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λ-lemma for nonhyperbolic point in intersection
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Abstract. The well known λ-Lemma has been proved by J. Palis for a hyperbolic fixed
point of a C1-diffeomorphism. In this paper we show that the result is true for some
cases of nonhyperbolic point.
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1 Introduction

The well known λ-Lemma [9] gives an important description of chaotic dynamics. A basic
assumption of this theorem is hyperbolicity.

Theorem 1.1 (Palis). Let f be a C1 diffeomorphism of Rn with a hyperbolic fixed point at 0 and m-
and p-dimensional stable and unstable manifolds WS and WU (m + p = n). Let D be a p-disk in WU ,
and w be another p-disk in WU meeting WS at some point A transversely. Then

⋃
n≥0 f n(w) contains

p-disks arbitrarily C1-close to D.

Generally, for C1 diffeomorphism f of compact manifold M periodic point z is called
hyperbolic if there exists a splitting Tz(M) = Es ⊕ Eu with constants k > 0 and 0 < λ < 1
such that

‖(D f n)|Es‖ ≤ kλn (n > 0),

‖(D f−n)|Eu‖ ≤ kλn (n > 0).

Here Es and Eu are called stable and unstable subspaces of f , respectively. If z is nonhyperbolic
this splitting can be written as Tz(M) = Es ⊕ Eu ⊕ Ec, where Es and Eu are the same as above
and Ec is called the center subspace of f .

Some extensions of this lemma can be found in the [1–4, 11]. One question that arises is
whether it is possible to put weaker conditions in this lemma instead of being hyperbolic. In
this paper we append some new cases in which we have affirmative answer. We think these
cases can be used in extending the connecting lemma of Hayashi[5]. Our result can help to
generalize [7, 8] to some new cases.
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Definition 1.2. We say that a nonhyperbolic periodic point z satisfies the invariant conditions
(IC) if there is a local chart (U, φ) at z such that in φ(U) one of the following is true:

I1) Es ⊕ Eu is invariant under f ;

I2) Ec ⊕ Es is invariant under f ;

I3) Ec ⊕ Eu is invariant under f .

Notice that f in I1, I2 and I3 is in fact f̃ = φ f φ−1.
Let us give an example of a system which satisfies in IC.

Example 1.3. Let R3
∞ be the compactification* of R3. As known this is a C∞ manifold with

two charts, one at the origin and the other at ∞. We define the diffeomorphism

f (x, y, z) =
(

2x,
y
2

, z
)

It is easy to see that the axes are the three invariant manifolds of the origin and the whole of
coordinate surface are invariant under f . But, origin is not hyperbolic.

2 Preliminaries

Let A = D f (0) and Let p be a nonhyperbolic fixed point of f satisfying IC, i.e. f satisfies
either I1, I2 or I3.

First assume I1 is true. Since f is locally invariant on Es ⊕ Eu, if Ws
loc(0) and Wu

loc(0) are the
graphs of φs and φu respectively, then locally we can write

φs : Bs → Eu and φu : Bu → Es.

Here φs and φu are Cr, Dφs(0) = 0, Dφu(0) = 0, φs(0) = 0 and φu(0) = 0. Consider the map

φ : Bs ⊕ Bu ⊕ Ec → Es ⊕ Eu ⊕ Ec

(xs, xu, xc) 7→ (xs − φu(xu), xu − φs(xs), xc).

It is clear that φ is Cr and Dφ(0) is a the identity and φ is diffeomorphism when restricted to
some neighborhood of 0. Let f̃ = φ f φ−1 then f̃ is a diffeomorphism on a neighborhood of 0
and f̃ (0) = 0, D f̃ (0) = A and Es, Eu are local stable and unstable manifold of f̃ . It is clear that
Es ⊕ Eu is still invariant. This shows that in this case we can always assume that local stable
and unstable manifolds of f are discs in Es and Eu, respectively.

Let Bs ⊆ Es and Bu ⊆ Eu be such that Bs ⊆ Ws
loc(0) and Bu ⊆ Wu

loc(0). Let Bc be the
intersection of local chart containing z, with Ec.

Now we can rewrite the proof of λ-lemma in [10] as the following lemmas.

Lemma 2.1. Let z be a nonhyperbolic fixed point of f which satisfies I1. Let V = Bs × Bu × Bc, and
let D be a disc transversal to Bs at q with dim(D) = dim(Eu). If Dn is the connected component of
f n(D) ∩V to which f n(q) belongs, then for any given small positive ε we can find n such that Dn is
ε-C1 close to Bu.

*We have to suppose compactification because in the definition of a hyperbolic fixed point that was mentioned
above we need a compact manifold.
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The proof is very similar to the proof of λ-lemma in [10]. Notice that the existence of Ec

does not change the the main flow of the original proof, since Es ⊕ Eu is invariant under f .
Let I2 be true. We get the Cr map φu : Bu → Es ⊕ Ec that its graph is Ws

loc(0). Thus,
Dφu(0) = 0 and φu(0) = 0. Assume that φu(xu) = (φus(xu), φuc(xu)). Consider the map

φ : Bs ⊕ Eu ⊕ Ec → Es ⊕ Eu ⊕ Ec,

(xs, xu, xc) 7→ (xs − φus(xu), xu, xc − φuc(xc)),

where φ is Cr and Dφ(0) is identity. Thus, φ is a diffeomorphism defined on a neighborhood
of 0. Let f̃ = φ f φ−1, then f̃ is a diffeomorphism of a neighborhood of 0 with f̃ (0) = 0, and,
D f̃ (0) = A. Moreover, Eu and Ec ⊕ Es are invariant under f̃ . This implies that for every f
which satisfies I2 for a nonhyperbolic fixed point, we can find a local chart such that Eu and
Es ⊕ Ec are invariant with respect to f .

Lemma 2.2. Let z be a nonhyperbolic fixed point of f which satisfies I2 and D be a transversal disc to
Ec ⊕ Es at q ∈ Es and Du ⊆ Eu a disc containing 0, then for an arbitrary small positive ε, there exists
n such that a section of f n(D) is ε-C1 close to Du.

Proof. Let A = D f (0) and Acs and Au be respectively restriction of A to subspaces Ecs =

Ec ⊕ Es and Eu, thus f on a neighborhood V of origin becomes:

f (xcs, xu) = (Acsxcs + φcs(xcs, xu), Auxu + φu(xcs, xu)),

whence
(D f )0 = (Acs, Au), xcs ∈ Bcs = V ∩ Ecs, xu ∈ Bu = V ∩ Eu,

‖Acs‖ ≤ 1, ‖Au‖ ≥ a > 1,

∂φcs

∂xu

∣∣∣∣
Bu

=
∂φu

∂xcs

∣∣∣∣
Bcs

= 0.

From above and continuity of partial differential we can find 0 < k < 1 such that k < a−1
8 and

for V ′ ⊂ V,

max
V′

=

∥∥∥∥∂φi

∂xj

∥∥∥∥ ≤ k, i, j = cs, u.

Let q ∈ V ′ , Bu ⊂ V ′ take arbitrary unit vector v0 in (TD)q. Because V = Bcs × Bu then

v0 = (vcs
0 , vu

0). If λ0 is the slope of v0 then λ0 =
‖vcs

0 ‖
‖vu

0‖
. In this fraction ‖vu

0‖ 6= 0 because D is
transversal disc to Bcs.

q1 = f (q), v1 = D fq(v0)

q2 = f (q1), v2 = D fq1(v1)

...
...

qn = f (qn−1), vn = D fqn−1(vn−1).

(2.1)

for q ∈ ∂Bcs

D fq(v0) =

(
Acs + ∂φcs

∂xcs
(q) ∂φcs

∂xu
(q)

0 Au + ∂φu
∂xu

(q)

)(
vcs

0
vu

0

)

=

(
Acsvcs

0 + ∂φcs
∂xcs

(q)vcs
0 + ∂φcs

∂xu
(q)vu

0

Auvu
0 +

∂φu
∂xu

(q)vu
0

)
.
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Thus

λ1 =
‖vcs

1 ‖∥∥vu
1

∥∥ =

∥∥∥Acsvcs
0 + ∂φcs

∂xcs
(q)vcs

0 + ∂φcs
∂xu

(q)vu
0

∥∥∥∥∥∥Auvu
0 +

∂φu
∂xu

(q)vu
0

∥∥∥ .

The numerator of above fraction is less than

‖Acsvcs
0 ‖+

∥∥∥∥∂φcs

∂xcs
(q)vcs

0

∥∥∥∥+ ∥∥∥∥∂φcs

∂xu
(q)vu

0

∥∥∥∥ ≤ (1 + k)‖vcs
0 ‖+ k‖vs

0‖

and its denominator is greater than

‖Auvu
0‖ −

∥∥∥∥∂φu

∂xu
(q)vu

0

∥∥∥∥ ≥ (a− k)‖vu
0‖,

then

λ1 ≤
(1 + k)λ0 + k

a− k
≤ 1 + k

a− k
λ0 +

k
a− k

,

λ2 =
‖vcs

2 ‖
‖vu

2‖
≤ (1 + k)λ1 + k

a− k
≤
(

1 + k
a− k

)2

λ0 +
k

1 + k

2

∑
i=1

(
1 + k
a− k

)i

...

λn =
‖vcs

n ‖
‖vu

n‖
≤
(

1 + k
a− k

)n

λ0 +
k

1 + k

n

∑
i=1

(
1 + k
a− k

)i

≤
(

1 + k
a− k

)n

λ0 +
a− k

a− 1− 2k
.

Because
( 1+k

a−k

)n
λ0 → 0, then there exists n0 ∈N such that for n > n0 we have λn < a−k

a−1−2k .

Consider the number k1 such that 0 < k1 < min(ε, k). Because ∂φcs
∂xu

∣∣
Bu = 0 and Bu is

compact, there exists δ < ε such that V1 = δBcs × Bu ⊂ V so

max
V1

∥∥∥∥∂φcs

∂xu

∥∥∥∥ ≤ k1.

Let δBcs be a ball with radius δ times radius of Bcs . We can assume that v0 is a vector in
(TD)q that has maximal slope, so for n ≥ n0 the slope of all unit vectors in (TDn)qn is less
than a−k

a−1−2k . For a properly chosen n0 we have qn0 ∈ V1. From the continuity of the tangent
space Dn0 , we can find a disk D̃ embedded in Dn0 with center qn0 such that for all p ∈ D̃ the
slope of all unit vectors in (TD̃)p is less than 2(a−k)

a−1−2k .

Let v ∈ (TD̃)p be a unit vector. If v = (vcs, vu) and its slope is λn0 =
‖vcs‖
‖vu‖ then

D fp =

(
Acsvcs + ∂φcs

∂xcs
(p)vcs + ∂φcs

∂xu
(p)vu

∂φu
∂xcs

(p)vcs + Auvu + ∂φu
∂xu

(p)vu

)
.

Thus

λn0+1 =

∥∥∥Acsvcs + ∂φcs
∂xcs

(p)vcs + ∂φcs
∂xu

(p)vu
∥∥∥∥∥∥ ∂φu

∂xcs
(p)vcs + Auvu + ∂φu

∂xu
(p)vu

∥∥∥ .

The numerator of above fraction is less that (1 + k)‖vcs‖ + k1‖vu‖ and its denominator is
greater than

‖Auvu‖ −
∥∥∥∥∂φu

∂xu
(p)vu

∥∥∥∥− ∥∥∥∥ ∂φu

∂xcs
(p)vcs

∥∥∥∥ ≥ (a− k)‖vu‖ − k‖vcs‖.
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Thus

λn0+1 ≤
(1 + k)λn0 + k1

a− k− kλn0

≤ (1 + k)λn0 + k1

a− k− k 2(a−k)
a−1−2k

≤ (1 + k)λn0 + k1
(a−k)(a−1−4k)

a−1−2k

.

Let b = (a−k)(a−1−4k)
a−1−2k . It is easy to see that k + 1 < b. Therefore we have

λn+n0 ≤
(

1 + k
b

)n

λn0 + k1
b

(b− 1− k)(k + 1)
.

Then there exits ñ such that for n ≥ ñ

λn+n0 ≤ ε

(
1 +

b
(b− 1− k)(k + 1)

)
.

This shows that for n ≥ ñ the slope of nonzero tangent vectors to f n(D̃) ∩ V1 is less than
given ε.

Now we show that the length of any tangent vector to f n(D̃) ∩ V1 is growing as n is
increasing. We denote the image of (vcs

n , vu
n) under D f as (vcs

n+1, vu
n+1), thus√

‖vcs
n+1‖2 + ‖vu

n+1‖2√
‖vcs

n ‖2 + ‖vu
n‖2

=
‖vu

n+1‖
‖vu

n‖

√
1 + λ2

n+1

1 + λ2
n

.

But
‖vu

n+1‖
‖vu

n‖
≥ a− k− λn.

As n is growing, λn and λn+1 become small enough; then the length of the tangent vectors
to f n(D̃) ∩V1 are increasing with ratio a− k > 1. This fact and tendency to zero of the slope
of the tangent vectors imply that for n > ñ the f n(D̃) ∩ V1 are approaching in C1 topology
to Bu.

Finally suppose that condition I3 is true, we replace f by f−1, then condition I2 is true for
f−1 and using the above lemma we have:

Lemma 2.3. Let z be a nonhyperbolic fixed point of f that satisfies I3 and D be a disc transversal to
Eu ⊕ Ec at q ∈ Eu and Ds ⊆ Es a disc containing 0, then for an arbitrary small positive ε there exists
n that f−n(d) is ε-C1 close to Ds.

As a consequence of the above lemmas, the following proposition can be obtained. We
first need the definition of forwardly related from [6].

For any C1 diffeomorphism f of compact manifold M and p ∈ M the forward orbit of p is

O+
f = {x ∈ M : ∃ n ∈ Z s.t. f n(p) = x}.

Definition 2.4. A point p ∈ M is called forwardly related to q ∈ M if q /∈ O+
f (p) and

there exists a sequence diffeomorphisms { fn} such that fn → f and a sequence of strings
γn = { f k

n(pn) : k = 0, . . . , sn} such that pn → p and f sn
n (pn)→ q.

Proposition 2.5. Let z be a nonhyperbolic fixed point satisfying IC, let p ∈Ws
loc(z), and, q ∈Wu

loc(z).
Then p is forwardly related to q.

All the above results are true for periodic point p. It is sufficient to replace f by f n where n is the
period of p.
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