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Abstract. In this paper we study the existence and asymptotic behavior of solutions of

−∆u = µ
u
|x|2 + |x|αup(α)−1−ε, u > 0 in BR(0)

with Dirichlet boundary condition. Here, −2 < α < 0, p(α) = 2(N+α)
N−2 , 0 < ε < p(α)− 1

and p(α)− 1− ε is a nearly critical exponent. We combine variational arguments with
the moving plane method to prove the existence of a positive radial solution. Moreover,
the asymptotic behaviour of the solutions, as ε→ 0, is studied by using ODE techniques.
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1 Introduction

In this paper, we consider the following elliptic problem:
−∆u = µ

u
|x|2 + |x|αup(α)−1−ε, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.1)

where Ω is a ball BR(0) in RN(N ≥ 3), −2 < α < 0, p(α) = 2(N+α)
N−2 , 0 < ε < p(α) − 1,

0 ≤ µ < µ =
(N−2

2

)2.
The equation in problem (1.1) is the Euler–Lagrange equation of the energy functional

E : H1
0(Ω)→ R defined by

E(u) =
1
2

(∫
Ω
|∇u|2 − µ

u2

|x|2

)
− 1

p(α)− ε

∫
Ω
|x|αup(α)−ε, ∀u ∈ H1

0(Ω).
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It is known that critical points of functional E(u) correspond to solutions of (1.1).
We denote

‖u‖ ,
(∫

Ω
|∇u|2 − µ

u2

|x|2

) 1
2

, ∀u ∈ H1
0(Ω).

Let us recall the Sobolev–Hardy inequality (see Lemma 2.1 in this paper), which using the fact
0 ≤ µ < µ̄ implies that ‖u‖ is equivalent to the norm of H1

0(Ω).
In the case µ = 0 and α = 0, a prototype of problem (1.1) is

−∆u = u2∗−1−ε, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω.

(1.2)

When ε = 0, it is well known that the solution of problem (1.2) is bounded in the neighbor-
hood of the origin. Gidas, Ni and Nirenberg [17] proved that all the solutions with reasonable
behavior at infinity, namely

u = O(|x|2−N), (1.3)

are radially symmetric about some point. So, the form of the solutions may be assumed as

u(x) =
[N(N − 2)λ2]

N−2
4

(λ2 + |x− x0|2)
N
2 −1

for some λ > 0 and x0 ∈ RN .
Later in [7, Corollay 8.2] and [9, Theorem 2.1], the growth assumption (1.3) was removed,

which implies that, for positive C2 solutions of problem (1.2), we have the same result.
When ε > 0, Atkinson and Peletier [2] used ODE arguments to obtain exact asymptotic

estimates of the radially symmetric solution of problem (1.2) as ε→ 0. The following are their
principal results

lim
ε→0

εu2(0, ε) =
4

N − 2
{N(N − 2)} N−2

2
Γ(N)[
Γ(N

2 )
]2

1
RN−2

and for x 6= 0

lim
ε→0

ε−
1
2 u(x, ε) =

1
2

N
N−2

4 (N − 2)
N
4 R

R−2
2

Γ(N
2 )

[Γ(N)]
1
2

(
1

|x|N−2 −
1

RN−2

)
.

In the case µ = 0 and α > 0, problem (1.1) is known as the Hénon equation
−∆u = |x|αup−1, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.4)

where p ∈ (2, 2∗). Equation (1.4) was proposed by Hénon when he studied rotating stellar
structures and readers can refer to Ni [24], Smets [26] and Cao–Peng [11]. Among these
works, for equations with critical, supercritical and slightly subcritical growth, the existence
and multiplicity of non-radial solutions, the symmetry and asymptotic behavior of ground
states were studied by variational method (for p→ 2N

N−2 or α→ ∞).
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In the case 0 ≤ µ < µ =
(N−2

2

)2 and α = 0, problem (1.1) can be written as
−∆u = µ

u
|x|2 + u2∗−1−ε, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω.

(1.5)

By using Moser iteration and a generalized comparison principle, Cao and Peng [10] proved
u(x) ∈ H1

0(Ω) satisfying {
u(x)|x|ν ≥ C1, ∀x ∈ Ω′ ⊂⊂ Ω,

u(x)|x|ν ≤ C2, ∀x ∈ Ω,

where C1 and C2 are two positive constants, ν =
√

µ −
√

µ− µ. When Ω = BR, u(x) is
radially symmetric. Hence, they converted (1.5) to ODE and obtained the following:

lim
ε→0

lim
|x|→0

εu2
ε |x|2ν = 4(2

√
µ− µ)N−1N

N−2
2 (N − 2)−

N+2
2

Γ(N)[
Γ(N

2 )
]2

1

R2
√

µ−µ

and for x 6= 0

lim
ε→0

ε−
1
2 uε(x) =

1
2
√

2
(2
√

µ− µ)
N−3

2 N
N−2

4 (N − 2)−
N−6

4 R
√

µ−µ Γ(N
2 )

[Γ(N)]
1
2

×
(

1

|x|
√

µ+
√

µ−µ
− 1

|x|
√

µ−
√

µ−µ|R|2
√

µ−µ

)
.

Motivated by the previous works and remark 4.2 in [10], we first prove the existence and
radial symmetry of positive solution of (1.1). Then we focus on the asymptotic behavior of the
solutions of problem (1.1) as ε→ 0.

To state our main results, for convenience, we set p = p(α) − 1− ε, ν =
√

µ −
√

µ− µ,
Ω = BR = {x ∈ RN : |x| < R}, R > 0. We denote by uε(x) the solution of (1.1) and Γ(x) is
the Gamma function.

Theorem 1.1. Suppose that −2 < α < 0, 0 ≤ µ < µ̄, 0 < ε < p(α)− 1. Then problem (1.1) has a
radially symmetric solution in H1

0(Ω).

For the proof of this Theorem 1.1, we first obtain a solution by the Mountain Pass Lemma.
Then, by moving plane method for elliptic equations with variable coefficients in [14], we can
prove that the posotive solution is radially symmetric. For problem (1.2), the solution satisfies
Gidas–Ni–Nirenberg Theorem in [17] and hence all solutions of (1.2) are radial symmetric.
However, here we cannot use Gidas–Ni–Nirenberg theorem directly since problem (1.1) in-
cludes the hardy term µ u

|x|2 and singular coefficient |x|α. Luckily, through a transformation of
the original solution uε(x), the new equation satisfied by the new solution v(x) satisfies the
conditions of a Corollary in [14] and we obtain the result. To be more precise, set

v(x) = |x|−
√

µ+
√

µ−µuε(x),

using Moser iteration and a generalized comparison principle introduced by Merle and
Peletier [22], we prove that v ∈ L∞(Ω) and is bounded from below and above. Thus we

obtain that the precise singularity of uε(x) at the origin is like |x|−
√

µ+
√

µ−µ. Then applying
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Lemma 2.5 in Section 2 to this new equation, we deduce that v(x) is radially symmetric and
satisfies the following ODE:

v′′ +
N − 1− 2ν

r
v′ +

1
r(p(α)−2−ε)ν−α

vp(α)−1−ε = 0, for 0 < r < R,

v(r) > 0, for 0 < r < R,

v(R) = 0.

(1.6)

Because (1.6) is still singular at the origin, we can use the well-known shooting argument
introduced by Atkinson and Peletier [2] to convert (1.6) to the following ODE:

y′′(t) = −t−k(α,ε)yp(α)−1−ε
,

y(t) > 0, for T < t < ∞,

y(T) = 0,

(1.7)

where k(α, ε) = 2m+α
m−1 −

(p(α)−2−ε)ν
m−1 , m = 1 + 2

√
µ− µ = N − 2ν− 1, T = (m−1

R )m−1, p(α)− 1 =

2k(α, ε)− 3− 2νε
m−1 .

Till now, study on behaviors and precise properties of the original solution uε(x) can be
reduced to deal with (1.7). Based on this, we have

Theorem 1.2. Let uε(x) ∈ H1
0(Ω) be a solution of problem (1.1). Then

lim
ε→0

lim
|x|→0

εu2
ε |x|2ν = 2(α + 2)(2

√
µ− µ)

2N+α−2
α+2 (N + α)

N−2
α+2 (N − 2)−

2α+N+2
α+2

Γ( 2(N+2)
α+2 )[

Γ(N+α
α+2 )

]2
1

R2
√

µ−µ
.

Theorem 1.3. Let uε(x) ∈ H1
0(Ω) be a solution of problem (1.1). Then, for every x 6= 0,

lim
ε→0

ε−
1
2 uε(x) =

1
2
(α + 2)−

1
2 (2
√

µ− µ)
2N−α−6

2α+4 (N + α)
N−2
2α+4 (N − 2)

2α−N+6
2α+4 R

√
µ−µ Γ(N+α

α+2 )[
Γ
(

2(N+α)
α+2

)] 1
2

×
(

1

|x|
√

µ+
√

µ−µ
− 1

|x|
√

µ−
√

µ−µ|R|2
√

µ−µ

)
.

Notations:

• C, Ci, i = 0, 1, 2, . . . denote positive constants, which may vary from line to line;

• ‖ · ‖ and ‖ · ‖Lq denote the usual norms of the spaces H1
0(Ω) and Lq(Ω), respectively,

Ω ∈ RN ;

• Some of the notations that will appear in the following paragraphs:

m = 1 + 2
√

µ− µ = N − 2ν− 1, T =
(m− 1

R

)m−1
,

k = k(α, ε) =
2m + α

m− 1
− (p(α)− 2− ε)ν

m− 1
, k1(α, ε) = (k− 1)

1
k−2 ,

k2(α, ε) =
k− 1
k− 2

, Tα,ε =
γ

p(α)−2−ε
k−2

k1(α, ε)
=

γ
2− m−1−2ν

(m−1)(k−2) ε

k1(α, ε)
,

τ(α, ε) =
( t

Tα,ε

)k−2
, ϕ(α, ε) =

m− 1 + 2ν

(m− 1)(k− 2)
ε,

Cα,β,ε =
β

(1 + βk−2)
1

k−2
, dα,β,ε =

(1− Cα,β,ε)(1 + 2ν/(m− 1))

C2+(1+2ν/(m−1))ε
α,β,ε

.
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2 Preliminary results and existence of solution

In this section,we shall provide some preliminaries which will be used in the sequel and prove
the existence of solution to problem (1.1).

Lemma 2.1 (see [16, Lemma 3.1 and 3.2]). Suppose −2 < α < 0, 2 ≤ q ≤ p(α), and 0 ≤ µ < µ.
Then

(i) (Hardy inequality) ∫
Ω

u2

|x|2 ≤
1
µ

∫
Ω
|∇u|2, ∀u ∈ H1

0(Ω);

(ii) (Sobolev–Hardy inequality)

there exists a constant C > 0 such that(∫
Ω
|x|α|u|q

) 1
q

≤ C‖u‖, ∀u ∈ H1
0(Ω);

(iii) the map u 7→ |x|
α
q u from H1

0(Ω) into Lq(Ω) is compact for q < p(α).

Lemma 2.2 (see [5, Theorem 2.2]). Let J be a C1 function on a Banach space X. Suppose there exists
a neighborhood U of 0 in X and a constant ρ such that J(u) ≥ ρ for every u in the boundary of U,

J(0) < ρ and J(v) < ρ for some v /∈ U.

Set
c = inf

g∈Γ
max
ω∈g

J(ω) ≥ ρ,

where Γ = {g ∈ C([0, 1], X) : g(0) = 0, g(1) = v, J(g(1)) < ρ} .

Conclusion: there is a sequence {un} in X such that J(un)→ c and J′(un)→ 0 in X∗.

Lemma 2.3 (The Caffarelli–Kohn–Nirenberg inequalities, see [8] and [12]). For all u ∈ C∞
0 (RN),(∫

RN
|x|−bq|uq|

) p
q

≤ Ca,b

∫
RN
|x|−ap|Du|pdx,

where (i) for n > p,

−∞ < a < n−p
p , 0 ≤ b− a ≤ 1, and q = np

n−p+p(b−a)

and (ii) for n ≤ p,

−∞ < a < n−p
p , p−n

p ≤ b− a ≤ 1, and q = np
n−p+p(b−a) .

Lemma 2.4 (see [25, page 4]). Suppose V is a reflexive Banach space with norm ‖ · ‖, and let M ⊂ V
be a weakly closed subset of V. Suppose E : M → R ∪ {+∞} is coercive and (sequentially) weakly
lower semi-continuous on M with respect to V, that is, suppose the following conditions are fulfilled:

(1) (coercive) E(u)→ ∞ as ‖u‖ → ∞, u ∈ M.

(2) (W.S.L.S.C) For any u ∈ M, any sequence {um} in M such that um ⇁ u weakly in V there
holds:

E(u) ≤ lim inf
m→∞

E(um).
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Then E is bounded from below on M and attains its infimum in M.

Lemma 2.5 (see [14, Corollary 1.6]). Let u be a bounded C2(BR\{0}) ∩ C1(BR\{0}) solution of
∂i(|x|b∂iu) + K|x|auq = 0, x ∈ BR\{0},
u > 0, x ∈ BR\{0},
u = 0, x ∈ ∂BR\{0},

where K is a positive constant.Then u is radially symmetric in BR provided q ≥ 1, b( 1
2 b + N− 2) ≤ 0

and 1
2 b ≥ a

q .

Proof. When b < 0, we have |x|b is singular at origin.
It’s clear that

S(x)
|x|b −

S(xλ)

|xλ|b =
1
2

b
(

1
2

b + N − 2
)
(|x|b−2 − |xλ|b−2) ≥ 0

and

K
(
|x|b
|xλ|b

) 1
2

|xλ|auq − K|x|a
( |x|b
|xλ|b

) 1
2

u

q

= K|x| 12 b|xλ|a− 1
2 b

1−
(
|xλ|
|x|

) 1
2 bq−a

 uq ≥ 0,

where S(x) = 1
2 (∆|x|b −

1
2|x|b |∇|x|

b|2).
From [14], we have

hλ(x) =
(
|xλ|b
|x|b

) 1
2

u(xλ)− u(x),

where xλ = (2λ− x1, x2, . . . , xN).
By Lemma 4.2 in [14], we can obtain u has a positive lower bound near the origin. Hence,

we can get the estimate of hλ(x) near the origin. Furthermore, if xλ = 0, we have hλ(x) = ∞.
Now, we consider the case of u ∈ C2(B1\{0}) ∩ C1(B1\{0}) in Proposition 1.3 of [14].

Analogically, we can also obtain u(x1, x2, . . . , xN) ≤ u(−x1, x2, . . . , xN) for x1 ∈ (−1, 0) and
x1 ∈ (0, 1). Hence, u is symmetric in x1. By Lemma 1.1 in [14], the above analysis and scaling
transformation, u(x) is radially symmetric in BR.

Next, we shall prove the existence of solution to the problem (1.1). To start with, we prove
the existence of nonnegative solution to the following Dirichlet problem:{

−∆u = µ u
|x|2 + |x|

α|u|p(α)−2−εu, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(2.1)

where Ω is a ball in RN(N ≥ 3) centered at the origin, −2 < α < 0, p(α) = 2(N+α)
N−2 , 0 < ε <

p(α)− 1,0 ≤ µ < µ =
(N−2

2

)2.
The energy functional corresponding to problem (2.1) is

J(u) =
1
2
‖u‖2 − 1

p(α)− ε

∫
Ω
|x|α|u|p(α)−ε, u ∈ H1

0(Ω).

Lemma 2.6. The function J satisfies (PS)c condition for every c ∈ R.
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Proof. Take c ∈ R and assume that {un} is a Palais–Smale sequence at level c, namely such
that

J(un)→ c and J′(un)→ 0 (in H−1(Ω)).

This implies that there is a constant M > 0 such that

|J(un)| ≤ M. (2.2)

From J′(un)→ 0, we obtain

o(1)‖un‖ = 〈J′(un), un〉 = ‖un‖2 −
∫

Ω
|x|α|un|p(α)−ε. (2.3)

Calculating (2.2) − 1
p(α)−ε

(2.3), we have

M + o(1)‖un‖ ≥
1
2
‖un‖2 − 1

p(α)− ε

∫
Ω
|x|α|un|p(α)−ε

− 1
p(α)− ε

‖un‖2 +
1

p(α)− ε

∫
Ω
|x|α|un|p(α)−ε

=

(
1
2
− 1

p(α)− ε

)
‖un‖2,

which implies the boundedness of {un}. By usual arguments, we can assume that up to a
subsequence, there exists u ∈ H1

0(Ω) such that

• un ⇀ u in H1
0(Ω);

• |x|
α

p(α)−ε un → |x|
α

p(α)−ε u in Lp(α)−ε(Ω);

• ·un → u for almost every x ∈ Ω.

We now show that the convergence of un to u is strong.
First of all, from the above convergence properties, we obtain∥∥∥un|x|

α
p(α)−ε − u|x|

α
p(α)−ε

∥∥∥
Lp(α)−ε(Ω)

→ 0, n→ ∞.

As J′(un) → 0 and un ⇀ u, we also have 〈J′(un), un − u〉 → 0 and obviously
〈J′(u), un − u〉 → 0. Then, as n→ ∞, on the one hand,

〈J′(un)− J′(u), un − u〉 ≤ |〈J′(un), un − u〉|+ |〈J′(u), un − u〉| = o(1).

On the other hand,

〈J′(un)− J′(u), un − u〉

=
∫

Ω
|∇un −∇u|2 −

∫
Ω

µ
|un − u|2
|x|2 −

∫
Ω
|x|α(|un|p(α)−2−εun − |u|p(α)−2−εu)(un − u)

= ‖un − u‖2 −
∫

Ω
|x|α(|un|p(α)−2−εun − |u|p(α)−2−εu)(un − u).

We claim
∫

Ω |x|
α(|un|p(α)−2−εun − |u|p(α)−2−εu)(un − u)→ 0.
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Indeed, by Hölder’s inequality,∫
Ω
|x|α|un|p(α)−2−εun(un − u)

≤
∫

Ω
|x|α|un|p(α)−1−ε|un − u|

=
∫

Ω
|x|α·

p(α)−1−ε
p(α)−ε |un|p(α)−1−ε|x|α·

1
p(α)−ε |un − u|

≤

∫
Ω

(
|x|α·

p(α)−1−ε
p(α)−ε |un|p(α)−1−ε

) p(α)−ε
p(α)−1−ε


p(α)−1−ε

p(α)−ε [∫
Ω

(
|x|α·

1
p(α)−ε |un − u|

)p(α)−ε
] 1

p(α)−ε

=

(∫
Ω
|x|α|un|p(α)−ε

) p(α)−1−ε
p(α)−ε ∥∥∥|x| α

p(α)−ε |un − u|
∥∥∥

Lp(α)−ε(Ω)

≤ C ‖un‖p(α)−1−ε
∥∥∥un|x|

α
p(α)−ε − u|x|

α
p(α)−ε

∥∥∥
Lp(α)−ε(Ω)

= o(1).

(2.4)

By (2.4), similar calculation also gives∫
Ω
|x|α|u|p(α)−2−εu(un − u) = o(1). (2.5)

From the above analysis, we obtain

o(1) = 〈J′(un)− J′(u), un − u〉 = ‖un − u‖2 + o(1),

which implies un → u in H1
0(Ω) and proves that J satisfies (PS)c condition for every c ∈ R.

Lemma 2.7. The function J admits a (PS)c sequence in the cone of nonnegative function at the level

c = inf
g∈Γ

max
t∈[0,1]

J(g(t)),

where Γ = {g ∈ C([0, 1], H1
0(Ω)) : g(0) = 0, J(g(1)) < 0}.

Proof. We next prove that J satisfies all the hypotheses of the mountain pass lemma. Obviously,
J(0) = 0.

From the Sobolev–Hardy inequality, we obtain

J(u) =
1
2
‖u‖2 − 1

p(α)− ε

∫
Ω
|x|α|u|p(α)−1−εu

≥ 1
2
‖u‖2 − C1‖u‖p(α)−ε.

For any α, we can choose ε small enough such that p(α)− ε > 2. From the above analysis,there
exist ρ, e > 0 such that J(u) ≥ ρ, ∀u ∈ {u ∈ H1

0(Ω) : ‖u‖ = e}. Furthermore, for any
u ∈ H1

0(Ω),

J(tu) =
t2

2
‖u‖2 − tp(α)−ε

p(α)− ε

∫
Ω
|x|α|u|p(α)−1−εu.

We obtain J(tu) → −∞ as t → ∞. Hence, we can choose t0 > 0 such that J(t0u) < 0.
Therefore, by Lemma 2.2, we infer that J admits a (PS)c sequence at level c, such sequence
may be chosen in the set of nonnegative functions because J(|u|) ≤ J(u) for all u ∈ H1

0(Ω).

By Lemma 2.6, 2.7 and mountain pass lemma, we get a nonnegative solution u ∈ H1
0(Ω)

for (1.1), this solution is positive by the maximum principle.
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3 Estimate of the singularity

First, we fix p = p(α) − 1 − ε > 0 in problem (1.1) and study the singularity and radial
symmetry of the solution uε(x) ∈ H1

0(Ω). By standard elliptic regularity theory, uε(x) ∈
C2(Ω\{0})⋂C1(Ω\{0}). Hence the singular point of uε(x) should be the origin.

Suppose that uε(x) ∈ H1
0(Ω) satisfies problem (1.1).

Let v(x) = |x|νuε(x), then

−∆u = (−ν2 − 2ν + Nν)|x|−ν−2v(x) + 2ν|x|−ν−2x∇v(x)− |x|−ν∆v(x),

µ
u
|x|2 + |x|αup(α)−1−ε = µ|x|−ν−2v(x) + |x|α−(p(α)−1−ε)νv(x)p(α)−1−ε.

From equation in (1.1),

(−ν2 − 2ν + Nν)|x|−ν−2v(x) + 2ν|x|−ν−2x∇v(x)− |x|−ν∆v(x)

= µ|x|−ν−2v(x) + |x|α−(p(α)−1−ε)νv(x)p(α)−1−ε.

Multiply both sides of the above equation by |x|−ν, then we get

[−ν2 +(N− 2)ν]|x|−2ν−2v(x)−div(|x|−2ν∇v(x)) = µ|x|−2ν−2v(x)+ |x|α−(p(α)−ε)νv(x)p(α)−1−ε.

For ν =
√

µ−
√

µ− µ, we obtain
−div(|x|−2ν∇v) = |x|−(p(α)−ε)ν+αvp(α)−1−ε, x ∈ Ω,

v > 0, x ∈ Ω,

v = 0, x ∈ ∂Ω.

(3.1)

By the regularity theory of elliptic equations, vε(x) ∈ C2(Ω\{0})⋂C1(Ω\{0}). Moreover,
we have

Lemma 3.1.

(i) v(x) ∈ H1
0(Ω, |x|−2ν).

(ii) v(x) is bounded in Ω.

Proof. (i) For any u(x) ∈ H1
0(Ω) satisfying problem (1.1), by Hardy inequality, we have∫

Ω
|x|−2ν|∇v|2 =

∫
Ω
|x|−2ν||x|ν∇u + ν|x|ν−2ux|2

≤ 2
(∫

Ω
|∇u|2 + ν2

∫
Ω

u2

|x|2

)
≤ C.

Hence, we claim v(x) = |x|νu(x) ∈ H1
0(Ω, |x|−2ν).

(ii) From Caffarelli–Kohn–Nirenberg inequality mentioned in Lemma 2.3, we have

(∫
Ω
|x|m1 |∇u|2

) 1
2

≥ Cm1,n1

(∫
Ω
|x|n1 |u|p(m1,n1)

) 1
p(m1,n1)

, ∀u ∈ H1
0(Ω, |x|m1), (3.2)
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where
m1 = −2ν, n1 = −(p(α)− ε)ν + α, p(m1, n1) = p(α) +

εν√
µ− µ

.

Note that ∫
Ω
|x|m1∇v · ∇ϕ =

∫
Ω
|x|n1 vp ϕ, ∀ϕ ∈ H1

0(Ω, |x|m1).

For s, l > 1, define vl(x) = min{v(x), l}. Taking ϕ = v · v2(s−1)
l ∈ H1

0(Ω, |x|m1) in the above
equation, we have∫

Ω
|x|m1 |∇v|2v2(s−1)

l + 2(s− 1)
∫

Ω
|x|m1 |∇vl |2v2(s−1)

l =
∫

Ω
|x|n1 vp+1v2(s−1)

l .

Hence, (∫
Ω
|x|n1(v · vs−1

l )p(m1,n1)

) 2
p(m1,n1)

≤ C−2
m1,n1

∫
Ω
|x|m1 |∇(v · vs−1

l )|2

≤ 2C−2
m1,n1

(
(s− 1)2

∫
Ω
|x|m1 |∇vl |2v2(s−1)

l +
∫

Ω
|x|m1 |∇v|2v2(s−1)

l

)
≤ 2C−2

m1,n1
s
∫

Ω
|x|n1 vp+2s−1.

(3.3)

From (3.3) and Levi’s theorem, we see that v∈Lp+2s−1(Ω,|x|n1) implies v∈Lsp(m1,n1)(Ω,|x|n1).
For j = 0, 1, 2, . . . , by induction we define{

p− 1 + 2s0 = p(m1, n1),

p− 1 + 2sj+1 = p(m1, n1)sj,
(3.4)

M0 = (C · C−2
m1,n1

)
p(m1,n1)

2 ,

Mj+1 = (2C−2
m1,n1

sj Mj)
p(m1,n1)

2 ,
(3.5)

where C is a fixed number such that
∫

Ω |x|
m1 |∇v|2 ≤ C.

From (3.4), we see that

sj =
(2−1 p(m1, n1))

j+1(p(m1, n1)− p− 1) + p− 1
p(m1, n1)− 2

.

From (3.5), similar to the computation in [21], we can see that

∃d > 0 and d is independent of j, such that Mj ≤ edsj−1 .

Since 2 < p + 1 < p(m1, n1), it follows that sj > 1 for all j ≥ 0, sj → +∞ as j→ +∞.
By (3.3), (3.4) and (3.5),

∫
Ω
|x|n1 vp+2s1−1 ≤ (2C−2

m1,n1
s0)

p(m1,n1)
2

(∫
Ω
|x|n1 vp+2s0−1

) p(m1,n1)
2

≤ (2C−2
m1,n1

s0)
p(m1,n1)

2

(
C

p(m1,n1)
2 C−p(m1,n1)

m1,n1

) p(m1,n1)
2

≤ (2C−2
m1,n1

s0M0)
p(m1,n1)

2

≤ M1.
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Similarly, ∫
Ω
|x|n1 vp+2sj−1 ≤ Mj.

Hence, by p + 2sj+1 − 1 = p(m1, n1)sj, denoting C(Ω, n1) = maxx∈Ω|x|−n1 , we obtain

|v|
Lp(m1,n1)sj (Ω)

≤
(∫

Ω
|v|p(m1,n1)sj |x|n1 · |x|−n1

) 1
p(m1,n1)sj

≤ C(Ω, n1)
1

p(m1,n1)sj |v|
1

p(m1,n1)sj

Lp(m1,n1)sj (Ω,|x|n1 )

≤ C(Ω, n1)
1

p(m1,n1)sj M
1

p(m1,n1)sj
j+1

≤ C(Ω, n1)
1

p(m1,n1)sj e
d

p(m1,n1) .

Taking limit on each side of the above inequality and using sj → +∞, as j→ +∞, we have

|v|L∞(Ω) ≤ e
d

p(m1,n1) ,

which implies the conclusion.

From Lemma 3.1, we can see that v(x) = |x|νu(x) is bounded form above in Ω. For the
lower bound of v(x) = |x|νu(x), we have

Lemma 3.2. Suppose that u(x) ∈ H1
0(Ω) satisfies problem (1.1) and 0 ≤ µ < µ, then for any

Bρ ⊂⊂ Ω there exists a C(ρ) > 0, such that

u(x) ≥ C(ρ)|x|−ν, ∀x ∈ Bρ ⊂⊂ Ω.

Proof. Let f (x) = min{|x|αup(α)−1−ε(x), l} with l > 0, then f ∈ L∞(Ω).
Let u1 ≥ 0 and u1 ∈ H1

0(Ω) be the solution of the following linear problem−∆u1 = µ
u1

|x|2 + f , x ∈ Ω,

u1 = 0, x ∈ ∂Ω.
(3.6)

Set U = u− u1, then U ∈ H1
0(Ω) and U satisfies the following problem−∆U = µ

U
|x|2 + g, x ∈ Ω,

U = 0, x ∈ ∂Ω,
(3.7)

where g ≥ 0 and 0 ≤ µ < µ = (N−2
2 )2.

From Lemma 2.4, there exist solutions for problem (3.6) and (3.7). From the Hardy in-
equality and the comparison principle proved in [15], we obtain that u is a super-solution
of problem (3.6) and 0 ≤ u1 ≤ u. Actually we can prove this as follows. Multiplying
U− := max{0,−U(x)} on both side of equation in (3.7) and integrating by parts, we have

−
∫

Ω
|∇U−|2 = −

∫
Ω

µ
(U−)2

|x|2 +
∫

Ω
gU−.

It follows that U− = 0 in Ω and hence U ≥ 0.
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By Lemma 3.1, there exists a constant C1 > 0 such that 0 ≤ u1(x) ≤ u(x) ≤ C1|x|−ν. So it
suffices to prove the result for u1.

Since u1 6≡ 0, u1 ≥ 0 and −∆u1 ≥ 0 in Ω, there exists δ > 0 such that for sufficiently small
ρ > 0 it holds that u1 ≥ δ for ∀x ∈ B2ρ. Choose C(ρ) ≥ 0 satisfying C(ρ)|x|−ν ≤ δ for |x| = ρ

and set ω = (u1 − C|x|−ν)−. By
∫

Bρ
|∇|x|−ν|2 < ∞ and u1 ∈ H1

0(Bρ), we have ω ∈ H1
0(Bρ).

From (3.6) and the fact that |x|−ν is the solution of equation −∆u− µ u
|x|2 = 0, the linear

combination of u1 and |x|−ν is the solution of −∆u = µ u
|x|2 + f . Hence,

−∆(u1 − C|x|−ν) = µ
(u1 − C|x|−ν)

|x|2 + f .

Multiply ω on both side of the above equation and integrate by part, we obtain

−
∫

Bρ

|∇ω|2 +
∫

Bρ

µ
ω2

|x|2 =
∫

Bρ

f ω ≥ 0.

Since 0 ≤ µ < µ̄, it follows that ω = 0.
Another proof of ω = 0: It only need to prove that −

∫
Bρ
|∇ω|2 +

∫
Bρ

µ ω2

|x|2 ω ≥ 0. Other-
wise,

0 > −
∫

Bρ

|∇ω|2 +
∫

Bρ

µ
ω2

|x|2

=
∫

Bρ

∇(u1 − C|x|−ν) · ∇ω−
∫

Bρ

µ

|x|2 (u1 − C|x|−ν)ω

=
∫

Bρ

f ω− C(
∫

Bρ

∇|x|−ν · ∇ω−
∫

Bρ

µ

|x|2 |x|
−νω)

=
∫

Bρ

f ω +
Cν

ρν+1

∫
∂Bρ

ω

>
Cν

ρν+1

∫
∂Bρ

ω

≥ 0.

This is a contradiction and we are done.

Proposition 3.3. Suppose that u(x) ∈ H1
0(Ω) satisfies problem (1.1) and 0 ≤ µ < µ. Then for any

Ω′ ⊂⊂ Ω there exists two positive constants C1 and C2, such that{
u(x)|x|ν ≥ C1, ∀x ∈ Ω′ ⊂⊂ Ω.

u(x)|x|ν ≤ C2, ∀x ∈ Ω.
(3.8)

Next, we use Lemma 2.5 and Proposition 3.3 to prove that the solution is radially symmet-
ric with Ω = BR.

Theorem 3.4. Suppose that −2 < α < 0 and p(α) = 2(N+α)
N−2 . Then the solution of problem (1.1) is

radially symmetric.

Proof. Using the previous notations, we only need to show that v(x) is radially symmetric in
Ω. By the regularity theory of elliptic equations, we have v(x) ∈ C2(BR\{0}) ∩ C1(BR\{0}).
Next, we have to prove that v(x) satisfies Lemma 2.5. From (3.1), we obtain

∂i(|x|−2ν∂iv) + |x|−(p(α)−ε)ν+αvp(α)−1−ε = 0.

Hence, v(x) satisfies Lemma 2.5 when b = −2ν,a = −(p(α)− ε)ν + α, q = p(α)− 1− ε and
K = 1.
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4 Some basic estimates

Set r = |x|. Let v(r) = |x|νuε(x). Then v(r) satisfies
v′′ +

N − 1− 2ν

r
v′ +

1
r(p(α)−2−ε)ν−α

vp(α)−1−ε = 0,

v(r) > 0, for 0 < r < R,

v(R) = 0.

(4.1)

Let t =
(N−2ν−2

r

)N−2ν−2 and y(t) = (N − 2ν− 2)−g(α,ε)v(r), where g(α, ε) = (p(α)−2−ε)ν−α
p(α)−2−ε

.
Then problem (4.1) can be rewritten as

y′′(t) = −t−k(α,ε)yp(α)−1−ε,

y(t) > 0, for T < t < ∞,

y(T) = 0,

(4.2)

where k(α, ε) = 2m+α
m−1 −

(p(α)−2−ε)ν
m−1 , m = 1 + 2

√
µ− µ = N − 2ν− 1, T = (m−1

R )m−1, p(α)−
1 = 2k(α, ε)− 3− 2νε

m−1 .
In order to simplify the expression, we will always replace k(α, ε) with k in the sequel.
First we give

Lemma 4.1. Let y(t) be a solution of problem (4.2), then there exists a positive number γ < ∞ such
that

limt→∞ y′(t) = 0 and limt→∞ y(t) = γ.

Proof. By Proposition 3.3, it is obvious that y(t) is bounded in [T, ∞). From (4.2), we know
y′′(t) < 0 for all t > T, so y′(t) decreases strictly in t ∈ (T, ∞). Hence

y′(t)→ c x0as t→ +∞.

If c > 0, we can deduce y(t) → +∞ when t → +∞. Similarly, when c < 0, we have
y(t) → −∞ when t → +∞. However, the boundedness of y(t) leads to the contradiction.
Hence, limt→∞ y′(t) = 0 and limt→∞ y(t) = γ.

Remark 4.2.

(i) From Lemma 4.1, if we define v(0) = limr→0 v(r) = (N − 2ν − 2)g(α,ε)γ, then v(r) ∈
C[0, R]. Furthermore, v′(r) < 0 for all r ∈ (0, R].

(ii) y′(t) > 0 for all t > T and y′(t) ∼ 1
k−1 t1−kγp(α)−1−ε as t→ ∞.

Next, we consider {
y′′(t) + t−kyp(α)−1−ε = 0, t < ∞,

lim
t→∞

y(t) = γ,
(4.3)

where γ > 0.
Since k > 2, it follows from [2] that problem (4.3) has a unique solution which will be

denoted by y(t, γ) for every γ > 0. Define

T(γ) = inf{t > 0 : y(t, γ) > 0 on (t, ∞)}. (4.4)
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From Lemma 4.1, we have limt→∞ w(s) = 1, where w(s) = y(t)
γ . Hence,

T(1) = inf{s > 0 : w(s, 1) > 0 on (s, ∞)}.

Set t = γ
p(α)−2−ε

k−2 s, then
w′′(s) = −s−kwp(α)−1−ε(s).

So, we have

T(γ) = γ
p(α)−2−ε

k−2 T(1).

By Lemma 5.1 in Section 5, T(1) > 0. Thus for every γ > 0, T(γ) > 0.
Hence, for any T > 0 and given ε > 0 small, there exists a unique γ such that problem

(4.3) has a solution y(t, γ) such that γ > 0, T(γ) > 0.

Remark 4.3. From the above analysis, when Ω is a ball centered at the origin, we conclude
that the solution to problem (1.1) is unique.

Now we give an upper and lower bound for y(t, γ).

Lemma 4.4. Suppose ε > 0, then

y(t, γ) < z(t, γ), for T(γ) ≤ t < ∞, (4.5)

where

z(t, γ) = γ

(
1 +

1
k− 1

γp(α)−2−ε

tk−2

)− 1
k−2

.

Proof. Since
(y′tk−1y1−k)′ = −(k− 1)tk−2y−k H1(t),

where

H1(t) = t(y′)2 − yy′ +
1

k− 1
t1−kyp+1

and y′(t) ∼ 1
k−1 t1−kγp(α)−1−ε (see Remark 4.2), we have limt→∞ H1(t) = 0.

By H′1(t) =
1

k−1 t1−ky′(t)(p− 2k + 3)yp, we have

H′1(t) < 0 for ∀t ∈ [T, ∞).

Hence H1(t) decreases strictly on [T, ∞). In combination with limt→∞ H1(t) = 0, we can obtain
H1(t) > 0 on (T, ∞) which implies (y′tk−1y1−k)′ < 0.

Integrating (y′tk−1y1−k)′ < 0 from t > T to t = ∞, we deduce

y1−ky′(t) >
1

k− 1
γp−k+1t1−k, for T < t < ∞.

Integrating the above equation again from t > T to t = ∞, we deduce

y2−k(t) >
1

k− 1
γp−k+1t2−k + γ2−k, for T < t < ∞,

which implies the conclusion.
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Remark 4.5. The function z(t, γ) is the solution of the following problemz′′(t) + t−kγ−(
2ν

m−1+1)εz2k−3 = 0, 0 < t < ∞,

lim
t→∞

z(t, γ) = γ.
(4.6)

In the sequel, z(t, γ) plays an important role.

Set

Tα,ε =
γ

p(α)−2−ε
k−2

k1(α, ε)
=

γ
2− m−1−2ν

(m−1)(k−2) ε

k1(α, ε)
, (4.7)

where k1(α, ε) = (k− 1)
1

k−2 .
Then for any β > 0, direct computation gives

z(βTα,ε, γ) = Cα,β,εγ, (4.8)

where Cα,β,ε =
β

(1+βk−2)
1

k−2
.

Lemma 4.6. Let β > 0 and ε > 0, then for every t ≥ βTα,ε,

y(t, γ) ≥ z(t, γ)(1− dα,β,εε),

where

dα,β,ε =
(1− Cα,β,ε)(1 + 2ν/(m− 1))

C2+(1+2ν/(m−1))ε
α,β,ε

.

Proof. Integrating (4.3) twice, we have

y(t, γ) = γ−
∫ ∞

t
(s− t)s−ky2k−3−(1+2ν/(m−1))ε(s, γ)ds.

Hence, by Lemma 4.4, we obtain

y(t, γ) > γ−
∫ ∞

t
(s− t)s−kz2k−3−(1+2ν/(m−1))ε(s, γ)ds.

Similarly, integrate (4.6) for z twice, then

z(t, γ) = γ−
∫ ∞

t
(s− t)s−kγ−(1+2ν/(m−1))εz2k−3(s, γ)ds.

Hence

y(t, γ) > z(t, γ)−
∫ ∞

t
(s− t)s−kz2k−3(s, γ)(z−(1+2ν/(m−1))ε − γ−(1+2ν/(m−1))ε)ds. (4.9)

By the mean value theorem, we deduce

|z−(1+2ν/(m−1))ε − γ−(1+2ν/(m−1))ε| = (1 + 2ν/(m− 1))εθ−1−(1+2ν/(m−1))θ |z(s, γ)− γ|,

where z(s, γ) ≤ θ ≤ γ.
Hence, using (4.8), if βTα,ε ≤ t < ∞, we have

|z−(1+2ν/(m−1))ε − γ−(1+2ν/(m−1))ε|
≤ (1 + 2ν/(m− 1))ε(Cα,β,εγ)

−1−(1+2ν/(m−1))εγ

≤ (1 + 2ν/(m− 1))εC−1−(1+2ν/(m−1))ε
α,β,ε γ−(1+2ν/(m−1))ε.
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Using this bound in (4.9), if t ≥ βTα,ε,

y(t, γ) > z(t, γ)− (1 + 2ν/(m− 1))εC−1−(1+2ν/(m−1))ε
α,β,ε

×
∫ ∞

t
(s− t)s−kγ−(1+2ν/(m−1))εz2k−3(s, γ)ds

= z(t, γ) + (1 + 2ν/(m− 1))εC−1−(1+2ν/(m−1))ε
α,β,ε (z(t, γ)− γ).

(4.10)

On the other hand, by (4.8), if t ≥ βTα,ε,

γ = C−1
α,β,εz(βTα,ε, γ) ≤ C−1

α,β,εz(t, γ).

So we can deduce from (4.10) that

y(t, γ) > z(t, γ)(1 +
(1 + 2ν/(m− 1))

C1+(1+2ν/(m−1))ε
α,β,ε

(1− 1
Cα,β,ε

)ε)

= z(t, γ)(1− dα,β,εε),

which is the bound we want to prove.

Now we return to problem (4.2). We fix T and denote the solution by y(t). Then

γ(ε) = lim
t→∞

y(t)

and γ(ε) depends on ε. The next lemma tells us the asymptotic behavior of γ(ε) as ε→ 0.

Lemma 4.7.
lim
ε→0

γ(ε) = ∞

Proof. By contradiction, we can assume there exists a sequence {εn}, εn → 0 as n → ∞, and a
number M > 0 such that γ(εn) ≤ M for all n. Then we can choose a number β1 > 0 satisfying

β1Tα,εn = β1k−1
1 γ(εn)

2− m−1+2ν
(m−1)(k−2) ε ≤ β1(

n−2
n+α )

n−2
α+2 M2 + o(1) ≤ T for large n.

So by Lemma 4.6, we have

z(t, γ(εn))(1− dα,β,εn εn) < z(T, γ(εn))(1− dα,β,εn εn) ≤ y(T, γ(εn)) = 0,

for 0 < t < β1Tα,εn and large n, which is impossible.

Finally, we give two formulae to use later. Define incomplete Beta function

B(ς, P, Q) =
∫ ∞

ς
xP−1(1 + x)−P−Qdx,

where P and Q are positive parameters. It is well-known that

B(0, P, Q) =
Γ(P)Γ(Q)

Γ(P + Q)
. (4.11)

Lemma 4.8. Suppose k > 2, p = 2k− 3− (1 + 2ν
m−1 )ε and ε small. Then

(i)
∫ ∞

t
s−kzp(s, γ)ds = k1(α, ε)k2(α, ε)γ−1+ϕ(α,ε)B(τ(α, ε), 1− ϕ(α, ε), k2(α, ε)),

(ii)
∫ ∞

t
s−kzp+1(s, γ)ds = k1(α, ε)k2(α, ε)γϕ(α,ε)B(τ(α, ε), k2(α, ε)− ϕ(α, ε), k2(α, ε)),

where ϕ(α, ε) = m−1+2ν
(m−1)(k−2) ε, k1(α, ε) = (k− 1)

1
k−2 , k2(α, ε) = k−1

k−2 , τ(α, ε) = ( t
Tα,ε

)k−2.
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Proof. (i) Insert the expression

z(t, γ) = γ

(
1 +

1
k− 1

γp(α)−2−ε

tk−2

)− 1
k−2

into the integral

∫ ∞

t
s−kzp(s, γ)ds = γp

∫ ∞

t
sp−k

(
sk−2 +

1
k− 1

γp−1
)− p

k−2

ds

= γp
∫ ∞

t
sp−k(sk−2 + Tk−2

α,ε )−
p

k−2 ds

(4.12)

and by routine calculus, we can get the result as follows.
By making the change of variable x = ( s

Tα,ε
)k−2, we can write (4.12) as

∫ ∞

t
s−kzp(s, γ)ds = γp

∫ ∞

t
sp−k(sk−2 + Tk−2

α,ε )−
p

k−2 ds

=
γp

k− 2
T1−k

α,ε

∫ ∞

( t
Tα,ε )

k−2
xP−1(1 + x)−P−Qdx,

where P = p−k−1
k−2 and Q = k−1

k−2 .
Since

γp

k− 2
T1−k

α,ε = k1(α, ε)k2(α, ε)γ−1+ϕ(α,ε),

we have ∫ ∞

t
s−kzp(s, γ)ds = k1(α, ε)k2(α, ε)γ−1+ϕ(α,ε)B(τ(α, ε), 1− ϕ(α, ε), k2(α, ε)),

where ϕ(α, ε) = m−1+2ν
(m−1)(k−2) ε, k1(α, ε) = (k− 1)

1
k−2 , k2(α, ε) = k−1

k−2 , τ(α, ε) = ( t
Tα,ε

)k−2.
(ii) In a similar way as in (i).

We end this section by giving

lim
ε→0

k =
2N − 2 + α

N − 2
, k0, lim

ε→0
k1(α, ε) = (

N + α

N − 2
)

N−2
α+2 , k1,

lim
ε→0

k2(α, ε) =
N + α

α + 2
, k2, lim

ε→0
Cα,β,ε =

β

(1 + β
α+2
N−2 )

N−2
α+2

, Cα,β,

lim
ε→0

dα,β,ε =
(1− cα,β)(1 + 2ν/(m− 1))

c2
α,β

, dα,β, lim
ε→0

ϕ(α, ε) = lim
ε→0

τ(α, ε) = 0.

(4.13)

5 Proof of the main results

Note that if uε(x) is a solution of problem (1.1) when Ω = BR, then from the previous analysis,
we know that

lim
|x|→0

uε(x)|x|ν = (N − 2ν− 2)g(α,ε)γ(ε),

where g(α, ε) = (p(α)−2−ε)ν−α
p(α)−2−ε

and R = (m− 1)T−1/(m−1). Thus we need to understand how
γ(ε) tends to infinity as ε→ 0.
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We define the following Pohozaev functional introduced from [1] and [22],

H(t) = ty′2 − yy′ + 2t1−k yp+1

p + 1
, (5.1)

where

p = 2k− 3−
(

1 +
2ν

m− 1

)
ε = p(α)− 1− ε.

If y(t) solves problem (4.3), then

H′(t) = − (1 + 2ν/(m− 1))ε
p + 1

t−kyp+1 (5.2)

and y′(t) = O(t1−k) as t→ ∞ (see Remark 4.2). Hence

lim
t→∞

H(t) = 0.

Since H(T) = Ty′2(T), integrating (5.2) from t > T to t = ∞, we obtain

Ty′2(T) =
(1 + 2ν/(m− 1))ε

p + 1

∫ ∞

T
t−kyp+1(t)dt. (5.3)

This equation is crucial for us to obtain the desired results.

Lemma 5.1. Let T(γ) be defined as (4.4), then T(1) > 0.

Proof. By Lemma 4.2, y(t, 1) ≤ z(t, 1) for t ≥ T(1). Suppose in contrast that T(1) = 0, then

y′(0, 1) ≤ z′(0, 1) = kk−1
1 (α, ε).

So
y(t, 1) ≤ kk−1

1 (α, ε)t, t ≥ 0,

which means H(0) = 0.
On the other hand, combination of (5.2) and the fact limt→∞ H(t) = 0 yields H(t) > 0 for

T(1) ≤ t < ∞. This is a contradiction and our conclusion follows.

Lemma 5.2. limε→0 γ1−ϕ(α,ε)y′(T) = k1, where γ = γ(ε).

Proof. Integrating equation (4.2) over (T, ∞), we derive

y′(T) =
∫ ∞

T
t−kyp(t)dt <

∫ ∞

T
t−kzp(t)dt. (5.4)

Hence, by Lemma 4.8 (i) and Lemma 4.4, as ε→ 0,

γ1−ϕ(α,ε)y′(T) ≤ k1(α, ε)k2(α, ε)B
((

T
Tα,ε

)k−2

, 1− ϕ(α, ε), k2(α, ε)

)
→ k1k2B(0, 1, k2).

By (4.11) and the fact that Γ(x + 1) = xΓ(x), we deduce

k1k2B(0, 1, k2) =
k1k2

k2
= k1.
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Therefore
lim
ε→0

sup γ1−ϕ(α,ε)y′(T) ≤ k1. (5.5)

Next, we shall show that for any δ > 0 ,

lim
ε→0

inf γ1−ϕ(α,ε)y′(T) ≥ k1 − δ, (5.6)

which completes the proof of this lemma.
For a given β > 0, by (4.2) and Lemma 4.7, we can choose ε > 0 so small that βTα,ε > T.

Thus (5.4) can be written as

γ1−ϕ(α,ε)y′(T) = γ1−ϕ(α,ε)
∫ βTα,ε

T
t−kyp(t)dt + γ1−ϕ(α,ε)

∫ ∞

βTα,ε

t−kyp(t)dt

= G1(α, β, ε) + G2(α, β, ε).
(5.7)

Because z(t) ≤
( γ

Tα,ε

)
t for all t > 0, using Lemma 4.4, we have

G1(α, β, ε) ≤ γ1−ϕ(α,ε)
(

γ

Tα,ε

)p ∫ βTα,ε

T
tp−kdt

< γ1−ϕ(α,ε)
(

γ

Tα,ε

)p (βTα,ε)p−k+1

p− k + 1

=
kk−1

1 (α, ε)

(k− 2)(1− ϕ(α, ε))
β(k−2)(1−ϕ(α,ε)).

(5.8)

On the other hand, by Lemma 4.3 and (i) of Lemma 4.8, for ε > 0 small,

G2(α, β, ε) > γ1−ϕ(α,ε)(1− dα,β,εε)
p
∫ ∞

βTα,ε

t−kzp(t)dt

= (1− dα,β,εε)
pk1(α, ε)k2(α, ε)B(βk−2, 1− ϕ(α, ε), k2(α, ε)).

(5.9)

Combining (5.7), (5.8) and (5.9), we derive

lim
ε→0

inf γ1−ϕ(α,ε)y′(T) ≥ k1k2B(βk0−2, 1, k2)− L1βk0−2,

where L1 = limε→0
kk−1

1 (α,ε)
(k−2)(1−ϕ(α,ε)) .

Hence, given any δ > 0, we can choose β > 0 such that (5.6) holds. This completes the
proof.

Lemma 5.3. limε→0 γ1−ϕ(α,ε)
∫ ∞

T t−kyp+1(t, γ(ε))dt = k1k2[Γ(k2)]2/Γ(2k2), where γ = γ(ε).

Proof. By Lemma 4.4 and Lemma 4.8(ii), as ε→ 0, we deduce

γ−ϕ(α,ε)
∫ ∞

T
t−kyp+1(t, γ)dt ≤ γ−ϕ(α,ε)

∫ ∞

T
t−kzp+1(t, γ)dt

= k1(α, ε)k2(α, ε)B

((
T

Tα,ε

)k−2

, k2(α, ε)− ϕ(α, ε), k2(α, ε)

)
→ k1k2B(0, k2, k2)

= k1k2[Γ(k2)]
2/Γ(2k2).

(5.10)
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Hence,

lim
ε→0

sup γ−ϕ(α,ε)
∫ ∞

T
t−kyp+1(t, γ)dt ≤ k1k2[Γ(k2)]

2/Γ(2k2).

Next, we shall show that for any δ > 0,

lim
ε→0

inf γ−ϕ(α,ε)
∫ ∞

T
t−kyp+1(t, γ)dt ≥ k1k2[Γ(k2)]

2/Γ(2k2)− δ.

which completes the proof of this lemma.
For a given β > 0, by (4.2) and Lemma 4.7, we can choose a sufficiently small ε such that

βTα,ε > T. Thus (5.10) can be written as

γ−ϕ(α,ε)
∫ ∞

T
t−kyp+1(t, γ)dt

= γ−ϕ(α,ε)
∫ βTα,ε

T
t−kyp+1(t, γ)dt + γ−ϕ(α,ε)

∫ ∞

βTα,ε

t−kyp+1(t, γ)dt

= G3(α, β, ε) + G4(α, β, ε).

(5.11)

Because z(t) ≤
( γ

Tα,ε

)
t for all t > 0, using Lemma 4.4, we have

G3(α, β, ε) < γ−ϕ(α,ε)
∫ βTα,ε

T
t−kzp+1(t, γ)dt

≤ γ−ϕ(α,ε)
∫ βTα,ε

T
t−k
(

γ

Tα,ε
t
)p+1

dt

=
k1(α, ε)

k− 1− ε
βk−1−ε.

(5.12)

On the other hand, by Lemma 4.3 and (ii) of Lemma 4.8, for ε > 0 small,

G4(α, β, ε) > γ−ϕ(α,ε)(1− dα,β,εε)
p+1

∫ ∞

βTα,ε

t−kzp+1(t, γ)dt

= (1− dα,β,εε)
p+1k1(α, ε)k2(α, ε)B(βk−2, k2(α, ε)− ϕ(α, ε), k2(α, ε)).

(5.13)

Combining (5.11), (5.12) and (5.13), we derive

lim
ε→0

inf γ−ϕ(α,ε)
∫ ∞

T
t−kyp+1(t, γ)dt ≥ k1k2B(βk0−2, k2, k2)− L2βk0−1. (5.14)

where L2 = limε→0
k1(α,ε)
k−1−ε .

Hence, given any δ > 0, we can choose β > 0 such that this conclusion is tenable.

Now we are ready to analyze the behavior of γ(ε) as ε→ 0.

Theorem 5.4. Let y(t) be the solution of problem (4.2) and denote

γ(ε) = lim
t→∞

y(t).

Then

lim
ε→0

εγ2(ε) =
4(N + α)

√
µ− µ

(N − 2)2
k1

k2

Γ(2k2)

[Γ(k2)]2
T,

where k1 and k2 are defined by (4.13).
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Proof. Noting (5.3), we have(
1 +

2ν

m− 1

)
εγ2−ϕ(α,ε) = (p + 1)T

[γ1−ϕ(α,ε)y′(T)]2

γ−ϕ(α,ε)
∫ ∞

T t−kyp+1(t)dt
. (5.15)

From (5.15), Lemma 5.2 and Lemma 5.3, we have

lim
ε→0

εγ2−ϕ(α,ε)(ε) =
4(N + α)

√
µ− µ

(N − 2)2
k1

k2

Γ(2k2)

[Γ(k2)]2
T. (5.16)

The exponent 2− ϕ(α, ε) in (5.16) may be replaced by 2, because

lim
ε→0

γ(ε)ϕ(α,ε) = 1. (5.17)

To see this, note that (5.16) implies that

γ(ε)2−ϕ(α,ε) <
C
ε

,

for small ε and some constant C. Therefore

ln γ(ε)ϕ(α,ε) = ϕ(α, ε) ln γ(ε) <
ϕ(α, ε)

2− ϕ(α, ε)
ln

C
ε

.

This means that
ln γ(ε)ϕ(α,ε) → 0 as ε→ 0

and (5.17) follows.

Proof of Theorem 1.2. If y(t) is the solution of (4.2), then

v(x) = (N − 2ν− 2)g(α,ε)y((m− 1)m−1|x|1−m)

is the solution of problem (3.1) in BR with R = (m− 1)T−1/(m−1) and

uε(x) = |x|−νv(x) = (N − 2ν− 2)g(α,ε)|x|−νy((m− 1)m−1|x|1−m).

Therefore, Theorem 5.4 yields

lim
ε→0

lim
|x|→0

εu2
ε |x|2ν = lim

ε→0
(N − 2ν− 2)2g(α,ε)εγ2(ε)

= 2(α + 2)(2
√

µ− µ)
2N+α−2

α+2 (N + α)
N−2
α+2 (N − 2)−

2α+N+2
α+2

Γ( 2(N+2)
α+2 )[

Γ(N+α
α+2 )

]2
1

R2
√

µ−µ
,

which is the content of Theorem 1.2.

Before proving Theorem 1.3, we first give two lemmas.
As a first observation, we note from Lemma 4.4 that

y(t, γ) < z(t, γ) < k1tγ−1+ϕ(α,ε) for t > T.

Hence, by Theorem 5.4, for every fixed t > T, we have

y(t, γ(ε)) = O(ε
1
2 ) as ε→ 0.

If we allow t to tend to infinity as ε→ 0, we obtain the following upper bound.
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Lemma 5.5. For every M > 0 and ξ ∈ (0, 1
2 ),

lim sup
ε→0

{y(t, γ(ε)) : T < t < Mε−ξ} = 0.

To obtain information about the limiting form of y(t, γ(ε)) as ε→ 0, we are led by Lemma
5.2 to multiply y as the weight factor γ1−ϕ(α,ε), because

lim
ε→0

γ1−ϕ(α,ε)y′(T) = k1. (5.18)

In the next lemma, we show that (5.18) continues to be true for values of t > T, provided

t = O(γσ),

where σ may be any number less than 2.

Lemma 5.6. Let M > 0 and 0 < σ < 2. Then

lim sup
ε→0

{|γ1−ϕ(α,ε)y′(t)− k1| : T < t < Mγσ} = 0.

Proof. By Lemma 5.2, and the concavity of y,

lim sup
ε→0

γ1−ϕ(α,ε)y(t, γ) ≤ k1, ∀t ≥ T. (5.19)

To get a lower bound on y′, we also use the concave property of y. For ∀t ≥ T and for t0 > t,
we have

y′(t0) >
y(t0)− y(t)

t0 − t
>

1
t0
{y(t0)− y(t)}.

Hence, by Lemma 4.4,

γ1−ϕ(α,ε)y′(t) >
γ1−ϕ(α,ε)y(t0)

t0
− γ1−ϕ(α,ε)z(t)

t
· t

t0
. (5.20)

We assume that t = O(γσ) and 0 < σ < 2, so it is possible for us to substitute βTα,ε, β > 0 for
t0. Hence, for γ→ ∞,

t
βTα,ε

→ 0. (5.21)

By Lemma 4.3,

γ1−ϕ(α,ε)y(βTα,ε)

βTα,ε
≥ γ1−ϕ(α,ε)z(βTα,ε)

βTα,ε
(1− dα,β,εε)

= k1(1 + βk−2)−
1

k−2 (1− dα,β,εε).

(5.22)

Thus, from (5.20)–(5.22), we conclude that

lim inf
ε→0

γ1−ϕ(α,ε)y(t, γ) ≥ k1 − δ(β),

where δ(β)→ 0 as β→ 0. Because we can choose β small enough, this means

lim inf
ε→0

γ1−ϕ(α,ε)y(t, γ) ≥ k1. (5.23)

By (5.19) and (5.22), we obtain the desired result.
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Proof of Theorem 1.3. By the concavity of y(t), we deduce

y′(t) ≤ y(t)− y(T)
t− T

≤ y′(T), t ≥ T. (5.24)

So, there exists a θ ∈ [T, t] such that

y(t) = y′(θ)(t− T). (5.25)

Combining Lemma 5.5, (5.25) and noting that limε→0 γ(ε)ϕ(α,ε) = 1, we obtain

lim
ε→0

ε−
1
2 y(t) = lim

ε→0
ε−

1
2 γ−1+ϕ(α,ε) lim

ε→0
γ1−ϕ(α,ε)y(t)

= [A(k1, k2, T)]−
1
2 lim

ε→0
γ1−ϕ(α,ε)y′(θ)(t− T)

= k1[A(k1, k2, T)]−
1
2 (t− T),

(5.26)

where A(k1, k2, T) =
4(N+α)

√
µ−µ

(N−2)2
k1
k2

Γ(2k2)
[Γ(k2)]2

T,
and the convergence is uniform on bounded intervals.

For the solution uε(x) of problem (1.1), (5.26) means that as ε→ 0

lim
ε→0

ε−
1
2 uε(x) = lim

ε→0
|x|−ν(N − 2ν− 2)g(α,ε)k1[A(k1, k2, T)]−

1
2 (t− T)

=
1
2
(α + 2)−

1
2 (2
√

µ− µ)
2N−α−6

2α+4 (N + α)
N−2
2α+4 (N − 2)

2α−N+6
2α+4 R

√
µ−µ Γ(N+α

α+2 )[
Γ( 2(N+α)

α+2 )
] 1

2

×
(

1

|x|
√

µ+
√

µ−µ
− 1

|x|
√

µ−
√

µ−µ|R|2
√

µ−µ

)
.

Hence, we obtain the desired result.
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