . In fact,

G(u) = ‖u‖2 + λR′(u)u−
∫

B
|u|6+|x|α

≥ 1
2
‖u‖2 − C(‖u‖6 + ‖u‖7) > 0

for any u ∈ H with ‖u‖ small. Note that for any u ∈ N

〈G′(u), u〉 = 〈G′(u), u〉 − 6G(u)

= −4‖u‖2 + λq(q− 6)R(u)−
∫

B
|x|α|u|6+|x|α < 0.

(4.2)

Hence, G′(u) 6= 0 for any u ∈ N . Then the implicit function theorem implies that N is a C1

manifold. Recall that u is minimizer of J on u ∈ N . Then by the Lagrange multiplier method,
there exists λ ∈ R such that

J′(u) = λG′(u). (4.3)

Combining (4.2) and (4.3), we can find J′(u) = 0. The proof is completed.
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Proof of Theorem 1.2. Recall that Theorem 1.1 shows that u ∈ N and hence J(u) ≥ c∗. Then by
applying Lemma 4.3, Fatou’s lemma and weak semicontinuity of the norm, we derive

c∗ = lim inf
n→∞

[J(un)−
1
6
〈J′(un), un〉]

= lim inf
n→∞

[
1
3
‖un‖2 + λq

(
1
q
− 1

6

)
R(un) +

∫
B

(
1
6
− 1

6 + |x|α

)
|un|6+|x|

α

]
≥ 1

3
‖u‖2 + λq

(
1
q
− 1

6

)
R(u) +

∫
B

(
1
6
− 1

6 + |x|α

)
|u|6+|x|α

= J(u)− 1
6
〈J′(u), u〉 = J(u).

This shows that J(u) = c∗. It is easy to see that J(|u|) = J(u) = c∗. Thus, Lemma 4.4 implies
that |u| is a ground state of J. The proof is completed.

5 The Schrödinger–Poisson type system

This section is devoted to apply the Theorems 1.1 and 1.2 to a class of Schrödinger–Poisson
type system. We first estimate the critical level of mountain pass of the functional J̃ associated
to (1.3) and then show that the critical level of mountain pass is below the non-compactness
level of J̃. Secondly, we are devoted to verify that the (PS) sequence of the functional J̃ is also
the one of the approximation functional associated to J̃ by using approximation techniques.
Finally, by using the regularity theory, the positive ground state solution of (1.3) is obtained.
We establish the following lemmas, which guarantee that the conditions in the Theorems 1.1
and 1.2 are valid.

We observe that by [3], for given u ∈ H, there exists a unique solution φ = φu ∈ H
satisfying −∆φu = |u|5 in B, u = 0 on ∂B in a weak sense and it has the following properties.

Lemma 5.1 ([5]). For every fixed u ∈ H, we have

(i) φu ≥ 0 a.e. in B;

(ii) φtu = t5φu for all t > 0;

(iii) ‖φu‖ ≤ S−3‖u‖5 and ∫
B

φu|u|5 ≤ S−6‖u‖10, (5.1)

where S is defined in (2.1);

(iv) if un ⇀ u in H, then, up to a subsequence, φun ⇀ φu in H.

Moreover, (1.3) is variational and its solutions are the critical points of the functional de-
fined in H by

J̃(u) =
1
2

∫
B
|∇u|2 − 1

10

∫
B

φu|u|5 −
∫

B

1
6 + |x|α |u|

6+|x|α .

It is easy to check by Lemmas 2.2 and 5.1 that J̃ is well defined on H and J̃ ∈ C1(H, R), and

〈 J̃′(u), v〉 =
∫

B
∇u∇v−

∫
B

φu|u|3uv−
∫

B
|u|4+|x|α uv, u, v ∈ H.
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Lemma 5.2. Let α1, β1, γ1 > 0 and define f1 : [0, ∞)→ R as

f1(t) =
α1

2
t2 − β1

10
t10 − γ1

6
t6.

Then

sup
t∈[0,∞)

f1(t) =


√

γ2
1 + 4α1β1 − γ1

2β1

1/2
12α1β1 + γ2

1 − γ1

√
γ2

1 + 4α1β1

30β1
.

Proof. For t ≥ 0, we have

f ′1(t) = α1t− β1t9 − γ1t5 = t(α1 − β1t8 − γ1t4).

Set h(t) = α1 − β1t8 − γ1t4 = 0, we write at

t4 =

√
γ2

1 + 4α1β1 − γ1

2β1
.

Substituting it into f1(t), the result is obtained. The proof is completed.

Lemma 5.3. Let

g1(t) =
t2

2
‖uε‖2 − t10

10

∫
B

φuε |uε|5 −
t6

6

∫
B
|uε|6,

then we have, as ε→ 0+,

sup
t≥0

g1(t) ≤
13−

√
5

30

(√
5− 1
2

)1/2

S3/2 + O(ε) =: Λ + O(ε).

Proof. Since −∆φuε = |uε|5, we have∫
B
|uε|6 =

∫
B
∇φuε∇|uε|

≤ 1
2

∫
B
|∇|uε||2 +

1
2

∫
B
|∇φuε |2

=
1
2

∫
B

φuε |uε|5 +
1
2

∫
B
|∇uε|2.

Then thanks to (2.2) we derive that, for ε > 0 sufficiently small,∫
B

φuε |uε|5 ≥ 2
∫

B
|uε|6 −

∫
B
|∇uε|2

= S
3
2 + O(ε).

This together with Lemma 5.2 and the estimate (2.2) implies that

g1(t) =
t2

2
‖uε‖2 − t10

10

∫
B

φuε |uε|5 −
t6

6

∫
B
|uε|6

≤ t2

2
(S3/2 + O(ε))− t10

10
(S3/2 + O(ε))− t6

6
(S3/2 + O(ε))

≤ 13−
√

5
30

(√
5− 1
2

)1/2

S3/2 + O(ε),

for ε > 0 sufficiently small. The proof is completed.
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From Lemma 3.1, we know that the functional J̃ possesses the mountain pass geometry.
Then there is a (PS)c1 sequence {un} ⊂ H for J̃ with the property that

J̃(un)→ c1, ‖ J̃′(un)‖H−1 → 0, n→ ∞,

where c1 is given by
c1 = inf

γ∈Γ̃
max
t∈[0,1]

J̃(γ(t)), (5.2)

and Γ̃ = {γ ∈ C([0, 1], H) : γ(0) = 0, J̃(γ(1)) < 0}.
In the following we give an estimate of the upper bound of the critical level c1 by using

above two lemmas.

Lemma 5.4. Let c1 be defined by (5.2), then 0 < c1 < Λ.

Proof. It follows from (3.1) that, for ε small enough,

J̃(tuε) =
t2

2

∫
B
|∇uε|2 −

t10

10

∫
B

φuε |uε|5 −
∫

B

t6+|x|α

6 + |x|α |uε|6+|x|
α

≤ t2

2
‖uε‖2 − t6

7

∫
B
|uε|6+|x|

α

≤ S3/2t2 − S3/2

14
t6 := ϕ(t).

Thus, there exists R1 > 0 sufficiently large which is independent of ε, such that ϕ(R1) = 0
and J̃(R1uε) ≤ 0 for ε small enough. Hence, we can find 0 < tε < R1 satisfying

0 < η1 ≤ c1 ≤ max
t∈[0,R1]

J̃(tuε) = J̃(tεuε).

Since d
dt J̃(tuε)|t=tε = 0, we have

tε‖uε‖2 = t9
ε

∫
B

φuε |uε|5 +
∫

B
t5+|x|α
ε |u|6+|x|α .

Hence we deduce from (2.2) that

S
3
2 + O(ε) = t8

ε

∫
B

φuε |uε|5 + t4
ε

∫
B
|uε|6 + t4

ε

∫
B

(
t|x|

α

ε |uε|6+|x|
α − |uε|6

)
= t8

ε

∫
B

φuε |uε|5 + t4
ε [S

3
2 + O(ε3) + Aε]

= t8
ε

∫
B

φuε |uε|5 + t4
ε [S

3
2 + O(ε3) + O(εα| log ε|) + O(ε3/2)],

(5.3)

where Aε = O(εα| log ε|) + O(ε3/2) is given in [21]. For convenience, we set A = S
3
2 + O(ε),

B =
∫

B φuε |uε|5 and C = S
3
2 + O(ε3) + O(εα| log ε|) + O(ε3/2). Thus, (5.3) can be rewritten as

A = Bt8
ε + Ct4

ε . It is easy to see that for ε small,

t4
ε =

√
C2 + 4AB− C

2B
=

√
5S3 + O(ε) + O(εα| log ε|)− S

3
2 −O(εα| log ε|)−O(ε3/2)

2S3/2 + O(ε)
.

Thereby, for ε small enough, there holds

(
√

5− 1)/4 < t2
ε < 4/5. (5.4)
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In what follows, we will estimate the term

∫
B

t6
ε

6
|uε|6 −

∫
B

t6+|x|α
ε

6 + |x|α |uε|6+|x|
α

=
∫

B

(
t6
ε

6
− t6

ε

6 + |x|α

)
|uε|6 +

∫
B

t6+|x|α
ε

6 + |x|α (|uε|6 − |uε|6+|x|
α
)

+
∫

B

(
t6
ε

6 + |x|α −
t6+|x|α
ε

6 + |x|α

)
|uε|6

= I + II + III.

(5.5)

By [21, page 16] and (5.4), we can find

I =
∫

B

(
t6
ε

6
− t6

ε

6 + |x|α

)
|uε|6 ≤ Cεα (5.6)

and

II =
∫

B

t6+|x|α
ε

6 + |x|α (|uε|6 − |uε|6+|x|
α
) ≤ −Cεα| log ε|. (5.7)

It follows from (5.4) again that

III =
∫

B

(
t6
ε

6 + |x|α −
t6+|x|α
ε

6 + |x|α

)
|uε|6 ≤ C

∫
B

(
1− t|x|

α

ε

)
|uε|6

= C
∫

B
(1− exp(|x|α log tε)) |uε|6 ≤ C

∫
B
|x|α|uε|6

≤ Cω
∫ ε

0
rαε−3r2 + Cω

∫ 1

ε
rαε3r−4

≤ Cεα + C(εα − ε3) ≤ Cεα.

(5.8)

Combining (5.5)-(5.8) and using Lemma 5.3, we derive

J̃(tεuε) =
t2
ε

2
‖uε‖2 − t10

ε

10

∫
B

φuε |uε|5 −
∫

B

t6+|x|α
ε

6 + |x|α |uε|6+|x|
α

=
t2
ε

2
‖uε‖2 − t10

ε

10

∫
B

φuε |uε|5 −
∫

B

t6
ε

6
|uε|6 +

∫
B

t6
ε

6
|uε|6 −

∫
B

t6+|x|α
ε

6 + |x|α |uε|6+|x|
α

≤ sup
t≥0

g1(t) +
∫

B

t6
ε

6
|uε|6 −

∫
B

t6+|x|α
ε

6 + |x|α |uε|6+|x|
α

≤ 13−
√

5
30

(√
5− 1
2

)1/2

S3/2 + O(ε) + Cεα − Cεα| log ε|.

(5.9)

By choosing ε > 0 small enough, we derive by (5.9),

0 < η1 ≤ c1 ≤ J̃(tεuε) < Λ.

The proof is finished.

Lemma 5.5. If {un} is a (PS)c1 sequence of J̃, then there exists u ∈ H such that, up to a subsequence,
un ⇀ u and J̃′(u) = 0.
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Proof. From Lemma 3.3 we see that {un} is bounded in H. Then, up to a subsequence, we can
assume that {un} converges to u weakly in H and un → u a.e. in B. By taking ϕ ∈ C∞

0 (B), we
find

〈 J̃′(un), ϕ〉 =
∫

B
∇un∇ϕ−

∫
B

φun |un|3un ϕ−
∫

B
|un|4+|x|

α
un ϕ.

It follows from Lemma 5.1 that φun ⇀ φu in H, which implies φun ⇀ φu in L6(B). Then∫
B
(φun − φu)|u|3uϕ→ 0, n→ ∞. (5.10)

Since un → u a.e. in B and∫
B
|φun(|un|3un − |u|3u)| 65 ≤ C(|φun |

6
5
6 |un|

24
5

6 + |φun |
6
5
6 |u|

24
5

6 ) ≤ C,

we have φun(|un|3un − |u|3u) ⇀ 0 in L
6
5 (B) and thus∫

B
φun(|un|3un − |u|3u)ϕ→ 0, n→ ∞,

which together with (5.10) ensures that∫
B

φun |un|3un ϕ→
∫

B
φu|u|3uϕ, n→ ∞. (5.11)

For any measurable subset Q ⊂ B, we have∣∣∣∣∫Q
(|un|4+|x|

α
un − |u|4+|x|

α
u)ϕ

∣∣∣∣ ≤ ∫Q
(|un|5+|x|

α
+ |u|5+|x|α)|ϕ|

≤ ‖|un|5+|x|
α
+ |u|5+|x|α‖

L
p(·)

p(·)−1 (Q)

‖ϕ‖Lp(·)(Q),

where p(x) = 6 + |x|α. Hence, Vitali’s theorem (see [28]) implies∫
B
|un|4+|x|

α
un ϕ→

∫
B
|u|4+|x|α uϕ, as n→ ∞. (5.12)

Combining (5.10), (5.11) and (5.12), there holds

〈 J̃′(u), ϕ〉 = lim
n→∞
〈 J̃′(un), ϕ〉 = 0.

Therefore, by density, we derive that J̃′(u) = 0. The proof is completed.

In order to obtain the nontrivial solution of (1.3), we need define the approximation func-
tional Ĩ : H → R associated to J̃ given by

Ĩ(u) =
1
2
‖u‖2 − 1

10

∫
B

φu|u|5 −
1
6

∫
B
|u|6.

Lemma 5.6. The functional Ĩ satisfies the (PS)c1 condition with c1 ∈ (0, Λ).
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Proof. Suppose that {un} is a (PS)c1 sequence of Ĩ for c1 ∈ (0, Λ), i.e.

Ĩ(un)→ c1, Ĩ′(un)→ 0 as n→ ∞.

Similarly to Lemma 3.3, it is easy to see that {un} is bounded in H. Going if necessary to
a subsequence, we can find u ∈ H such that un ⇀ u in H. By the same argument used in
Lemma 5.5, we deduce that Ĩ′(u) = 0, hence

Ĩ(u) = Ĩ(u)− 1
6
〈 Ĩ′(u), u〉

=
1
3
‖u‖2 +

1
15

∫
B

φu|u|5 ≥ 0.
(5.13)

Now, let vn = un − u, it is obvious to see that

‖un‖2 = ‖vn‖2 + ‖u‖2 + o(1).

From Brézis–Lieb Lemma in [9, 19], we have∫
B
|un|6dx =

∫
B
|vn|6dx +

∫
B
|u|6dx + o(1)

and ∫
B

φun |un|5 =
∫

B
φvn |vn|5 +

∫
B

φu|u|5 + o(1).

These three equalities imply that

c1 − Ĩ(u) = Ĩ(un)− Ĩ(u) + o(1)

=
1
2
‖un‖2 − 1

2
‖u‖2 − 1

10

∫
B

φun |un|5 +
1

10

∫
B

φu|u|5

− 1
6

∫
B
|un|6 +

1
6

∫
B
|u|6 + o(1)

=
1
2
‖vn‖2 − 1

10

∫
B

φvn |vn|5 −
1
6

∫
B
|vn|6 + o(1),

(5.14)

and similarly

o(1) = 〈 Ĩ′(un), un〉 − 〈 Ĩ′(u), u〉

= ‖un‖2 − ‖u‖2 −
∫

B
φun |un|5 +

∫
B

φu|u|5 −
∫

B
|un|6 +

∫
B
|u|6

= ‖vn‖2 −
∫

B
φvn |vn|5 −

∫
B
|vn|6 + o(1).

(5.15)

We will show that ‖vn‖ → 0. Otherwise, there exists a subsequence still denoted by {vn} such
that ‖vn‖2 → l > 0. For convenience, let an =

∫
B φvn |vn|5 and bn =

∫
B |vn|6. Without loss of

generality, we may assume an → a1 and bn → b1, as n→ ∞. Notice that∫
B
|vn|6 =

∫
B
∇φvn∇|vn|

≤ ε2

2

∫
B
|∇|vn||2 +

1
2ε2

∫
B
|∇φvn |2

=
1

2ε2

∫
B

φvn |vn|5 +
ε2

2

∫
B
|∇vn|2,
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then as n→ ∞ passing to the limit, we conclude that

b1 ≤
1

2ε2 a1 +
ε2

2
l.

Taking ε2 =
√

5−1
2 , and combining with (5.15) leads to

a1 ≥
3−
√

5
2

l,

from which we get by (5.13), (5.14) and (5.15) that

c1 ≥ c1 − Ĩ(u) =
2
5

a1 +
1
3

b1 + o(1) =
1
3

l +
1
15

a1 + o(1) ≥ 13−
√

5
30

l + o(1). (5.16)

On the other hand, (5.1) and (5.15) yield

l ≤ S−6l5 + S−3l3.

Therefore we get l2 ≥ −1+
√

5
2 S3. This together with (5.16) implies that c1 ≥ Λ, which will come

to a contradiction. Therefore vn → 0 strongly in H, or equivalently, un → u in H as n → ∞.
The proof is completed.

Lemma 5.7 ([30]). Let Ω be a domain in R3 and g : Ω×R→ R be a Caratéodory function such that
for almost every x ∈ Ω, there holds

|g(x, u)| ≤ a(x)(1 + |u|).

If 0 ≤ a ∈ L
3
2 (Ω) and u ∈ H1

0(Ω) is a weak solution of equation −∆u = g(·, u) in Ω. Then,
u ∈ Lp(Ω) for all p < ∞.

Proof of Theorem 1.7. The Lemmas 5.4, 5.5 and Theorem 1.2 imply that (1.3) admits a nonneg-
ative nontrivial ground state solution u ∈ H, which satisfies the following equation in weak
sense

−∆u = φu|u|3u + u5+|x|α in B.

Let us define
g̃(u(x)) = φu|u|3u + u5+|x|α , x ∈ B.

Then thanks to Lemma 2.2, we have
∫

B u6+ 3
2 |x|α ≤ C. The fact φu ∈ D1,2(B) that implies

φu ∈ L6(B). On the other hand, it is easy to see that |φu|
3
2 ∈ L4(B) and |u| 92 ∈ L

4
3 (B). Thus we

derive from the Hölder inequality that φu|u|3 ∈ L
3
2 (B), which implies

a =
g̃(u)

1 + |u| ∈ L
3
2 (B).

Thereby, we deduce immediately from Lemma 5.7 that u ∈ Lq(B) for any 1 < q < ∞. Hence,
there holds g̃(u) ∈ Lq(B) for any 1 < q < ∞. Now, arguing by the Calderón–Zygmund
inequality and Lp estimate given in [16, 30], we derive u ∈ W2,q(B), whence also u ∈ C1,α1(B)
by Sobolev embedding theorem for any 0 < α1 < 1. Moreover, the Harnack inequality [32]
implies u(x) > 0 for all x ∈ B. The proof is completed.
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6 The Kirchhoff type equation

In this section, we obtain the existence of positive ground state solution of (1.6) by using
Theorem 1.2 with λ = 1, q = 4. Similarly to Section 4, we first estimate the level of mountain
critical of the functional Ĵ corresponding to (1.6) and show that the critical level is below the
non-compactness level of Ĵ by using approximation techniques. Then we are devoted to verify
that the (PS) sequence of the functional Ĵ is also the one of the approximation functional
associated to Ĵ. Finally, by the regularity theory of the elliptic equation, the positive ground
state solution of (1.6) is obtained. In order to find the weak solutions to (1.6) and it is natural
to consider the energy functional on H:

Ĵ(u) =
1
2
‖u‖2 +

b
4
‖u‖4 −

∫
B

1
6 + |x|α |u|

6+|x|α .

Then we have from Lemma 2.2 that Ĵ is well defined on H and is of C1, and

( Ĵ′(u), v) = (1 + b‖u‖2)
∫

B
∇u∇v−

∫
B
|u|4+|x|α uv, u, v ∈ H.

It is standard to verify that the weak solutions of (1.6) correspond to the critical points of the
functional Ĵ.

Lemma 6.1. Let α2, β2, γ2 > 0 and define f2 : [0, ∞)→ R as

f2(t) =
α2

2
t2 +

β2

4
t4 − γ2

6
t6.

Then

sup
t∈[0,∞)

f2(t) =
6α2β2γ2 + β3

2 + 4α2γ2

√
β2

2 + 4α2γ2 + β2
2

√
β2

2 + 4α2γ2

24γ2
2

.

Proof. For t ≥ 0, we have

f ′2(t) = α2t + β2t3 − γ2t5 = t(α2 + β2t2 − γ2t4).

Let α2 + β2t2 − γ2t4 = 0, we write at

t2 =

√
β2

2 + 4α2γ2 + β2

2γ2
.

Substituting it into f2(t), the result is valid. The proof is completed.

Lemma 6.2. Let

g2(t) =
t2

2
‖uε‖2 +

bt4

4
‖uε‖4 − t6

6

∫
R3
|uε|6,

then we have, as ε→ 0+,
sup
t≥0

g2(t) ≤ Λ1 + O(ε),

where Λ1 = b
4 S3 + b3

24 S6 + 1
6 S
√

S4b2 + 4S + b2

24 S4
√

S4b2 + 4S.
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Proof. It follows from Lemma 6.1 and the estimate (2.2) that

g2(t) =
t2

2
‖uε‖2 +

bt4

4
‖uε‖4 − t6

6

∫
R3
|uε|6

=
t2

2
(S3/2 + O(ε)) +

bt4

4
(S3 + O(ε))− t6

6
(S3/2 + O(ε3))

≤ b
4

S3 +
b3

24
S6 +

1
6

S
√

S4b2 + 4S +
b2

24
S4
√

S4b2 + 4S + O(ε),

for ε > 0 sufficiently small. The proof is completed.

From Lemma 3.2, we know that the functional Ĵ possesses the mountain pass geometry.
Then there is a (PS)c2 sequence {un} ⊂ H for Ĵ with the property that

Ĵ(un)→ c2, ‖ Ĵ′(un)‖H−1 → 0, n→ ∞,

where c2 is given by
c2 = inf

γ̂∈Γ
max
t∈[0,1]

Ĵ(γ(t)),

and Γ̂ = {γ ∈ C([0, 1], H) : γ(0) = 0, Ĵ(γ(1)) < 0}.
In the following we give an estimate of the upper bound of the critical level c2 by using

above two lemmas.

Lemma 6.3. There holds 0 < c2 < Λ1.

Proof. Similar to Lemma 5.4, there exists R2 > 0 sufficiently large, such that Ĵ(R2uε) ≤ 0 for ε

small enough, hence, we can find 0 < tε < R2 satisfying

0 < η2 ≤ c2 ≤ max
t∈[0,R2]

Ĵ(tuε) = Ĵ(tεuε).

Since d
dt Ĵ(tuε)|t=tε = 0, we have

tε‖uε‖2 + bt3
ε‖uε‖4 =

∫
B

t5+|x|α
ε |u|6+|x|α .

Hence we deduce from (2.2) that

S
3
2 + O(ε) + bt2

ε (S
3 + O(ε)) = t4

ε

∫
B
|uε|6 + t4

ε

∫
B

(
t|x|

α

ε |uε|6+|x|
α − |uε|6

)
= t4

ε [S
3
2 + O(ε3) + Aε]

= t4
ε [S

3
2 + O(ε3) + O(εα| log ε|) + O(ε3/2)],

(6.1)

where Aε = O(εα| log ε|) + O(ε3/2) is given in [21, page 14]. For convenience, we set A =

S
3
2 + O(ε), B = b(S3 + O(ε)) and C = S

3
2 + O(ε3) + O(εα| log ε|) + O(ε3/2). Thus, (6.1) can be

rewritten as A + Bt2
ε = Ct4

ε . It is easy to see that

t2
ε =

B +
√

B2 + 4AC
2C

=
bS3 + O(ε) +

√
b2S6 + 4S3 + O(ε) + O(εα| log ε|)

2S3/2 + O(ε3/2) + O(εα| log ε|) .
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Thereby, t2
ε > 1 for ε small enough, which implies

∫
B

t6
ε

6
|uε|6 −

∫
B

t6+|x|α
ε

6 + |x|α |uε|6+|x|
α

=
∫

B

(
t6
ε

6
− t6

ε

6 + |x|α

)
|uε|6 +

∫
B

t6+|x|α
ε

6 + |x|α (|uε|6 − |uε|6+|x|
α
)

+
∫

B

(
t6
ε

6 + |x|α −
t6+|x|α
ε

6 + |x|α

)
|uε|6

≤
∫

B

(
t6
ε

6
− t6

ε

6 + |x|α

)
|uε|6 +

∫
B

t6+|x|α
ε

6 + |x|α (|uε|6 − |uε|6+|x|
α
).

(6.2)

By [21, page 16] and using the fact that tε < R2, we have∫
B

(
t6
ε

6
− t6

ε

6 + |x|α

)
|uε|6 ≤ Cεα (6.3)

and ∫
B

t6+|x|α
ε

6 + |x|α (|uε|6 − |uε|6+|x|
α
) ≤ −Cεα| log ε|. (6.4)

Combining (6.3), (6.4) with (6.2) and using Lemma 6.2, we derive

Ĵ(tεuε) =
t2
ε

2
‖uε‖2 +

bt4
ε

4
‖uε‖4 −

∫
B

t6+|x|α
ε

6 + |x|α |uε|6+|x|
α

=
t2
ε

2
‖uε‖2 +

bt4
ε

4
‖uε‖4 −

∫
B

t6
ε

6
|uε|6 +

∫
B

t6
ε

6
|uε|6 −

∫
B

t6+|x|α
ε

6 + |x|α |uε|6+|x|
α

= sup
t≥0

g2(t) +
∫

B

t6
ε

6
|uε|6 −

∫
B

t6+|x|α
ε

6 + |x|α |uε|6+|x|
α

≤ b
4

S3 +
b3

24
S6 +

1
6

S
√

S4b2 + 4S +
b2

24
S4
√

S4b2 + 4S + O(ε) + Cεα − Cεα| log ε|.

(6.5)

By choosing ε > 0 small enough, we derive by (6.5),

0 < η2 ≤ c2 ≤ Ĵ(tεuε) < Λ1.

The proof is completed.

Lemma 6.4. If {un} is a (PS)c2 sequence of Ĵ, then there exists u ∈ H such that, up to a subsequence,
un ⇀ u and Ĵ′(u) = 0.

Proof. By Lemma 3.3, {un} is bounded in H and hence, going if necessary to a subsequence,
we may assume that un ⇀ u in H. Let A > 0 be such that

∫
B |∇un|2 → A2. If u = 0, it is

easy to see that Ĵ′(u) = 0. If u 6= 0, then by the weakly lower semi-continuity of the norm,∫
B |∇u|2 ≤ A2. In the sequel, we will claim that

∫
B |∇u|2 = A2. In fact, if it is false, then∫

B |∇u|2 < A2. For any measurable subset Q ⊂ B, we have for v ∈ H,∣∣∣∣∫Q
(|un|4+|x|

α
un − |u|4+|x|

α
u)v
∣∣∣∣ ≤ ∫Q

(|un|5+|x|
α
+ |u|5+|x|α)|v|

≤ ‖|un|5+|x|
α
+ |u|5+|x|α‖

L
p(·)

p(·)−1 (Q)

‖v‖Lp(·)(Q),
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where p(x) = 6 + |x|α. Hence, the Vitali theorem (see [28]) leads to∫
B
|un|4+|x|

α
unv→

∫
B
|u|4+|x|α uv, as n→ ∞.

This together with the fact that Ĵ′(un)→ 0 ensures that

(1 + A2b)
∫

B
∇u∇v =

∫
B
|u|4+|x|α uv, v ∈ H. (6.6)

By taking v = u in (6.6), there holds 〈 Ĵ′(u), u〉 < 0. Similarly to the proof of Lemma 3.1,
we have 〈 Ĵ′(tu), tu〉 > 0 for small t > 0. Thus, there exists a tu ∈ (0, 1) such that Ĵ(tuu) =

maxt≥0 Ĵ(tu) and 〈 Ĵ′(tuu), tuu〉 = 0. Then, we deduce by the weak lower semicontinuity of the
norm and Fatou’s lemma that

c2 ≤ Ĵ(tuu)− 1
6
〈 Ĵ′(tuu), tuu〉

=
t2
u
3
‖u‖2 +

t4
ub
12
‖u‖4 +

∫
B

(
t6+|x|α
u

6
− t6+|x|α

u

6 + |x|α

)
|u|6+|x|α

<
1
3
‖u‖2 +

b
12
‖u‖4 +

∫
B

(
1
6
− 1

6 + |x|α

)
|u|6+|x|α

≤ lim inf
n→∞

(
1
3
‖un‖2 +

b
12
‖un‖4 +

∫
B

(
1
6
− 1

6 + |x|α

)
|un|6+|x|

α

)
= lim inf

n→∞

(
J(un)−

1
6
〈J′(un), un〉

)
= c2,

which is impossible. Thus,
∫

B |∇u|2 = A2 and Ĵ′(u) = 0. The proof is completed.

In order to obtain the nontrivial solution of (1.6), we need define the functional Î : H → R

by

Î(u) =
1
2
‖u‖2 +

b
4
‖u‖4 − 1

6

∫
B
|u|6.

Lemma 6.5. Assume that 0 < c2 < Λ1. The functional I satisfies the (PS)c2 condition.

Proof. Suppose that {un} is a (PS)c2 sequence for c2 ∈ (0, Λ1), i.e.

Î(un)→ c2, Î′(un)→ 0 as n→ ∞.

By repeating the arguments used in Lemma 3.3, it is easy to show that {un} is bounded in
H. Then passing to a subsequence, we can find u ∈ H such that un ⇀ u in H. Now, let
vn = un − u, we claim that ‖vn‖ → 0. In fact, we use an argument of contradiction and
suppose that there exists a subsequence still denoted by {vn} such that ‖vn‖ → l̃ > 0. It is
easy to verify that

‖un‖2 = ‖vn‖2 + ‖u‖2 + o(1) (6.7)

and
‖un‖4 = ‖vn‖4 + ‖u‖4 + 2‖vn‖2‖u‖2 + o(1). (6.8)

From the Brezis–Lieb lemma in [9], we have∫
B
|un|6dx =

∫
B
|vn|6dx +

∫
B
|u|6dx + o(1). (6.9)
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Recall that Î′(un)→ 0 as n→ ∞, there holds by (6.7),

lim
n→∞
〈 Î′(un), u〉 = ‖u‖2 + bl̃2‖u‖2 + b‖u‖4 −

∫
B
|u|6dx = 0, (6.10)

which yields

Î(u) = Î(u)− 1
4

(
‖u‖2 + bl2‖u‖2 + b‖u‖4 −

∫
B
|u|6dx

)
=

1
2
‖u‖2 +

1
12

∫
B
|u|6dx− b

4
l̃2‖u‖2

≥ − b
4

l̃2‖u‖2.

(6.11)

On the other hand, combining (6.7), (6.8) with (6.9) leads to

Î(un)− Î(u) + o(1)

=
1
2
‖un‖2 − 1

2
‖u‖2 +

b
4
‖un‖4 − b

4
‖u‖4 − 1

6

∫
B
|un|6 +

1
6

∫
B
|u|6 + o(1)

=
1
2
‖vn‖2 +

b
4
‖vn‖4 +

b
2
‖vn‖2‖u‖2 − 1

6

∫
B
|vn|6 + o(1).

(6.12)

Similarly, by using (6.10) again, we deduce

o(1) = 〈 Î′(un), un〉 − (‖u‖2 + bl̃2‖u‖2 + b‖u‖4 −
∫

B
|u|6dx)

= ‖un‖2 − ‖u‖2 + b‖un‖4 − b‖u‖4 − bl̃2‖u‖2 −
∫

B
|un|6 +

∫
B
|u|6

= ‖vn‖2 + b‖vn‖4 + b‖vn‖2‖u‖2 −
∫

B
|vn|6 + o(1).

(6.13)

Then, taking the limit on the both sides in (6.13) as n→ ∞, we find l̃2 + bl̃4 + bl̃2‖u‖2 ≤ S−3 l̃6,
which implies that

l̃2 ≥ S3b + S
√

S4b2 + 4(1 + b‖u‖2)S
2

. (6.14)

It follows from (6.12) and (6.13) that

Î(u) = Î (un)−
(

1
2
− 1

6

)
‖vn‖2 −

(
1
4
− 1

6

)
b‖vn‖4 −

(
1
2
− 1

6

)
b‖vn‖2‖u‖2 + o(1).

This together with (6.14) ensures that

Î(u) = c2 −
(

1
3

l̃2 +
1
12

bl̃4 +
1
3

bl̃2‖u‖2
)

≤ c2 −
b
4

S3 − 1
24

b3S6 − S
6

√
b2S4 + 4 (1 + b‖u‖2) S

− b2S4

24

√
b2S4 + 4 (1 + b‖u‖2) S

− 1
24

(
3b2S3 + S

√
b2S4 + 4 (1 + b‖u‖2) S

)
‖u‖2 − b

4
l̃2‖u‖2

≤ c2 −
(

b
4

S3 +
b3

24
S6 +

S
6

√
b2S4 + 4S +

b2

24
S4
√

b2S4 + 4S
)
− b

4
l̃2‖u‖2

≤ c2 −Λ− b
4

l̃2‖u‖2 < − b
4

l̃2‖u‖2,

which contradicts to (6.11). Therefore vn → 0 strongly in H, or equivalently, un → u in H as
n→ ∞. The proof is completed.
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Proof of Theorem 1.9. By Lemmas 6.4, 6.5, we know that the assumptions in Theorem 1.2 are
valid. Hence, (1.6) possesses a nonnegative nontrivial ground state solution u ∈ H, which
satisfies the following equation in weak sense

−
(

1 + b
∫

B
|∇u|2

)
∆u = u5+|x|α in B.

Let us define

ĝ(u(x)) =
u5+|x|α

1 + b
∫

B |∇u|2
, x ∈ B.

It follows from Lemma 2.2 that
∫

B u6+ 3
2 |x|α ≤ C, which implies

a =
ĝ(u)

1 + |u| ∈ L
3
2 (B).

Hence, we deduce immediately from Lemma 5.7 that u ∈ Lq(B) for any 1 < q < ∞. Then,
there holds ĝ(u) ∈ Lq(B) for any 1 < q < ∞. By the Calderón–Zygmund inequality and
Lp estimate given in [16, 30], we derive u ∈ W2,q(B), whence also u ∈ C1,α2(B) by Sobolev
embedding theorem for any 0 < α2 < 1. Moreover, the Harnack inequality [32] implies
u(x) > 0 for all x ∈ B. The proof is completed.
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