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1 Introduction

In this paper we consider the following problem

uiυ(x)− (q(x)u′(x))′ + s(x)u(x) = λ f (x, u(x)), a.e. x ∈ R, (1.1)

where λ is a positive parameter and q, s ∈ L∞(R) with q0 = ess infR q > 0 and s0 =

ess infR s > 0. Here the function f : R2 → R is an L1-Carathéodory function.
As we know, differential equations have many applications in engineering and mechanical

science. Many important engineering topics eventually lead to a differential equation. One
of the most important and widely used types of such equations is the fourth-order differen-
tial equation. These equations play an essential role in describing the large number of elastic
deflections in beams. Due to the importance of these equations in applied sciences, many
authors have studied different types of these equations and obtained important results. Re-
search on the existence and multiplicity of solutions for different types of these equations can
be seen in the work of many authors. For example, to study fourth-order two-point boundary
value problems we refer the reader to references [3–5, 8, 10–12].

For instance in [3], the authors researched the following problem:{
uiυ + Au′′ + Bu = λ f (t, u), t ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = 0
(1.2)
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where A and B are real constants and they achieved multiplicity results using variational
methods and critical point theory. It should be noted that in the study of many important
problems such as mathematical models of beam deflection, the differential equation is consid-
ered at infinite interval. Also, because the operators used to solve equations such as (1.1) on R

are not compact, so the study of such problems is very important. That is why some authors
have turned their attention to the whole space. For example in [9], applying the critical point
theory the author has studied the existence and multiplicity of solutions for the following
problem:

uiυ(x) + Au′′(x) + Bu(x) = λα(x). f (u(x)), a.e. x ∈ R, (1.3)

where A is a real negative constant and B is a real positive constant, λ is a positive parameter
and α, f : R → R are two functions such that α ∈ L1(R) , α(x) ≥ 0, for a.e. x ∈ R, α 6≡ 0 and
also f is continuous and non-negative.

In this work, using a critical point theorem obtained in [2] which we recall in the next
section (Theorem 2.7), we establish the existence of infinitely many weak solutions for the
problem (1.1).

2 Preliminaries

Let us recall some basic concepts.

Definition 2.1. A function f : R2 → R is said to be an L1-Carathéodory function, if

(C1) the function x 7→ f (x, t) is measurable for every t ∈ R,

(C2) the function t 7→ f (x, t) is continuous for almost every x ∈ R,

(C3) for every ρ > 0 there exists a function lρ(x) ∈ L1(R) such that

sup
|t|≤ρ

| f (x, t)| ≤ lρ(x),

for a.e. x ∈ R.

Denote W2,2
0 (R) is the closure of C∞

0 (R) in W2,2(R) and according to the properties of the
Sobolev spaces, we know that W2,2

0 (R) = W2,2(R), [1, Corollary 3.19].
We denote by | · |t the usual norm on Lt(R), for all t ∈ [1,+∞] and it is well known that

W2,2(R) is continuously embedded in L∞(R), [6, Corollary 9.13].
The Sobolev space W2,2(R) is equipped with the following norm

‖u‖W2,2(R) =

(∫
R
(|u′′(x)|2 + |u′(x)|2 + |u(x)|2)dx

)1/2

,

for all u ∈W2,2(R). Also, we consider W2,2(R) with the norm

‖u‖ =
(∫

R
(|u′′(x)|2 + q(x)|u′(x)|2 + s(x)|u(x)|2)dx

)1/2

,

for all u ∈W2,2(R). According to

(min{1, q0, s0})
1
2 ‖u‖W2,2(R) ≤ ‖u‖ ≤ (max{1, |q|∞, |s|∞})

1
2 ‖u‖W2,2(R), (2.1)
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the norm ‖ · ‖ is equivalent to the ‖ · ‖W2,2(R) norm. Since the embedding W2,2(R) → L∞(R)

is continuous hence there exists a constant Cq,s (depending on the functions q and s) such that

|u|∞ ≤ Cq,s‖u‖, ∀u ∈W2,2(R).

In the following proposition, we provide an approximation for this constant.

Proposition 2.2. We have
|u|∞ ≤ Cq,s‖u‖ (2.2)

where Cq,s =
( 1

4|q|∞|s|∞

) 1
4
(max{1,|q|∞,|s|∞}

min{1,q0,s0}
) 1

2 .

Proof. Let v ∈W1,1(R), then from [7, p. 138, formula 4.64], one has

|v(x)| ≤ 1
2

∫
R
|v′(t)|dt. (2.3)

Now if u ∈ W2,2(R) then v(x) = (|q|∞|s|∞)
1
2 |u(x)|2 ∈ W1,1(R) and thus from (2.3) and

Hölder’s inequality one has,

(|q|∞|s|∞)
1
2 |u(x)|2 ≤

∫
R
(|q|∞|s|∞)

1
2 |u′(t)||u(t)|dt ≤ ((|q|∞)

1
2 |u′|2)(|s|∞

1
2 |u|2)

that is ,

|u(x)| ≤
(

1
|q|∞|s|∞

) 1
4

((|q|∞)
1
2 |u′|2)

1
2 (|s|∞

1
2 |u|2)

1
2 . (2.4)

Now according to xay1−a ≤ aa(1− a)1−a(x + y), x, y ≥ 0, 0 < a < 1 [7, p. 130, formula 4.47],

and classical inequality a
1
p + b

1
p ≤ 2

(p−1)
p (a + b)

1
p , from (2.1) and (2.4) one has

|u(x)| ≤
(

1
|q|∞|s|∞

) 1
4
(

1
2

) 1
2
(

1
2

) 1
2
[( ∫

R
|q|∞|u′(t)|2dt

) 1
2

+

( ∫
R
|s|∞|u(t)|2dt

) 1
2
]

≤
(

1
|q|∞|s|∞

) 1
4
(

1
2

) 1
2
(

1
2

) 1
2

(2)
1
2

( ∫
R
(|q|∞|u′(t)|2 + |s|∞|u(t)|2)dt

) 1
2

≤
(

1
4|q|∞|s|∞

) 1
4
( ∫

R
(|u′′(t)|2 + |q|∞|u′(t)|2 + |s|∞|u(t)|2)dt

) 1
2

≤
(

1
4|q|∞|s|∞

) 1
4
(

max{1, |q|∞, |s|∞}
min{1, q0, s0}

) 1
2
(∫

R
(|u′′(t)|2 + |u′(t)|2 + |u(t)|2)dt

) 1
2

which means that |u|∞ ≤ Cq,s‖u‖ .

Let Φ, Ψ : W2,2(R)→ R be defined by

Φ(u) =
1
2
‖u‖2 =

1
2

∫
R
(|u′′(x)|2 + q(x)|u′(x)|2 + s(x)|u(x)|2)dx (2.5)

and
Ψ(u) =

∫
R

F(x, u(x))dx (2.6)

for every u ∈ W2,2(R) where F(x, ξ) =
∫ ξ

0 f (x, t)dt for all (x, ξ) ∈ R2. It is well known that Ψ
is a sequentially weakly upper semicontinuous whose differential at the point u ∈W2,2(R) is

Ψ′(u)(v) =
∫

R
f (x, u(x))v(x)dx.
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It is clear that Φ is a strongly continuous and coercive functional. Also since the norm
‖ · ‖ on Hilbert space W2,2(R) is a weakly sequentially lower semi-continuous functional in
W2,2(R) therefore Φ is a sequentially weakly lower semicontinuous functional on W2,2(R).
Moreover, Φ is continuously Gâteaux differentiable functional whose differential at the point
u ∈W2,2(R) is

Φ′(u)(v) =
∫

R
(u′′(x)v′′(x) + q(x)u′(x)v′(x) + s(x)u(x)v(x))dx

for every v ∈W2,2(R).

Definition 2.3. Let Φ and Ψ be defined as above. Put Iλ = Φ − λΨ, λ > 0. We say that
u ∈ W2,2(R) is a critical point of Iλ when I′λ(u) = 0{W2,2(R)∗}, that is, I′λ(u)(v) = 0 for all
v ∈W2,2(R).

Definition 2.4. A function u : R → R is a weak solution to the problem (1.1) if u ∈ W2,2(R)

and ∫
R

(
u′′(x)v′′(x) + q(x)u′(x)v′(x) + s(x)u(x)v(x)− λ f (x, u(x))v(x)

)
dx = 0,

for all v ∈W2,2(R).

Remark 2.5. We clearly observe that the weak solutions of the problem (1.1) are exactly the
solutions of the equation I′λ(u)(v) = Φ′(u)(v)− λΨ′(u)(v) = 0.

Lemma 2.6. Suppose that f : R2 → R is a non-negative L1-Carathéodory function. If u0 6≡ 0 is a
weak solution for problem (1.1) then u0 is non-negative.

Proof. From Remark 2.5, one has Φ′(u0)(v)− λΨ′(u0)(v) = 0 for all v ∈ W2,2(R). Let v(x) =
ū0 = max{−u0(x), 0} and we assume that E = {x ∈ R : u0(x) < 0} . Then we have∫

E∪Ec
(u′′0 (x)ū′′0 (x) + q(x)u′0(x)ū′0(x) + s(x)u0(x)ū0(x))dx =

∫
R

λ f (x, u0(x))ū0(x)dx,

that is ∫
E
(−|ū′′0 (x)|2 − q(x)|ū′0(x)|2 − s(x)|ū0(x)|2)dx ≥ 0

which means that ‖ū0‖ = 0 and hence u0 ≥ 0 and the proof is complete .

Our main tool is the following critical point theorem.

Theorem 2.7 ([2, Theorem 2.1]). Let X be a reflexive real Banach space, let Φ, Ψ : X → R be two
Gâteaux differentiable functionals such that Φ is sequentially weakly lower semicontinuous, strongly
continuous, and coercive and Ψ is sequentially weakly upper semicontinuous. For every r > infX Φ,
let us put

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

supv∈Φ−1(]−∞,r[) Ψ(v)−Ψ(u)

r−Φ(u)

and
γ := lim inf

r→+∞
ϕ(r), δ := lim inf

r→(infX Φ)+
ϕ(r).

Then, one has

(a) for every r > infX Φ and every λ ∈
]
0, 1

ϕ(r)

[
, the restriction of the functional Iλ = Φ− λΨ to

Φ−1(]−∞, r[) admits a global minimum, which is a critical point (local minimum) of Iλ in X.
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(b) If γ < +∞ then, for each λ ∈
]
0, 1

γ

[
, the following alternative holds:

either

(b1) Iλ possesses a global minimum,

or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.

(c) If δ < +∞ then, for each λ ∈
]
0, 1

δ

[
, the following alternative holds:

either

(c1) there is a global minimum of Φ which is a local minimum of Iλ,

or

(c2) there is a sequence of pairwise distinct critical points (local minima) of Iλ, with
limn→+∞ Φ(un) = infX Φ, which weakly converges to a global minimum of Φ.

3 Main results

Let

τ :=
540

86111 (max{1, |q|∞, |s|∞})Cq,s
2 , (3.1)

A := lim inf
ρ→+∞

∫
R

sup|t|≤ρ F(x, t)dx

ρ2 , (3.2)

and

B := lim sup
ρ→+∞

∫ 5
8

3
8

F(x, ρ)dx

ρ2 . (3.3)

Now we formulate our main result as follows.

Theorem 3.1. Let f : R2 → R be an L1-Carathéodory function, and assume that

(i) F(x, t) ≥ 0 for every (x, t) ∈ R×]0, 3
8 [ ∪ ] 5

8 , 1[,

(ii) A < τB, where τ , A and B are given by (3.1) , (3.2) and (3.3) respectively.

Then for every

λ ∈
]
(max{1, |q|∞, |s|∞})

B
86111
1080

,
1

2A Cq,s
2

[

the problem (1.1) admits a sequence of many weak solutions which is unbounded in W2,2(R).
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Proof. Fix λ as in our conclusion. Our aim is to apply Theorem 2.7, part (b) with X = W2,2(R),
and Φ, Ψ are the functionals introduced in section 2. As shown in the previous section, the
functionals Φ and Ψ satisfy all regularity assumptions requested in Theorem 2.7. Now, we
look on the existence of critical points of the functional Iλ in W2,2(R). To this end, we take
{ρn} be a sequence of positive numbers such that limn→∞ ρn = +∞ and

lim
n→∞

∫
R

sup|t|≤ρn
F(x, t)dx

ρ2
n

= A.

Set rn := 1
2

( ρn
Cq,s

)2, for every n ∈N.

For each u ∈W2,2(R) and bearing (2.2) in mind, we see that

Φ−1(]−∞, rn[) = {u ∈W2,2(R); Φ(u) < rn}

=

{
u ∈W2,2(R);

1
2
‖u‖2 <

1
2

( ρn

Cq,s

)2
}

=
{

u ∈ X; Cq,s‖u‖ < ρn
}
⊆
{

u ∈W2,2(R); |u|∞ ≤ ρn
}

.

Now, since 0 ∈ Φ−1(]−∞, rn[) then we have the following inequalities:

ϕ(rn) = inf
u∈Φ−1(]−∞,rn[)

supv∈Φ−1(]−∞,rn[)

∫
R

F(x, v(x))dx−
∫

R
F(x, u(x))dx

rn − ‖u‖
2

2

≤
∫

R
sup|t|≤ρn

F(x, t)dx

rn
=

∫
R

sup|t|≤ρn
F(x, t)dx

1
2

( ρn
Cq,s

)2

= 2 Cq,s
2

∫
R

sup|t|≤ρn
F(x, t)dx

ρn2 ,

for every n ∈N. Hence, it follows that

γ ≤ lim inf
n→∞

Φ(rn) ≤ 2 Cq,s
2A < +∞,

because condition (ii) shows A < +∞. Now, we prove that the functional Iλ is unbounded
from below. For our goal, let {ηn} be a sequence of positive numbers such that limn→∞ ηn =

+∞ and

lim
n→+∞

∫ 5
8

3
8

F(x, ηn)dx

ηn2 = B. (3.4)

Let {vn} be a sequence in W2,2(R) which is defined by

vn(x) :=


− 64 ηn

9

(
x2 − 3

4 x
)

, if x ∈
[
0, 3

8

]
,

ηn, if x ∈
] 3

8 , 5
8

]
,

− 64 ηn
9

(
x2 − 5

4 x + 1
4

)
, if x ∈

] 5
8 , 1
]

,

0, otherwise.

(3.5)

One can compute that

‖vn‖W2,2(R)
2 =

86111
540

ηn
2,

and so from (2.1) we have



Infinitely many weak solutions for a fourth-order equation on the whole space 7

(min{1, q0, s0})
86111
1080

ηn
2 ≤ Φ(vn) ≤ (max{1, |q|∞, |s|∞})

86111
1080

ηn
2. (3.6)

Also, by using condition (i), we infer∫
R

F(x, vn(x))dx ≥
∫ 5

8

3
8

F(x, ηn)dx,

for every n ∈N. Therefore, we have

Iλ(vn) = Φ(vn)− λ Ψ(vn) ≤ (max{1, |q|∞, |s|∞})
86111
1080

ηn
2 − λ

∫ 5
8

3
8

F(x, ηn)dx,

for every n ∈N. If B < +∞, let

ε ∈
]
(max{1, |q|∞, |s|∞})

λB
86111
1080

, 1
[

.

By (3.4) there is Nε such that∫ 5
8

3
8

F(x, ηn)dx > ε B ηn
2, (∀n > Nε).

Consequently, one has

Iλ(vn) ≤ (max{1, |q|∞, |s|∞})
86111
1080

ηn
2 − λεBηn

2

= ηn
2
(
(max{1, |q|∞, |s|∞})

86111
1080

− λεB
)

,

for every n > Nε. Thus, it follows that

lim
n→∞

Iλ(vn) = −∞.

If B = +∞, then consider

M >
(max{1, |q|∞, |s|∞})

λ

86111
1080

.

By (3.4) there is N(M) such that∫ 5
8

3
8

F(x, ηn)dx > Mηn
2, (∀n > N(M)).

So, we have

Iλ(vn) ≤ (max{1, |q|∞, |s|∞})
86111
1080

ηn
2 − λMηn

2

= ηn
2
(
(max{1, |q|∞, |s|∞})

86111
1080

− λM
)

,

for every n > N(M). Taking into account the choice of M, also in this case, one has

lim
n→∞

Iλ(vn) = −∞.

Therefore according to Theorem 2.7, the functional Iλ admits an unbounded sequence {un} ⊂
W2,2(R) of critical points. It means that, problem (1.1) admits a sequence of many weak
solutions which is unbounded in W2,2(R).
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Now we present the following example to illustrate Theorem 3.1.

Example 3.2. Let F : R2 → R be the function defined as

F(x, t) :=

 t5
(

1−cos(ln |t|)
)

1+x2 , if (x, t) ∈ R×R− {0}
0, if (x, t) ∈ R× {0}

and therefore we have

f (x, t) :=

 5t4
(

1−cos(ln |t|)
)
+t4 sin(ln |t|)

1+x2 , if (x, t) ∈ R×R− {0}
0, if (x, t) ∈ R× {0}.

We observe that

A := lim inf
ρ→+∞

∫
R

sup|t|≤ρ F(x, t)dx

ρ2 = 0 (3.7)

and

B := lim sup
ρ→+∞

∫ 5
8

3
8

F(x, ρ)dx

ρ2 = +∞. (3.8)

So, by Theorem 3.1, for every λ ∈ (0,+∞) the problemuiυ(x)−
(
(1 + e−x2

)u′(x)
)′
+ (π + tan−1 x)u(x)

= λ
5u(x)4

(
1−cos(ln |u(x)|)

)
+u(x)4 sin(ln |u(x)|)

1+x2 , a.e. x ∈ R,
(3.9)

has a sequence of weak solutions which is unbounded in W2,2(R).

Note that, as in the previous example, under appropriate conditions, the existence of
infinitely many weak solutions for problem (1.1) will be guaranteed for any λ ∈ R+. For this
case, the following result is a consequence of Theorem 3.1.

Corollary 3.3. Suppose that f : R2 → R is an L1-Carathéodory function. Also, assume that the
assumption (i) in Theorem 3.1 holds and A = ∞ and B = 0 where A and B are given by (3.2) and
(3.3) respectively. Then, for every λ > 0, the problem (1.1) possesses a sequence of many weak solutions
which is unbounded in W2,2(R).

A special case of Theorem 3.1 is given in the following corollary.

Corollary 3.4. Suppose that f : R2 → R is an L1-Carathéodory function. Also, assume that the
assumption (i) in Theorem 3.1 holds and

(i1) (max{1, |q|∞, |s|∞}) 86111
1080 < B,

(i2) A < 1
2 Cq,s

2 .

Then, the problem

uiυ(x)− (q(x)u′(x))′ + s(x)u(x) = f (x, u(x)), a.e. x ∈ R, (3.10)

possesses a sequence of many weak solutions which is unbounded in W2,2(R).

Proof. The corollary is an immediate consequence of Theorem 3.1 when λ = 1.
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Remark 3.5. In Theorem 3.1, we can consider f (x, t) = β(x) g(t) where β, g : R → R are
two functions such that β ∈ L1(R) , β ≥ 0 , for a.e. x ∈ R, β 6≡ 0 and also g is continuous
and non-negative. We set G(t) =

∫ t
0 g(ξ)dξ for all t ∈ R. Since G′(t) = g(t) ≥ 0 then G is

non-decreasing function. Therefore (3.2) and (3.3) become the following simpler forms:

A := lim inf
ρ→+∞

∫
R

sup|t|≤ρ F(x, t)dx

ρ2 = lim inf
ρ→+∞

G(ρ)|β|1
ρ2 (3.11)

and

B := lim sup
ρ→+∞

∫ 5
8

3
8

F(x, ρ)dx

ρ2 = lim sup
ρ→+∞

G(ρ)
∫ 5

8
3
8

β(x)dx

ρ2 . (3.12)

Now if we assume that A < τB where τ , A and B are given by (3.1), (3.11) and (3.12) respec-
tively, then according to Theorem 3.1 and Lemma 2.6 for every

λ ∈
]
(max{1, |q|∞, |s|∞})

B
86111
1080

,
1

2A Cq,s
2

[

the problem

uiυ(x)− (q(x)u′(x))′ + s(x)u(x) = λ β(x) g(u(x)), a.e. x ∈ R, (3.13)

admits a sequence of many non-negative weak solutions which is unbounded in W2,2(R).

Using the conclusion (c) instead of (b) in Theorem 3.1, can be obtained a sequence of
pairwise distinct weak solutions to the problem (1.1) which converges uniformly to zero. In
this case, by replacing ρ → +∞ with ρ → 0+, A and B will be converted to the following
forms:

A′ := lim inf
ρ→0+

∫
R

sup|t|≤ρ F(x, t)dx

ρ2 (3.14)

and

B′ := lim sup
ρ→0+

∫ 5
8

3
8

F(x, ρ)dx

ρ2 . (3.15)

Therefore, we can present the other main result of this section as follows.

Corollary 3.6. Let f : R2 → R be an L1-Carathéodory function, and assume that

(i) F(x, t) ≥ 0 for every (x, t) ∈ R×
]
0, 3

8

[
∪
] 5

8 , 1
[
,

(ii) A′ < τB′, where τ , A′ and B′ are given by (3.1), (3.14) and (3.15) respectively.

Then for every

λ ∈
]
(max{1, |q|∞, |s|∞})

B′
86111
1080

,
1

2A′ Cq,s
2

[
the problem (1.1) admits a sequence of many weak solutions which strongly converges to zero in
W2,2(R).

We present the following example to illustrate Corollary 3.6.
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Example 3.7. Let α >
86111
√

π
6

120
∫ 5

8
3
8

e−x2 dx
− 1 ≈ 2673 be a real number and F : R2 → R be a function

defined by

F(x, t) :=

{
e−x2

t2(1 + α cos2( 1
t )), if (x, t) ∈ R× ]0,+∞[

0, if (x, t) ∈ R× ]−∞, 0].

From F(x, t) =
∫ t

0 f (x, ξ)dξ we have

f (x, t) :=

{
e−x2(

2t + 2αt cos2( 1
t ) + α sin( 2

t )
)
, if (x, t) ∈ R× ]0,+∞[

0, if (x, t) ∈ R× ]−∞, 0].

It is clear that f : R2 → R is an L1-Carathéodory function.
Let q(x) = 1 + 1

1+x2 and s(x) = 2 + tanh x and therefore |q|∞ = 2 , q0 = 1 , |s|∞ = 3 , s0 = 1

and τ = 120
√

6
86111 .

Put an = 1
2n+1

2 π
and bn = 1

nπ for every n ∈N, one has

A′ := lim inf
ρ→0+

sup|t|≤ρ t2 (1 + α cos2 ( 1
t

)) ∫
R

e−x2
dx

ρ2

≤ lim
n→∞

an
2
(

1 + α cos2
(

1
an

)) ∫
R

e−x2
dx

an2 =
√

π (3.16)

and

B′ := lim sup
ρ→0+

∫ 5
8

3
8

F(x, ρ)dx

ρ2 ≥ lim
n→∞

bn
2
(

1 + α cos2
(

1
bn

)) ∫ 5
8

3
8

e−x2
dx

bn
2

= (1 + a)
∫ 5

8

3
8

e−x2
dx. (3.17)

Now, since α >
86111
√

π
6

120
∫ 5

8
3
8

e−x2 dx
− 1, we have

A′ ≤
√

π <
120
√

6
86111

(1 + a)
∫ 5

8

3
8

e−x2
dx ≤ τB′

and so condition (ii) of the Theorem 3.1 is satisfied. Now, according to the Theorem 3.1 for
every

λ ∈
]

86111

360(1 + a)
( ∫ 5

8
3
8

e−x2 dx
) ,

1
3

√
6
π

[

the problem {
uiυ(x)−

(
(1 + 1

1+x2 )u′(x)
)′
+ (2 + tanh x)u(x)

= λ e−x2(
2u(x) + 2αu(x) cos2( 1

u(x) ) + α sin( 2
u(x) )

)
, a.e. x ∈ R,

(3.18)

admits a sequence of many weak solutions which is converges uniformly to zero.
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