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Abstract. In this paper, we prove existence and uniqueness of solutions of Volterra–
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1 Introduction

In this paper, we are interested in the study of integral equations that can be modeled in the
form

x(t) = x0 +
∫ t

t0

a(t, s) f (x(s), s)dg(s), t ∈ [t0, t0 + σ], (1.1)

where the integral on the right-hand side is in the sense of Henstock–Kurzweil–Stieltjes [22].
This class of equations plays an important role from the theoretical point of view as well as
for applications, since they subsumes many types of well known mathematical models. As a
matter of fact, they can be used to model different problems such as anomalous diffusion pro-
cesses, heat conduction with memory and diffusion of fluids in porous media, among others.
See [3, 5, 7, 20, 21] for instance. On the other hand, the subject of Volterra integral equations
has been attracting the attention by several researchers, since they represent a powerful tool
for applications. See, for instance, [1, 4, 6, 8, 9, 14, 17].
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It is worth noticing that depending on the choice of the kernel a : [t0, t0 + σ]× [t0, t0 + σ]→
R, we can study in an unified way a very general class of problems. For instance, if a(t, s) = 1
for all (t, s) ∈ [t0, t0 + σ] × [t0, t0 + σ], then equation (1.1) reduces to the classical measure
differential equation, which is very well-developed in the literature (see [12]). On the other
hand, if a(t, s) = k(t− s) for all (t, s) ∈ [t0, t0 + σ]× [t0, t0 + σ], then the integral equation (1.1)
reduces to a Volterra integral equation which have many applications to the study of heat flow
in the materials of fading memory type (see [7, 20, 21]), among others.

In the present paper, our goal is to prove existence and uniqueness results for the integral
equation (1.1) under very weak conditions for the functions f , a and g. These results are more
general than the ones presented in the literature, since the required conditions allow that
either the function f in (1.1) be highly oscillating, or the functions a, f and g that appear in
(1.1) may have a countable number of discontinuities. Also, we present three examples to
illustrate our results.

Further, we prove that under certain assumptions the integral equation given by (1.1) can
be regarded as an impulsive Volterra–Stieltjes integral equation described by

x(t) = x(t0) +
∫ t

t0

a(t, s) f (x(s), s)dg(s) + ∑
k∈{1,...,m},

tk<t

Ik(x(tk)). (1.2)

These last equations can also be regarded as an impulsive Volterra ∆-integral equation on time
scales given by

x(t) = x(t0) +
∫ t

t0

a(t, s) f (x(s), s)∆s + ∑
k∈{1,...,m},

tk<t

Ik(x(tk)), (1.3)

when g(t) = inf{s ∈ T : s ≥ t}. We only illustrate the first correspondence in this paper,
since it brings more complexity due to the kernel from Volterra–Stieltjes integral equation. On
the other hand, we have omitted the second one to turn the paper simpler and shorter, but
following similar steps from [12], it is possible to prove such correspondence.

This paper is organized as follows. In the second section, we present the basic concepts
and properties concerning the Henstock–Kurzweil–Stieltjes integral which is the main tool to
prove our results. In the third section, we investigate the Volterra–Stieltjes integral equations
and we prove a result concerning the existence and uniqueness of solutions of these equations.
The last section is devoted to present a correspondence between Volterra–Stieltjes integral
equations and impulsive Volterra–Stieltjes equations and also, to prove a result concerning
existence and uniqueness of solutions for these last equations.

2 Henstock–Kurzweil–Stieltjes integral

In this section, we recall some properties concerning the Henstock–Kurzweil–Stieltjes integral.
See [22] for more details.

Let [a, b] be an interval of R, −∞ < a < b < +∞. A tagged division of [a, b] is a finite
collection of point-interval pairs D = (τi, [si−1, si]), where a = s0 6 s1 6 . . . 6 s|D| = b is a
division of [a, b] and τi ∈ [si−1, si], i = 1, 2, . . . , |D|, where the symbol |D| denotes the number
of subintervals in which [a, b] is divided.
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A gauge on a set B ⊂ [a, b] is any function δ : B→ (0, ∞). Given a gauge δ on [a, b], we say
that a tagged division D = (τi, [si−1, si]) is δ-fine if for every i ∈ {1, 2, . . . , |D|}, we have

[si−1, si] ⊂ (τi − δ(τi), τi + δ(τi)).

A function f : [a, b] → R is called Henstock–Kurzweil–Stieltjes integrable on [a, b] with
respect to a function g : [a, b]→ R, if there is an element I ∈ R such that for every ε > 0, there
is a gauge δ : [a, b]→ (0, ∞) such that∣∣∣∣∣ |D|∑

i=1
f (τi) (g(si)− g(si−1))− I

∣∣∣∣∣ < ε,

for all δ–fine tagged partition of [a, b]. In this case, I is called Henstock–Kurzweil–Stieltjes in-
tegral of f with respect to g over [a, b] and it will be denoted by

∫ b
a f (s)dg(s), or simply∫ b

a f dg.
The Henstock–Kurzweil–Stieltjes integral has the usual properties of linearity, additivity

with respect to adjacent intervals, integrability on subintervals (see [22]).
We recall the reader that a function f : [a, b]→ R is called regulated if the lateral limits

f (t−) = lim
s→t−

f (s), t ∈ (a, b] and f (t+) = lim
s→t+

f (s), t ∈ [a, b)

exist. The space of all regulated functions f : [a, b]→ R will be denoted by G([a, b], R), which
is a Banach space when endowed with the usual supremum norm

‖ f ‖∞ = sup
s∈[a,b]

| f (s)| .

Given a regulated function f : [a, b] → R, we will use the notations ∆+ f (t) and ∆− f (t)
throughout this paper to denote

∆+ f (t) := f (t+)− f (t) and ∆− f (t) := f (t)− f (t−),

respectively.
The next result ensures the existence of the Henstock–Kurzweil–Stieltjes integral. We ob-

serve that the inequalities follow from the definition of the Henstock–Kurzweil–Stieltjes inte-
gral. This result can be found in [22, Corollary 1.34].

Theorem 2.1. Let f : [a, b]→ R be a regulated function on [a, b] and g : [a, b]→ R be a nondecreas-
ing function. Then the following conditions hold.

(i) The integral
∫ b

a f (s)dg(s) exists;

(ii)
∣∣∣∫ b

a f (s)dg(s)
∣∣∣ 6 ∫ b

a | f (s)|dg(s) 6 ‖ f ‖∞ (g(b)− g(a)).

The following inequalities follow directly from the definition of the Henstock–Kurzweil–
Stieltjes integral. A similar version was proved in [2, Theorem 7.20] for the case of the
Riemann–Stieltjes integral. We omit its proof here, since it is similar to the proof of [2].

Theorem 2.2. Let f1, f2 : [a, b] → R be Henstock–Kurzweil–Stieltjes integrable functions on the
interval [a, b] with respect to a nondecreasing function g : [a, b]→ R and such that f1(t) 6 f2(t), for
t ∈ [a, b]. Then ∫ b

a
f1(s)dg(s) 6

∫ b

a
f2(s)dg(s).
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The next result is an immediate consequence of Theorem 2.2.

Corollary 2.3. Let f : [a, b] → R be Henstock–Kurzweil–Stieltjes integrable function on the interval
[a, b] with respect to a nondecreasing function g : [a, b] → R and such that f (t) > 0, for t ∈ [a, b].
Then

(i)
∫ b

a f (s)dg(s) > 0.

(ii) The function [a, b] 3 t 7→
∫ t

a f (s)dg(s) is nondecreasing.

In the sequel, we present a Gronwall–type inequality. See [22, Corollary, 1.43].

Lemma 2.4. Let g : [a, b]→ [0, ∞) be a nondecreasing and left-continuous function, k > 0 and l > 0.
Assume that ψ : [a, b]→ [0, ∞) is bounded and satisfies

ψ(ξ) 6 k + l
∫ ξ

a
ψ(s)dg(s), ξ ∈ [a, b].

Then ψ(ξ) 6 kel(g(ξ)−g(a)) for all ξ ∈ [a, b].

The following result, which describes some properties of the indefinite Henstock–Kurzweil–
Stieltjes integral, is a special case of [22, Theorem 1.16].

Theorem 2.5. Let f : [a, b] → R and g : [a, b] → R be a pair of functions such that g is regulated
and

∫ b
a f (s)dg(s) exists. Then the function

h(t) =
∫ t

a
f (s)dg(s), t ∈ [a, b]

is regulated on [a, b] and satisfy

h(t+) = h(t) + f (t)∆+g(t), t ∈ [a, b),

h(t−) = h(t)− f (t)∆−g(t), t ∈ (a, b].

The following assertion is a Substitution Theorem for the Henstock–Kurzweil–Stieltjes in-
tegral. It can be found in [19, Theorem 2.19].

Theorem 2.6. Assume the function h : [a, b] → R is bounded and that the integral
∫ b

a f (s)dg(s)
exists. If one of the integrals

∫ b

a
h(t)d

(∫ t

a
f (ξ)dg(ξ)

)
,

∫ b

a
h(t) f (t)dg(t),

exists, then the other one exists as well, in which case the equality below holds

∫ b

a
h(t)d

(∫ t

a
f (ξ)dg(ξ)

)
=
∫ b

a
h(t) f (t)dg(t).

Now we present a result which is a type of the Dominated Convergence Theorem for
Henstock–Kurzweil–Stieltjes integrals. See [22, Corollary 1.32].
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Theorem 2.7. Let g : [a, b] → R be a nondecreasing function on [a, b]. Assume that ϕn : [a, b] → R

are functions such that the integral
∫ b

a ϕn(s)dg(s) exists for all n ∈N. Suppose that for all s ∈ [a, b],
we have limn→∞ ϕn(s) = ϕ(s) and that for n ∈ N, s ∈ [a, b] the inequalities κ(s) 6 ϕn(s) 6 ω(s)
hold, where ω, κ : [a, b] → R are functions such that the integrals

∫ b
a κ(s)dg(s) and

∫ b
a ω(s)dg(s)

exist. Then the integral
∫ b

a ϕ(s)dg(s) exists and

lim
n→∞

∫ b

a
ϕn(s)dg(s) =

∫ b

a
ϕ(s)dg(s).

The following lemma is a direct consequence of G([a, b], Rn) being a Banach space.

Lemma 2.8. If a sequence {xk}∞
k=1 of regulated functions (from [a, b] to R) converges uniformly on

the interval [a, b] to a function x : [a, b]→ R, then this function is also regulated on [a, b].

We recall the reader that a set A ⊂ G([a, b], R) is called equiregulated, if it has the following
property: for every ε > 0 and t0 ∈ [a, b], there is a δ > 0 such that

(1) if x ∈ A, s ∈ [a, b] and t0 − δ < s < t0, then |x(t0−)− x(s)| < ε,

(2) if x ∈ A, s ∈ [a, b] and t0 < s < t0 + δ, then |x(t0+)− x(s)| < ε.

The next result describes a necessary and sufficient condition for a subset of G([a, b], R) to
be relatively compact, which is an immediate consequence of [15, Theorem 2.18]. We remark
that even though the result in [15] requires v to be an increasing function, it is enough to
assume that v is nondecreasing and let ϑ(t) := v(t) + t, t ∈ [a, b], to see that the original
assumption is satisfied.

Theorem 2.9. The following conditions are equivalent.

(i) A ⊂ G([a, b], R) is relatively compact.

(ii) The set {x(a) : x ∈ A} is bounded and there is a nondecreasing function v : [a, b] → R such
that

|x(τ2)− x(τ1)| 6 v(τ2)− v(τ1),

for all x ∈ A and all a 6 τ1 6 τ2 6 b.

The following lemma will be crucial to prove that an impulsive Volterra integral equation
can always be transformed to a Volterra integral equation without impulses. This result can
be found in [12, Lemma 2.4].

Lemma 2.10. Let m ∈ N, a 6 t1 < t2 < · · · < tm 6 b. Consider a pair of functions f : [a, b] → R

and g : [a, b] → R, where g is regulated, left-continuous on [a, b], and continuous at t1, . . . , tm. Let
f̃ : [a, b]→ R and g̃ : [a, b]→ R be such that f̃ (t) = f (t) for every t ∈ [a, b]\{t1, . . . , tm} and g̃− g
is constant on each of the intervals [a, t1], (t1, t2], . . . , (tm−1, tm], (tm, b]. Then the integral

∫ b
a f̃ dg̃

exists if and only if the integral
∫ b

a f dg exists; in that case, we have∫ b

a
f̃ (s)dg̃(s) =

∫ b

a
f (s)dg(s) + ∑

k∈{1,...,m},
tk<b

f̃ (tk)∆+ g̃(tk).

The next result will be essential to prove the existence of solution of Volterra–Stieltjes
integral equations. It is a classical result of fixed point.

Theorem 2.11 (Schauder Fixed-Point Theorem). Let (E, ‖ · ‖) be a normed vector space, S a
nonempty convex and closed subset of E and T : S → S is a continuous function such that T(S)
is relatively compact. Then T has a fixed point in S.
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3 Volterra–Stieltjes integral equations

In this section, our goal is to study the following type of equation

x(t) = x0 +
∫ t

t0

a(t, s) f (x(s), s)dg(s), t ∈ [t0, t0 + σ], t0 ∈ R,

where the Henstock–Kurzweil–Stieltjes integral on the right–hand side is taken with respect
to a nondecreasing function g : [t0, t0 + σ] → R, f : R× [t0, t0 + σ] → R, σ > 0, x0 ∈ R, and
a : [t0, t0 + σ]2 → R, where [t0, t0 + σ]2 = [t0, t0 + σ]× [t0, t0 + σ].

Throughout this paper, we will use the symbol G2([t0, t0 + σ]2, R) to denote the set of all
functions b : [t0, t0 + σ]2 → R such that b is regulated with respect to the second variable, that
is, for any fixed t ∈ [t0, t0 + σ], the function

b(t, ·) : s ∈ [t0, t0 + σ] 7−→ b(t, s) ∈ R

is regulated.
In what follows, we say that c : [t0, t0 + σ]2 → R is nondecreasing with respect to the first

variable if for any fixed s ∈ [t0, t0 + σ], the function

c(·, s) : t ∈ [t0, t0 + σ] 7−→ c(t, s) ∈ R

is nondecreasing.
We assume the following conditions are satisfied.

(A1) The function g : [t0, t0 + σ]→ R is nondecreasing and left-continuous on (t0, t0 + σ].

(A2) The function a ∈ G2([t0, t0 + σ]2, R) is nondecreasing with respect to the first variable.

(A3) The Henstock–Kurzweil–Stieltjes integral∫ t0+σ

t0

a(t, s) f (x(s), s)dg(s)

exists, for all x ∈ G([t0, t0 + σ], R) and all t ∈ [t0, t0 + σ].

(A4) There exists a Henstock–Kurzweil–Stieltjes integrable function M : [t0, t0 + σ] → R+

with respect to g such that∣∣∣∣∫ τ2

τ1

(c2a(τ2, s) + c1a(τ1, s)) f (x(s), s)dg(s)
∣∣∣∣ ≤ ∫ τ2

τ1

|c2a(τ2, s) + c1a(τ1, s)|M(s)dg(s),

for all x ∈ G([t0, t0 + σ], R), c1, c2 ∈ R and all [τ1, τ2] ⊂ [t0, t0 + σ]. In particular, we have
that ∣∣∣∣∫ τ2

τ1

a(τ, s) f (x(s), s)dg(s)
∣∣∣∣ ≤ ∫ τ2

τ1

|a(τ, s)|M(s)dg(s),

and ∣∣∣∣∫ τ2

τ1

(a(τ2, s)− a(τ1, s)) f (x(s), s)dg(s)
∣∣∣∣ ≤ ∫ τ2

τ1

|a(τ2, s)− a(τ1, s)|M(s)dg(s)

for all x ∈ G([t0, t0 + σ], R), and all τ, τ1, τ2 ∈ [t0, t0 + σ].
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(A5) There exists a regulated function L : [t0, t0 + σ]→ R+ such that∣∣∣∣∫ τ2

τ1

a(τ2, s)[ f (x(s), s)− f (z(s), s)]dg(s)
∣∣∣∣ 6 ∫ τ2

τ1

|a(τ2, s)| L(s)|x(s)− z(s)|dg(s),

for all x, z ∈ G([t0, t0 + σ], R) and all [τ1, τ2] ⊂ [t0, t0 + σ].

Remark 3.1. Note that
∫ t0+σ

t0
|c2a(τ2, s) + c1a(τ1, s)|M(s)dg(s) and

∫ t0+σ
t0
|a(t, s)| L(s)|x(s) −

z(s)|dg(s) exist. Indeed, by Corollary 2.3, [t0, t0 + σ] 3 t 7→
∫ t

t0
M(s)dg(s) is a nondecreasing

function. On the other hand, the function [t0, t0 + σ] 3 s 7→ c2a(τ2, s) + c1a(τ1, s) is regulated.
Then, by Theorem 2.1, the integral

∫ t0+σ
t0
|c2a(τ2, s) + c1a(τ1, s)|d

(∫ s
t0

M(ξ)dg(ξ)
)

exists. Us-
ing this fact, the boundedness of c2a(τ2, ·) + c1a(τ1, ·) and Theorem 2.6, we have that the
integral

∫ t0+σ
t0
|c2a(τ2, s) + c1a(τ1, s)|M(s)dg(s) exists. For the second integral, note that the

function s 7→ |a(t, s)| L(s)|x(s)− z(s)| is regulated.

Remark 3.2. Note that when s 7→ a(τ, s) f (x(s), s) is a regulated function on [t0, t0 + σ] for
t0 ≤ τ ≤ t0 + σ and g is nondecreasing, then (A4) holds by Theorem 2.1.

Remark 3.3. Suppose that g is a nondecreasing function. Then, the condition (A4) is true
whenever the function f is bounded in x. Moreover, we observe that condition (A5) holds
whenever the following Lipschitz type condition is satisfied:

| f (x(s), s)− f (z(s), s)| 6 L(s)|x(s)− z(s)|, t0 6 s 6 t0 + σ,

where L : [t0, t0 + σ]→ R+ is a regulated function.

Remark 3.4. Suppose that a satisfies condition (A2). Since a(t0, y) 6 a(x, y) 6 a(t0 + σ, y) for
all x, y ∈ [t0, t0 + σ] and the functions a(t0, y), a(t0 + σ, y) are regulated in y, we have that a is
bounded in [t0, t0 + σ]2.

Next, we present the main result of this section. It ensures the existence and uniqueness of
solution of Volterra–Stieltjes integral equations. In order to prove it, we employ the Schauder
Fixed Point Theorem and Gronwall’s inequality for Stieltjes integral.

Theorem 3.5. Assume f : R× [t0, t0 + σ] → R satisfies the conditions (A3), (A4) and (A5), a :
[t0, t0 + σ]2 → R satisfies condition (A2) and g : [t0, t0 + σ]→ R satisfies condition (A1). Then there
exists a unique solution x : [t0, t0 + σ]→ R of

x(t) = x0 +
∫ t

t0

a(t, s) f (x(s), s)dg(s), t ∈ [t0, t0 + σ]. (3.1)

Proof. Let us define the following constants:

c := sup
(t,s)∈[t0,t0+σ]2

|a(t, s)|, (3.2)

β :=
∫ t0+σ

t0

cM(s)dg(s). (3.3)

Notice that all these constants are finite and well-defined in view of conditions (A2), (A4) and
Remark 3.4.

Existence. Consider the set

H := {ϕ ∈ G([t0, t0 + σ], R) : ϕ(t0) = x0 and |ϕ(t)− x0| 6 β, t ∈ [t0, t0 + σ]}.
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The set H is nonempty, since

ϕ : [t0, t0 + σ]→ R

s 7→ ϕ(s) := x0,

belongs to H. Define T : H → H given by

(Tx)(t) := x0 +
∫ t

t0

a(t, s) f (x(s), s)dg(s), x ∈ H. (3.4)

Taking into account the condition (A3), we infer that the integral on the right-hand side of
(3.4) is well-defined. Now, given x ∈ H and t0 6 τ1 6 τ2 6 t0 + σ, by conditions (A2), (A3),
(A4), Theorem 2.2 and Corollary 2.3, we have

|(Tx)(τ2)− (Tx)(τ1)|

=

∣∣∣∣∫ τ2

t0

a(τ2, s) f (x(s), s)dg(s)−
∫ τ1

t0

a(τ1, s) f (x(s), s)dg(s)
∣∣∣∣

=

∣∣∣∣∫ τ1

t0

a(τ2, s) f (x(s), s)dg(s)+
∫ τ2

τ1

a(τ2, s) f (x(s), s)dg(s)−
∫ τ1

t0

a(τ1, s) f (x(s), s)dg(s)
∣∣∣∣

6

∣∣∣∣∫ τ2

τ1

a(τ2, s) f (x(s), s)dg(s)
∣∣∣∣+ ∣∣∣∣∫ τ1

t0

(a(τ2, s)− a(τ1, s)) f (x(s), s)dg(s)
∣∣∣∣

6
∫ τ2

τ1

|a(τ2, s)|M(s)dg(s) +
∫ τ1

t0

|a(τ2, s)− a(τ1, s)|M(s)dg(s)

Thm 2.2, (A2), (A4) and (3.2)
↓
6

∫ τ2

τ1

cM(s)dg(s) +
∫ τ1

t0

(a(τ2, s)− a(τ1, s))M(s)dg(s)

6
∫ τ2

τ1

cM(s)dg(s) +
∫ t0+σ

t0

(a(τ2, s)− a(τ1, s))M(s)dg(s),

that is,

|(Tx)(τ2)− (Tx)(τ1)| 6
∫ τ2

τ1

cM(s)dg(s) +
∫ t0+σ

t0

(a(τ2, s)− a(τ1, s))M(s)dg(s). (3.5)

Define v : [t0, t0 + σ]→ R by

v(t) :=
∫ t

t0

cM(s)dg(s) +
∫ t0+σ

t0

a(t, s)M(s)dg(s), (3.6)

for every t ∈ [t0, t0 + σ]. Since M is a Henstock–Kurzweil–Stieltjes integrable function,∫ t
t0

cM(s)dg(s) exists for all t ∈ [t0, t0 + σ]. On the other hand, using the same arguments

as in the Remark 3.1, we ensure the existence of
∫ t0+σ

t0
a(t, s)M(s)dg(s) for all t ∈ [t0, t0 + σ].

Then v is well-defined. Also, it is easy to check that v is a nondecreasing function. Using (3.5)
and (3.6), we have

|(Tx)(τ2)− (Tx)(τ1)| 6 v(τ2)− v(τ1), (3.7)

for all t0 6 τ1 6 τ2 6 t0 + σ. Note that the limits (Tx)(t+) for t ∈ [t0, t0 + σ) and (Tx)(t−)
for t ∈ (t0, t0 + σ] exist. Indeed, since v is a nondecreasing function, then the limits v(t+)

for t ∈ [t0, t0 + σ) and v(t−) for t ∈ (t0, t0 + σ] exist and, therefore, (3.7) ensures the Cauchy
condition is satisfied, which implies the existence of the corresponding limits (Tx)(t+) and
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(Tx)(t−). From this, we get that Tx ∈ G([t0, t0 + σ], R). Also, for t0 6 t 6 t0 + σ, by condition
(A4), Theorem 2.2 and Corollary 2.3, we obtain

|(Tx)(t)− x0| =
∣∣∣∣∫ t

t0

a(t, s) f (x(s), s)dg(s)
∣∣∣∣

6
∫ t

t0

|a(t, s)|M(s)dg(s)

6
∫ t

t0

cM(s)dg(s)

6
∫ t0+σ

t0

cM(s)dg(s)

(3.3)
↓
= β.

Clearly, (Tx)(t0) = x0. It implies that Tx ∈ H for all x ∈ H. Hence, T is well-defined.

Assertion 1. H is convex and closed.

Let ϕ, φ ∈ H. Then for all θ ∈ [0, 1], we have (1− θ)φ + θϕ ∈ G([t0, t0 + σ]) and

|(1− θ)φ(t) + θϕ(t)− x0| = |(1− θ)φ(t) + θϕ(t)− ((1− θ)x0 + θx0)|
6 (1− θ)|φ(t)− x0|+ θ|ϕ(t)− x0|
6 (1− θ)β + θβ = β.

This proves that H is convex.

On the other hand, let {ϕk}k∈N ⊂ H be such that ϕk
‖ · ‖∞−→ ϕ (on [t0, t0 + σ]) as k→ ∞. Since

each ϕk is regulated and ϕk converges uniformly to ϕ on [t0, t0 + σ], Lemma 2.8 guarantees
that ϕ is regulated on [t0, t0 + σ] and, therefore, ϕ ∈ G([t0, t0 + σ], R). Also, given ε > 0, there
exists N = N(ε) ∈N such that

|ϕ(t)− x0| 6 |ϕk(t)− ϕ(t)|+ |ϕk(t)− x0| 6 ε + β,

for all t ∈ [t0, t0 + σ] and k > N. Since ε > 0 is arbitrary, we get |ϕ(t) − x0| 6 β for all
t ∈ [t0, t0 + σ]. It implies that H is closed.

Assertion 2. A := T(H) = {Tx : x ∈ H} is relatively compact.

Note that the set {y(t0) : y ∈ A} = {(Tx)(t0)︸ ︷︷ ︸
x0

: x ∈ H} is bounded. On the other hand, for an

arbitrary y = Tx, x ∈ H and t0 6 τ1 6 τ2 6 t0 + σ, by (3.7), we have

|y(τ2)− y(τ1)| = |(Tx)(τ2)− (Tx)(τ1)| 6 v(τ2)− v(τ1). (3.8)

Hence, by Theorem 2.9, A = T(H) is relatively compact.
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Assertion 3. T is continuous.
By condition (A5), Theorem 2.2 and Corollary 2.3, we have that for x, z ∈ H and for
t0 6 t 6 t0 + σ,

|(Tx)(t)− (Tz)(t)| =
∣∣∣∣∫ t

t0

a(t, s) f (x(s), s)dg(s)−
∫ t

t0

a(t, s) f (z(s), s)dg(s)
∣∣∣∣

=

∣∣∣∣∫ t

t0

a(t, s)( f (x(s), s)− f (z(s), s))dg(s)
∣∣∣∣

6
∫ t

t0

|a(t, s)|L(s)|x(s)− z(s)|dg(s)

6
∫ t

t0

|x(s)− z(s)|cL(s)dg(s)

6
∫ t0+σ

t0

|x(s)− z(s)|cL(s)dg(s)

6 ‖x− z‖∞

(∫ t0+σ

t0

cL(s)dg(s)
)

.

From the above estimate, we conclude that T is continuous.
Therefore, all the hypotheses of the Schauder Fixed-Point Theorem (Theorem 2.11) are

satisfied, which implies that T has a fixed point in H. Thus, we conclude that the equation
(3.1) possesses a solution x : [t0, t0 + σ]→ R.

It remains to prove the uniqueness of the solution of (3.1).

Uniqueness: Assume that x, z : [t0, t0 + σ]→ R are two solutions of Volterra–Stieltjes integral
equation (3.1). Fix arbitrarily t ∈ [t0, t0 + σ]. Then, keeping in mind condition (A5) and
Theorem 2.2, we infer the following estimates

|x(t)− z(t)| =
∣∣∣∣∫ t

t0

a(t, s) f (x(s), s)dg(s)−
∫ t

t0

a(t, s) f (z(s), s)dg(s)
∣∣∣∣

=

∣∣∣∣∫ t

t0

a(t, s)( f (x(s), s)− f (z(s), s))dg(s)
∣∣∣∣

6
∫ t

t0

|a(t, s)|L(s)|x(s)− z(s)|dg(s)

6 c ‖L‖∞

∫ t

t0

|x(s)− z(s)|dg(s)

< ε + c ‖L‖∞

∫ t

t0

|x(s)− z(s)|dg(s),

for every ε > 0. Hence, in view of Lemma 2.4, we have

|x(t)− z(t)| 6 εec‖L‖∞(g(t)−g(t0)).

Since ε > 0 is arbitrary, it follows that x(t) = z(t) for all t ∈ [t0, t0 + σ], that is, x = z.

Remark 3.6. If a(t, s) = a1(t)b1(s) where a1 is nondecreasing on [t0, t0 + σ] and b1 is regulated
and positive on [t0, t0 + σ], then it is clear that a satisfies condition (A2).

Example 3.7. Consider the Volterra–Stieltjes integral equation given by

x(t) = x0 +
∫ t

t0

k(t− s) f (x(s), s)dg(s), t ∈ [t0, t0 + σ] ,
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where t0, x0 ∈ R, σ > 0, k : [−σ, σ] → R is a nondecreasing function, g : [t0, t0 + σ] →
R satisfies condition (A1) and f : R × [t0, t0 + σ] → R satisfies conditions (A3)–(A5) from
Theorem 3.5.

Define a : [t0, t0 + σ]2 → R given by

a(t, s) := k(t− s), (t, s) ∈ [t0, t0 + σ]2.

In the sequel, we show that a satisfies condition (A2) from Theorem 3.5. Indeed, notice that
given t, s ∈ [t0, t0 + σ], we have t− s ∈ [−σ, σ] = Dom(k) and, therefore, a is well-defined over
[t0, t0 + σ]2.

Obviously, a(·, s) is nondecreasing for any s ∈ [t0, t0 + σ] and a(t, ·) is nonincreasing for
any t ∈ [t0, t0 + σ], getting (A2).

We will present an example of a Volterra–Stieltjes integral equation of the form (3.1) which
satisfies all the hypotheses of the previous theorem.

Example 3.8. Consider the Volterra–Stieltjes integral equation given by

x(t) = x0 +
∫ t

0
a(t, s) f (x(s), s)dg(s), t ∈ [0, 3/δ],

where x0 ∈ R, δ > 0, g : [0, 3
δ ] → R is a nondecreasing function, a : [0, 3

δ ]
2 → R and

f : R× [0, 3
δ ]→ R are given, respectively, by

a(t, s) = st3e−δt, (t, s) ∈ [0, 3/δ]2

and

f (x, t) =
{t + 2} cos(2x)

4t + [t]
, (x, t) ∈ R× [0, 3/δ],

where the symbol [t] denotes the integer part of t, and the symbol {t} := t − [t] denotes
the fractional part of t. We will verify the conditions (A1)–(A5). Indeed, clearly g satisfies
condition (A1).

Note that for any fixed t ∈ [0, 3
δ ], the function [0, 3

δ ] 3 s 7→ a(t, s) is regulated on [0, 3
δ ].

Since a(t, s) = st3e−δt, we have

d
dt

a(t, s) = st2e−δt(3− δt) > 0,

for all t ∈ [0, 3
δ ]. Thus, a is a nondecreasing function with respect to the first variable, proving

condition (A2).
Let x ∈ G([0, 3

δ ], R) and t ∈ [0, 3
δ ] be given. Notice that [0, 3

δ ] 3 s 7→ a(t, s) f (x(s), s) is a

regulated function on [0, 3
δ ]. Thus by Theorem 2.1 (item (i)),

∫ 3
δ

0 a(t, s) f (x(s), s)dg(s) exists,
obtaining condition (A3).

Define M : [0, 3
δ ] → R+ by M(s) = {s + 2} , for s ∈ [0, 3

δ ]. Evidently, M is a Henstock–
Kurzweil–Stieltjes integrable function with respect to g and for x ∈ G([0, 3

δ ], R), c1, c2 ∈ R,
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[τ1, τ2] ⊂ [0, 3
δ ] and bτ2,τ1(s) := c1a(τ2, s) + c1a(τ1, s), we have

∣∣∣∣∫ τ2

τ1

bτ2,τ1(s) f (x(s), s)dg(s)
∣∣∣∣

Thm 2.1
↓
6

∫ τ2

τ1

|bτ2,τ1(s)| | f (x(s), s)|dg(s)

=
∫ τ2

τ1

|bτ2,τ1(s)|
∣∣∣∣{s + 2} cos(2x(s))

4s + [s]

∣∣∣∣dg(s)

6
∫ τ2

τ1

|bτ2,τ1(s)| {s + 2}dg(s)

=
∫ τ2

τ1

|bτ2,τ1(s)|M(s)dg(s),

proving the condition (A4).
On the other hand, define L : [0, 3

δ ] → R+ by L(t) = 2, for t ∈ [0, 3
δ ]. Note that L is a

regulated function and for x, y ∈ G([0, 3
δ ], R) and τ1, τ2 ∈ [0, 3

δ ], τ1 6 τ2, we get

∣∣∣∣∫ τ2

τ1

a(τ2, s) [ f (x(s), s)− f (y(s), s)]dg(s)
∣∣∣∣

Thm 2.1
↓
6

∫ τ2

τ1

|a(τ2, s)| | f (x(s), s)− f (y(s), s)|dg(s)

6
∫ τ2

τ1

|a(τ2, s)|
∣∣∣ cos(2x(s))− cos(2y(s))

∣∣∣dg(s)

6
∫ τ2

τ1

|a(τ2, s)| |2x(s)− 2y(s)|dg(s)

= 2
∫ τ2

τ1

|a(τ2, s)| |x(s)− y(s)|dg(s),

getting the condition (A5). Hence f , a and g fulfill all the hypotheses of Theorem 3.5.

The next example is an adaptation of [18, Example 7.8]. It is a modified version of a model
of a single artificial effective neuron with dissipation. See [10, 16].

Example 3.9. Consider the equation

x(t) = x0 +
∫ t

0
k(s) tanh(x(s)) ds, t ∈ [0, 1]

where k is a nondecreasing function on [0, 1]. Define a(t, s) := k(s) for all (t, s) ∈ [0, 1]2,
f : R× [0, 1]→ R by f (x, t) := tanh(x) for all (x, t) ∈ R× [0, 1], and g(s) = s for all s ∈ [0, 1].

Observe that, by definition, the function g is left-continuous on (0, 1] and increasing on
[0, 1].

Notice that the function a is constant with relation to the first variable. Thus, a is a nonde-
creasing function with respect to the first variable. Also, since k is a nondecreasing function,
we have that for any fixed t ∈ [0, 1], the function [0, 1] 3 s 7→ a(t, s) = k(s) is regulated on
[0, 1], obtaining the condition (A2). Moreover, a(t, s) f (x(s), s) is a regulated function on [0, 1],
for all x ∈ G([0, 1], R), and all t ∈ [0, 1]. Hence, the integral

∫ 1
0 a(t, s) f (x(s), s)dg(s) exists,

getting (A3).
On the other hand, define M : [0, 1] → R+ by M(t) = 1, for t ∈ [0, 1]. By Theorem 2.1, we
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have ∣∣∣∣∫ τ2

τ1

bτ2,τ1(s) f (x(s), s)dg(s)
∣∣∣∣ 6 ∫ τ2

τ1

|bτ2,τ1(s)| | f (x(s), s)|dg(s)

=
∫ τ2

τ1

|bτ2,τ1(s)| |tanh(x(s))|dg(s)

6
∫ τ2

τ1

|bτ2,τ1(s)|M(s)dg(s),

for x ∈ G([0, 1], R), c1, c2 ∈ R, 0 6 τ1 6 τ2 6 1 and bτ2,τ1(s) := c1a(τ2, s) + c2a(τ1, s), where the
third inequality follows of the fact that −1 < tanh(x) < 1 for all x ∈ R.

Finally, define L : [0, 1]→ R+ by L(t) = 1, for t ∈ [0, 1]. Evidently, L is a regulated function
and ∣∣∣∣∫ τ2

τ1

a(τ2, s) [ f (x(s), s)− f (y(s), s)]dg(s)
∣∣∣∣ 6 ∫ τ2

τ1

|a(τ2, s)| | f (x(s), s)− f (y(s), s)|dg(s)

6
∫ τ2

τ1

|a(τ2, s)| |x(s)− y(s)|dg(s),

for x, y ∈ G([0, 1], R) and all 0 6 τ1 6 τ2 6 1, obtaining the condition (A5). Notice that
|tanh(v)− tanh(u)| 6 |v− u| for all v, u ∈ R. Hence f , a and g fulfill all the hypotheses of
Theorem 3.5.

4 Impulsive Volterra–Stieltjes integral equations

In this section, we are interested in the study of impulsive Volterra–Stieltjes integral equations.
Consider a Volterra–Stieltjes integral equation given by:

x(t) = x0 +
∫ t

t0

a(t, s) f (x(s), s)dg(s), t ∈ [t0, t0 + σ],

where the Henstock–Kurzweil–Stieltjes integral on the right-hand side is taken with respect
to a nondecreasing function g : [t0, t0 + σ]→ R.

Let the set D = {t1, . . . , tm} ⊂ [t0, t0 + σ] be such that t0 6 t1 < · · · < tm < t0 + σ

and let the functions Ik : R → R be given for k ∈ {1, . . . , m} . Assume that a(·, s) and g
are continuous at each τ ∈ D and consider the problem to determine a function x satisfying
the given Volterra–Stieltjes integral equation and impulse conditions ∆+x(tk) = Ik(x(tk)) for
k ∈ {1, . . . , m} . Using this, we achieve the following formulation of the problem:

x(v)− x(u) =
∫ v

t0

a(v, s) f (x(s), s)dg(s)

−
∫ u

t0

a(u, s) f (x(s), s)dg(s) for u, v ∈ Jk, k ∈ {0, . . . , m},

∆+x(tk) = Ik(x(tk)), k ∈ {1, . . . , m},
x(t0) = x0,

where J0 = [t0, t1], Jk = (tk, tk+1] for k ∈ {1, . . . , m− 1}, and Jm = (tm, t0 + σ].
The value of the following integrals∫ v

t0

a(v, s) f (x(s), s)dg(s) and
∫ u

t0

a(u, s) f (x(s), s)dg(s),
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where u, v ∈ Jk, are the same if we replace g by a function g̃ such that g − g̃ is a constant
function on Jk. This follows from the properties of Henstock–Kurzweil–Stieltjes integral. Also,
let us assume g is a left-continuous function which is continuous at tk, for each k = 1, . . . , m.
Therefore, it implies that ∆+g(tk) = 0 for every k ∈ {1, . . . , m}. Moreover, we assume a
is continuous with respect to first variable at t1, . . . , tm and also, a satisfies condition (A2)
presented in Section 3. Further suppose that f and g satisfy conditions (A1), (A3) and (A4)
presented in Section 3. Under these assumptions, our problem can be rewritten as

x(t) = x(t0) +
∫ t

t0

a(t, s) f (x(s), s)dg(s) + ∑
k∈{1,...,m},

tk<t

Ik(x(tk)). (4.1)

It is not difficult to see that by the assumptions above, the function

t 7→
∫ t

t0

a(t, s) f (x(s), s)dg(s)

is continuous at t1, . . . , tm (see Remark 4.1 below) and, therefore, ∆+x(tk) = Ik(x(tk)) for every
k ∈ {1, . . . , m}.

Remark 4.1. We assume that f , g and a satisfy the assumptions above. Using the same argu-
ments as in the proof of Theorem 3.5, we can prove the following inequality∣∣∣∣∫ t

t0

a(t, s) f (x(s), s)dg(s)−
∫ τ

t0

a(τ, s) f (x(s), s)dg(s)
∣∣∣∣ 6 |v(t)− v(τ)| , (4.2)

for all t, τ ∈ [t0, t0 + σ], where v is given by

v(t) :=
∫ t

t0

cM(s)dg(s) +
∫ t0+σ

t0

a(t, s)M(s)dg(s), t ∈ [t0, t0 + σ]. (4.3)

Here c := sup(t,s)∈[t0,t0+σ]2 |a(t, s)|. Notice that every point in [t0, t0 + σ] at which the func-

tion v is continuous, is a continuity point of the function t 7→
∫ t

t0
a(t, s) f (x(s), s)dg(s). Next,

let us prove that v given by (4.3) is a continuous function at t1, . . . , tm. Clearly, v1(t) =∫ t
t0

cM(s)dg(s), t ∈ [t0, t0 + σ], is continuous at t1, . . . , tm.

Assertion 1. v2(t) =
∫ t0+σ

t0
a(t, s)M(s)dg(s), t ∈ [t0, t0 + σ], is continuous at t1, . . . , tm.

Let i ∈ {1, . . . , m} and (τn)n∈N ⊂ [t0, t0 + σ] such that τn
n→∞→ ti.

Define the sequence of functions

ϕn(s) := a(τn, s)M(s), s ∈ [t0, t0 + σ], (4.4)

and ϕ : [t0, t0 + σ]→ R by ϕ(s) := a(ti, s)M(s), s ∈ [t0, t0 + σ]. As a(·, s) is continuous at ti and
(τn)n∈N ⊂ [t0, t0 + σ] is such that τn

n→∞→ ti, we have limn→∞ a(τn, s) = a(ti, s), and therefore,

lim
n→∞

ϕn(s) = lim
n→∞

a(τn, s)M(s) = a(ti, s)M(s) = ϕ(s).

According to condition (A3),
∫ t0+σ

t0
a(τn, s)M(s)dg(s) exists for all n ∈ N. Using this fact

together with (4.4), we get
∫ t0+σ

t0
ϕn(s)dg(s) exists for all n ∈N.

On the other hand, for all t ∈ [t0, t0 + σ], n ∈N, we have

|ϕn(t)| = |a(τn, t)M(t)| 6 c |M(t)| = cM(t).
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This implies that
κ(t) 6 ϕn(t) 6 ω(t), t ∈ [t0, t0 + σ],

where ω(t) := cM(t) and κ(t) = −cM(t). Also, observe that the integrals
∫ t0+σ

t0
κ(s)dg(s) and∫ t0+σ

t0
ω(s)dg(s) exist, since M is a Henstock–Kurzweil–Stieltjes integrable function. Since all

the hypotheses of Theorem 2.7 are satisfied, we obtain

lim
n→∞

∫ t0+σ

t0

ϕn(s)dg(s) =
∫ t0+σ

t0

ϕ(s)dg(s).

Hence, the function v2 is continuous at ti, for each i = 1, . . . , m, proving Assertion 1.
From these facts and by the equality v(t) = v1(t) + v2(t), it follow that v is continuous at

t1, . . . , tm.

In the next result, we describe how we can translate the conditions on impulsive Volterra–
Stieltjes integral equation to the conditions on Volterra–Stieltjes integral equations. It will
be very important in order to prove results for impulsive Volterra–Stieltjes integral equations
using known results for Volterra–Stieltjes integral equations.

Lemma 4.2. Let m ∈ N, t0 6 t1 < . . . < tm < t0 + σ, D = {t0, . . . , tm} , Ik : R → R for
k ∈ {1, . . . , m} and let a : [t0, t0 + σ]2 → R, f : R× [t0, t0 + σ] → R and g : [t0, t0 + σ] → R

satisfy conditions (A1)–(A5). Define

ã(t, s) =

{
a(t, s), t ∈ [t0, t0 + σ] and s ∈ [t0, t0 + σ]\D,

1, t ∈ [t0, t0 + σ] and s ∈ D,
(4.5)

f̃ (x, s) =

{
f (x, s), for x ∈ R and s ∈ [t0, t0 + σ]\D,

Ik(x), for x ∈ R and s ∈ D,
(4.6)

g̃(s) =


g(τ), for s ∈ [t0, t1],

g(s) + k, for s ∈ (tk, tk+1] and k ∈ {1, . . . , m− 1},
g(s) + m, for s ∈ (tm, t0 + σ].

(4.7)

Also, suppose that I1, . . . , Im : R→ R satisfy the following condition:

(I) There exists constants M2, L2 > 0 such that

|Ik(x)| 6 M2

for every k ∈ {1, . . . , m} and x ∈ R, and

|Ik(x)− Ik(y)| 6 L2 |x− y|

for every k ∈ {1, . . . , m} and x, y ∈ R.

Then the functions ã : [t0, t0 + σ]2 → R, f̃ : R× [t0, t0 + σ] → R and g̃ : [t0, t0 + σ] → R also
satisfy conditions (A1)–(A5) with ã, f̃ , g̃ respectively in the place of a, f , g.

Proof. Since g is nondecreasing and left-continuous, g̃ has the same properties by the defi-
nition, proving condition (A1). The condition (A2) is an immediate consequence from the
definition of ã.

Notice that (A3) follows by combining the condition (A1) and the hypotheses from f̃ and
ã together with Lemma 2.10.
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To prove the condition (A4), let x ∈ G([t0, t0 + σ], R), c1, c2 ∈ R, [u1, u2] ⊂ [t0, t0 + σ] and
bu2,u1(s) := c1a(u2, s) + c2a(u1, s). From Lemma 2.10, we obtain∫ u2

u1

bu2,u1(s) f̃ (x(s), s)dg̃(s) =
∫ u2

u1

bu2,u1(s) f (x(s), s)dg(s) + ∑
k∈{1,...,m},
u16tk<u2

bu2,u1(tk) f̃ (x(tk), tk)∆+ g̃(tk)

=
∫ u2

u1

bu2,u1(s) f (x(s), s)dg(s) + ∑
k∈{1,...,m},
u16tk<u2

bu2,u1(tk)Ik(x(tk))∆+ g̃(tk)

and, therefore,∣∣∣∣∫ u2

u1

bu2,u1(s) f̃ (x(s), s)dg̃(s)
∣∣∣∣6 u2∫

u1

M1(s) |bu2,u1(s)|dg(s)+ ∑
k∈{1,...,m},
u16tk<u2

M2 |bu2,u1(tk)|∆+ g̃(tk) (4.8)

On the other hand, notice that g̃(v)− g̃(u) > g(v)− g(u) whenever t0 6 u 6 v 6 t0 + σ. It im-
plies together with the definition of the Henstock–Kurzweil–Stieltjes integral and Theorem 2.2
the following

u2∫
u1

M1(s) |bu2,u1(s)|dg(s) 6
u2∫

u1

M1(s) |bu2,u1(s)|dg̃(s) 6
u2∫

u1

M̃(s) |bu2,u1(s)|dg̃(s), (4.9)

where M̃(s) := 1 + M2 + M1(s) for all s ∈ [t0, t0 + σ]. On the other hand, the function

h(t) :=
∫ t

t0

M̃(s) |bu2,u1(s)|dg̃(s), t ∈ [t0, t0 + σ],

is nondecreasing and ∆+h(tk) = M̃(tk) |bu2,u1(tk)|∆+ g̃(tk) for k ∈ {1, . . . , m} by Theorem 2.5.
Hence

∑
k∈{1,...,m},
u16tk<u2

M2 |bu2,u1(tk)|∆+ g̃(tk) 6 ∑
k∈{1,...,m},
u16tk<u2

M̃(tk) |bu2,u1(tk)|∆+ g̃(tk) 6 h(u2)− h(u1).

Hence,

∑
k∈{1,...,m},
u16tk<u2

M2 |bu2,u1(tk)|∆+ g̃(tk) 6
∫ u2

u1

M̃(s) |bu2,u1(s)| dg̃(s) (4.10)

Now, by (4.8), (4.9) and (4.10), we get∣∣∣∣∫ u2

u1

bu2,u1(s) f̃ (x(s), s)dg̃(s)
∣∣∣∣ 6 2

∫ u2

u1

M̃(s) |bu2,u1(s)| dg̃(s). (4.11)

Now, defining M(t) = 2M̃(t) for all t ∈ [t0, t0 + σ], we get the statement (A4).
To prove the condition (A5), consider x, z ∈ G([t0, t0 + σ], R) and [u1, u2] ⊂ [t0, t0 + σ].

Using Lemma 2.10 again, we obtain∫ u2

u1

a(u2, s)
(

f̃ (x(s), s)− f̃ (z(s), s)
)

dg̃(s)

=
∫ u2

u1

a(u2, s) ( f (x(s), s)− f (z(s), s))dg(s) + ∑
k∈{1,...,m},
u16tk<u2

a(u2, tk)(Ik(x(tk))− Ik(z(tk)))∆+ g̃(tk).
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Consequently,∣∣∣∣∫ u2

u1

a(u2, s)
(

f̃ (x(s), s)− f̃ (z(s), s)
)

dg̃(s)
∣∣∣∣

6

u2∫
u1

L1(s) |a(u2, s)| |x(s)− z(s)|dg(s) + ∑
k∈{1,...,m},
u16tk<u2

L2 |a(u2, tk)| |x(tk)− z(tk)|∆+ g̃(tk).

Therefore,
u2∫

u1

L1(s) |a(u2, s)| |x(s)− z(s)|dg(s) 6
u2∫

u1

L̃(s) |a(u2, s)| |x(s)− z(s)|dg̃(s),

where L̃(s) = 1 + L2 + L1(s) for all s ∈ [t0, t0 + σ]. Next, we observe that the function

γ(t) =
∫ t

t0

L̃(s) |a(u2, s)| |x(s)− z(s)|dg̃(s), t ∈ [t0, t0 + σ],

is nondecreasing and

∆+γ(tk) = L̃(tk) |a(u2, tk)| |x(tk)− z(tk)|∆+ g̃(tk),

for k ∈ {1, . . . , m}. Hence,

∑
k∈{1,...,m},
u16tk<u2

L2 |a(u2, tk)| |x(tk)− z(tk)|∆+ g̃(tk) 6 ∑
k∈{1,...,m},
u16tk<u2

L̃(tk) |a(u2, tk)| |x(tk)− z(tk)|∆+ g̃(tk)

6 γ(u2)− γ(u1).

It follows that∣∣∣∣∫ u2

u1

a(u2, s)
(

f̃ (x(s), s)− f̃ (z(s), s)
)

dg̃(s)
∣∣∣∣ 6 2

∫ u2

u1

L̃(s) |a(u2, s)| |x(s)− z(s)|dg̃(t).

Now, defining L(t) = 2L̃(t) for all t ∈ [t0, t0 + σ], we get the desired result.

The following theorem describes a strong relation between the solutions of impulsive
Volterra–Stieltjes integral equations and the solutions of Volterra–Stieltjes integral equations
without impulses. We can omit its proof as it follows by arguments analogous to those used
in [12] to prove Theorem 3.1.

Theorem 4.3. Let m ∈ N, t0 6 t1 < · · · < tm < t0 + σ, D = {t0, . . . , tm} , Ik : R → R for
k ∈ {1, . . . , m} and f : R × [t0, t0 + σ] → R. Assume that g : [t0, t0 + σ] → R satisfies the
condition (A1) and a : [t0, t0 + σ]2 → R satisfies condition (A2). Furthermore, assume that g and
a(·, s), s ∈ [t0, t0 + σ], are continuous at each τ ∈ D. Consider the functions ã : [t0, t0 + σ]2 → R,
f̃ : R× [t0, t0 + σ] → R and g̃ : [t0, t0 + σ] → R defined in Lemma 4.2, given by (4.5), (4.6) and
(4.7) respectively.

Then x : [t0, t0 + σ]→ R is a solution of

x(t) = x0 +
∫ t

t0

a(t, s) f (x(s), s)dg(s) + ∑
k∈{1,...,m},

tk<t

Ik(x(tk)), (4.12)

if and only if x : [t0, t0 + σ]→ R is a solution of

x(t) = x0 +
∫ t

t0

ã(t, s) f̃ (x(s), s)dg̃(s). (4.13)
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As an immediate consequence, we obtain a result about existence and uniqueness of so-
lutions of impulsive Volterra–Stieltjes integral equation. We omit its proof, since it follows
directly from the correspondence and the analogue result for Volterra–Stieltjes integral equa-
tion.

Theorem 4.4. Let m ∈ N, t0 6 t1 < · · · < tm < t0 + σ, D = {t0, . . . , tm} , Ik : R → R for
k ∈ {1, . . . , m} and let a : [t0, t0 + σ]2 → R, f : R× [t0, t0 + σ] → R and g : [t0, t0 + σ] → R

satisfy conditions (A1)–(A5). Furthermore, assume that g and a(·, s), s ∈ [t0, t0 + σ], are continuous
at each τ ∈ D. Also, suppose that I1, . . . , Im : R→ R satisfies condition (I) from Lemma 4.2.

Then there exists a unique solution x : [t0, t0 + σ]→ R of the impulsive Volterra–Stieltjes integral
equation

x(t) = x0 +
∫ t

t0

a(t, s) f (x(s), s)dg(s) + ∑
k∈{1,...,m},

tk<t

Ik(x(tk)). (4.14)
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[3] J. F. Banaś, D. O’Regan, On existence and local attractivity of solutions of a quadratic
Volterra integral equation of fractional orders, J. Math. Anal. Appl. 345(2008), No. 1, 573–
582. https://doi.org/10.1016/j.jmaa.2008.04.050; MR2422674

[4] J. Caballero, J. Rocha, K. Sadarangani, On monotonic solutions of an integral
equation of Volterra–Stieltjes type, Math. Nachr. 279(2006), No. 1–2, 130–141. https:
//doi.org/10.1016/j.cam.2004.04.003; MR2193612

[5] F. Chen, J. J. Nieto, Y. Zhou, Global attractivity for nonlinear fractional differential equa-
tions, Nonlinear Anal. 13(2012), 287–298. https://doi.org/10.1016/j.nonrwa.2011.07.
034

[6] P. Clement, E. Mitidieri, Qualitative properties of solutions of Volterra equations in Ba-
nach spaces, Israel J. Math. 64(1988), No. 1, 1–24. https://doi.org/10.1007/BF02767365;
MR0981744

[7] B. D. Coleman, M. E. Gurtin, Equipresence and constitutive equation for rigid head con-
ductors, Z. Angew. Math. Phys. 18(1967), 199–208. https://doi.org/10.1007/BF01596912

https://doi.org/10.1216/JIE-2018-30-2-219
https://www.ams.org/mathscinet-getitem?mr=3853572
https://www.ams.org/mathscinet-getitem?mr=0344384
https://doi.org/10.1016/j.jmaa.2008.04.050
https://www.ams.org/mathscinet-getitem?mr=2422674
https://doi.org/10.1016/j.cam.2004.04.003
https://doi.org/10.1016/j.cam.2004.04.003
https://www.ams.org/mathscinet-getitem?mr=2193612
https://doi.org/10.1016/j.nonrwa.2011.07.034
https://doi.org/10.1016/j.nonrwa.2011.07.034
https://doi.org/10.1007/BF02767365
https://www.ams.org/mathscinet-getitem?mr=0981744
https://doi.org/10.1007/BF01596912


Volterra–Stieltjes integral equations 19

[8] J. Diblík, M. Galewski, M. Koniorczyk, E. Schmeidel, An application of a diffeomor-
phism theorem to Volterra integral operator, Differential Integral Equations 31(2018), No. 7–
8, 621–642. MR3801827; Zbl 06890407

[9] H. Engler, On nonlinear scalar Volterra integral equations I, Trans. Amer. Math. Soc.
291(1985), No. 1, 319–336. https://doi.org/10.2307/1999912; MR0797063

[10] M. Fan, D. Ye, Convergence dynamics and pseudo almost periodicity of a class of
nonautonomous RFDEs with applications, J. Math. Anal. Appl. 309(2005), 598–625. https:
//doi.org/10.1016/j.jmaa.2004.10.050; MR2154139

[11] M. Federson, R. Grau, J. G. Mesquita, Prolongation of solutions of measure differential
equations and dynamic equations on time scales, Math. Nachr. 292(2019), No. 1, 22–55.
https://doi.org/10.1002/mana.201700420; MR3909220

[12] M. Federson, J. G. Mesquita, A. Slavík, Basic results for functional differential and
dynamic equations involving impulses. Math. Nachr. 286(2013), No. 2–3, 181–204. https:
//doi.org/10.1002/mana.201200006; MR3021475

[13] M. Federson, Š. Schwabik, Generalized ODEs approach to impulsive retarded differ-
ential equations, Differential Integral Equations 19(2006), No. 11, 1201–1234. MR2278005;
Zbl 1212.34251

[14] D. Franco, D. O’Regan, Solutions of Volterra integral equations with infinite de-
lay, Math. Nachr. 281(2008), No. 3, 325–336. https://doi.org/10.1002/mana.200510605;
MR2392116
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