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Abstract. In this article, we study the following quasilinear Schrödinger equation

−∆u− µ
u
|x|2 + V(x)u− (∆(u2))u = f (x, u), x ∈ RN ,

where V(x) is a given positive potential and the nonlinearity f (x, u) is allowed to be
sign-changing. Under some suitable assumptions, we obtain the existence of infinitely
many nontrivial solutions by a change of variable and Symmetric Mountain Pass The-
orem.
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1 Introduction and main results

In this paper, we consider the following equation

− ∆u− µ
u
|x|2 + V(x)u− (∆(u2))u = f (x, u), x ∈ RN , (1.1)

where N ≥ 3, 0 ≤ µ < µ̄ := (N−2)2

4 , V(x) ∈ C(RN , R) is a given potential and f ∈
C(RN ×R, R) .

For problem (1.1), if µ = 0, f (x, u) = f (u), then (1.1) becomes

− ∆u + V(x)u− (∆(u2))u = f (u), x ∈ RN . (1.2)

Recently, the existence of solutions for (1.2) has drawn much attention, see for example [5, 7,
19, 21, 22, 25]. Particularly, it was established the existence of both one-sign and nodal ground
states of soliton type solutions in [21] by Nehari method. Furthermore, using a constrained
minimization argument, the existence of a positive ground state solution has been proved in
[25]. Later, by using a change of variables, [19] and [7] studied the existence of solutions in
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different working spaces with different classes of nonlinearities. For more results we can refer
to [18, 20, 23, 33, 34].

Moreover, if we take µ ≡ 0 in (1.1), we have

− ∆u + V(x)u− (∆(u2))u = f (x, u), x ∈ RN . (1.3)

In [39], Zhang and Tang proved there are infinitely many solutions of quasilinear Schrödinger

equation with sign-changing potential by Mountain Pass Theorem. When f (x, u) = |u|2∗(s)−2u
|x|s ,

where 0 ≤ s < 2 and 2∗(s) = 2(N−s)
N−2 is the critical Sobolev–Hardy exponents, the problem

(1.3) was studied in [10,12]. If f (x, u) = λ|u|q−2u + |u|p−2u
|x|s , the authors in [40] have proved the

existence of solutions by using a change of variable.
Recently, great attention has been attracted to the study of the following problem

− ∆u− µ
u
|x|2 + V(x)u = f (x, u), x ∈ RN . (1.4)

This class of quasilinear equations are often referred as modified nonlinear Schrödinger equa-
tions, whose solutions are related to the existence of standing wave solutions. For example,
by use of variational method, Kang and Deng in [13] proved the existence of solutions for

V(x) = 0 and f (x, u) = |u|2∗(s)−2u
|x|s + K(x)|u|r−2u. Using the similar method, Li in [14] proved

the existence of nontrivial solutions for V(x) = 0 and f (x, u) = |u|2∗(s)−2u
|x|s + K(x)|u|r−2u + λu.

In [4], Cao and Zhou studied the problem (1.4) with V(x) ≡ 1 and general subcritical non-
linearity f (x, u), they obtained the existence and multiplicity of positive solutions in some
different conditions, their method relies upon the proof of Tarantello in [30]. Under certain
conditions, using Ekeland’s variational principle, Chen and Peng in [6] obtained the existence
of a positive solution with V(x) ≡ 1 and nonlinearity λ( f (x, u) + h(x)). For more results
about (1.4), we can refer to [9, 11, 29] and the references therein.

As regards other relevant papers, we mention here [8,15–17,27,28,31,35,38]. Motivated by
facts mentioned above, in this paper, we study the existence of infinitely many solutions for
problem (1.1) by Mountain Pass Theorem. Before giving the main result of this paper, we give
the assumptions of the potential V(x) and the nonlinear term f (x, u) as follows, firstly

(V1) V ∈ C(RN , R) and inf
x∈RN

V(x) = V0 > 0;

(V2) for any L > 0, there exists a constant ϑ > 0 such that

lim
|y|→∞

meas{x ∈ RN : |x− y| ≤ ϑ, V(x) ≤ L} = 0;

(F0) f ∈ C(RN ×R, R) and there exist constants c1, c2 > 0 and 4 < p < 22∗ such that

| f (x, u)| ≤ c1|u|+ c2|u|p−1, ∀(x, u) ∈ RN ×R;

(F1) lim
|u|→∞

F(x,u)
u4 = ∞ uniformly in x, and there exists a0 ≥ 0 such that F(x, u) ≥ 0 for all

(x, u) ∈ RN ×R and |u| ≥ a0, where F(x, u) =
∫ u

0 f (x, s)ds;

(F2) F̃(x, u) := 1
4 f (x, u)u− F(x, u) ≥ 0 and there exist c0 > 0 and σ ∈

(
max{1, 2N

N+2}, 2
)

such
that

|F(x, u)|σ ≤ c0|u|2σ F̃(x, u)

for all (x, u) ∈ RN ×R with u large enough;
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(F3) f (x, u) = − f (x,−u) for all (x, u) ∈ RN ×R.

Now, we are ready to state the main result of this paper.

Theorem 1.1. Assume that (V1)–(V2), (F0)–(F3) are satisfied, then problem (1.1) has infinitely many
nontrivial solutions {un} such that ‖un‖ → ∞ and I(un)→ ∞(I will be defined later).

Remark 1.2 (see [30]). It follows from (F1) and (F2) that

F̃(x, u) ≥ 1
c0

(
|F(x, u)|
|u|2

)σ

→ ∞, (1.5)

uniformly in x as |u| → ∞.

This paper is organized as follows. In Section 2, we will introduce the variational setting
for the problem and some preliminary results. In Section 3, we give the proof of main result.

Notations. In what follows we will adopt the following notations

• C, Ci, i = 1, 2, 3, . . . denote possibly different positive constants which may change from
line to line;

• For 1 ≤ p < ∞, Lp(RN) denotes the usual Lebesgue spaces with norms

‖u‖p =

( ∫
RN
|u|pdx

)1/p

, 1 ≤ p < ∞;

• H1(RN) denotes the Sobolev spaces modeled in L2(RN) with norm

‖u‖H1 =

( ∫
RN
|∇u|2 + |u|2dx

)1/2

.

• BR denotes the open ball centered at the origin and radius R > 0.

2 Variational setting and preliminary results

Before establishing the variational setting for problem (1.1), we give our working space firstly.
Under the assumption (V1) we define

E :=
{

u ∈ H1(RN) :
∫

RN
V(x)u2dx < ∞

}
,

then E is a Hilbert space equipped with the inner product and norm

(u, v) =
∫

RN

(
∇u∇v− µ

uv
|x|2 + V(x)uv

)
dx, ‖u‖ = (u, u)1/2.

In view of (V1) and for u ∈ E, the following norm

‖u‖E =

( ∫
RN

(|∇u|2 + V(x)u2)dx
) 1

2

is equivalent to the classic one in H1(RN).
Now, let us recall the Hardy inequality, which is the main tool and allows us to deal with

Hardy-type potentials.
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Lemma 2.1 (see [1]). Assume that 1 < p < N and u ∈W1,p(RN), then∫
RN

|u|p
|x|p dx ≤

(
p

(N − p)

)p ∫
RN
|∇u|pdx.

Thus, by Lemma 2.1, ‖u‖ is well defined. In fact∫
RN

(
|∇u|2 − µ

u2

|x|2

)
dx

≥
∫

RN

(
|∇u|2 − µ

4
(N − 2)2 |∇u|2

)
dx

=

(
1− µ

4
(N − 2)2

) ∫
RN
|∇u|2dx

>

(
1− (N − 2)2

4
4

(N − 2)2

) ∫
RN
|∇u|2dx

= 0.

(2.1)

Lemma 2.2. Assume that 0 ≤ µ < µ̄ = (N−2)2

4 , then there exist C1, C2 > 0 such that

C1‖u‖2
E ≤ ‖u‖2 ≤ C2‖u‖2

E,

for any u ∈ H1(RN).

Proof. For µ ≥ 0, we have

‖u‖2 =
∫

RN

(
|∇u|2 − µ

u2

|x|2 + V(x)u2
)

dx

≤
∫

RN
(|∇u|2 + V(x)u2)dx

= ‖u‖2
E.

(2.2)

On the other hand, since 0 ≤ µ < µ̄ = (N−2)2

4 , we can get

1 ≥ 1− 4µ

(N − 2)2 > 0.

Then, we have

‖u‖2 =
∫

RN

(
|∇u|2 − µ

u2

|x|2 + V(x)u2
)

dx

≥
∫

RN

(
|∇u|2 − 4µ

(N − 2)2 |∇u|2 + V(x)u2
)

dx

≥
(

1− 4µ

(N − 2)2

) ∫
RN

(|∇u|2 + V(x)u2)dx

=

(
1− 4µ

(N − 2)2

)
‖u‖2

E.

(2.3)

It follows from (2.2) and (2.3) that

C1‖u‖2
E ≤ ‖u‖2 ≤ C2‖u‖2

E.
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As we all known, under the assumption (V1), the embedding E ↪→ Lr(RN) is continuous
for r ∈ [2, 2∗] and E ↪→ Lr

loc(R
N) is compact for [2, 2∗) i.e. there is a constant dr > 0 such that

‖u‖s ≤ dr‖u‖E, ∀u ∈ E, r ∈ [2, 2∗].

From this, by Lemma 2.2, there is C3 > 0 such that

‖u‖r ≤ dr‖u‖E ≤ C3‖u‖, ∀u ∈ E, r ∈ [2, 2∗].

Furthermore, under the assumptions (V1) and (V2), we have the following compactness
lemma due to [3] (see also [2, 41]).

Lemma 2.3. Assume that (V1) and (V2) hold, the embedding E ↪→ Lr(RN) is compact for 2 ≤ r < 2∗.

In order to solve problem (1.1), we define the energy functional I : E→ R given by

I(u) =
1
2

∫
RN

(1 + 2|u|2)|∇u|2dx− 1
2

∫
RN

µ

|x|2 u2dx +
1
2

∫
RN

V(x)u2dx−
∫

RN
F(x, u)dx.

It is well known that I is not well defined in E. To overcome this difficulty, we make the
change of variables by v = h−1(u), where h is defined by

h′(t) =
1√

1 + 2|h(t)|2
on [0, ∞),

and
h(−t) = −h(t) on (−∞, 0].

Therefore, after the change of variables, from I(u) we obtain the following functional

J(v) := I(h(v))

=
1
2

∫
RN
|∇v|2dx− 1

2

∫
RN

µ

|x|2 h2(v)dx +
1
2

∫
RN

V(x)h2(v)dx−
∫

RN
F(x, h(v))dx.

(2.4)

It is easy to check that J is well defined on E. Under our hypotheses, J ∈ C1(E, R) and

〈J′(v), φ〉 =
∫

RN
∇v∇φdx−

∫
RN

µ

|x|2 h(v)h′(v)φdx

+
∫

RN
V(x)h(v)h′(v)φdx−

∫
RN

f (x, h(v))h′(v)φdx.
(2.5)

for all φ ∈ E.
Moreover, the critical points of J are the weak solutions of the following equation

− ∆v =
1√

1 + 2|h(v)|2

(
f (x, h(v))−V(x)h(v) +

µ

|x|2 h(v)
)

in RN . (2.6)

We also observe that if v is a critical point of the functional J, then u = h(v) is a critical point
of the functional I, i.e. u = h(v) is a solution of (1.1).

Now, let us recall some properties of the change of variables h : R→ R.

Lemma 2.4. (see [24]) The function h(t) and its derivative satisfy the following properties

(h1) h is uniquely defined, C∞ and invertible;
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(h2) |h′(t)| ≤ 1 for all t ∈ R;

(h3) |h(t)| ≤ |t| for all t ∈ R;

(h4)
h(t)

t → 1 as t→ 0;

(h5)
h(t)√

t
→ 2

1
4 as t→ ∞;

(h6)
h(t)

2 ≤ th′(t) ≤ h(t) for all t > 0;

(h7)
h2(t)

2 ≤ th(t)h′(t) ≤ h2(t) for all t ∈ R;

(h8) |h(t)| ≤ 2
1
4 |t| 12 for all t ∈ R;

(h9) there exists a positive constant C such that

|h(t)| ≥
{

C|t|, |t| ≤ 1

C|t| 12 , |t| ≥ 1;

(h10) for each α > 0, there exists a positive constant C(α) such that

|h(αt)|2 ≤ C(α)|h(t)|2;

(h11) |h(t)h′(t)| ≤ 1√
2
.

For convenience of our proof, we give the following basic and important definition.

Definition 2.5 (see [36]). Assume that J ∈ C1(E, R), sequence {un} ⊂ E is called (C)c se-
quence if

J(vn)→ c and (1 + ‖vn‖)J′(vn)→ 0.

If any (C)c sequence has a convergent subsequence, we say J satisfies Cerami condition at
level c.

Lemma 2.6. Assume that (V1), (V2), (F0)–(F2) hold, then any (C)c-sequence of J is bounded in E for
each c ∈ R.

Proof. Let {vn} ⊂ E be a (C)c-sequence of J, we have

J(vn)→ c, (1 + ‖vn‖)J′(vn)→ 0 as n→ ∞. (2.7)

Then, there is a constant C4 > 0 such that

J(vn)−
1
4
〈J′(vn), vn〉 ≤ C4. (2.8)

Let

‖vn‖2
h :=

∫
RN

(
|∇vn|2 −

µ

|x|2 h2(vn) + V(x)h2(vn)

)
dx.

First, we prove that there exists C5 > 0 such that

‖vn‖2
h ≤ C5. (2.9)
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On the contrary, we suppose that

‖vn‖2
h → ∞.

Taking h̃(vn) =
h(vn)
‖vn‖h

, then ‖h̃(vn)‖ ≤ 1. Passing to a subsequence, we assume that

h̃(vn) ⇀ ν in E,

h̃(vn)→ ν in Lr(RN), 2 ≤ r < 2∗,

and

h̃(vn)→ ν a.e. on RN .

From (2.4) and (2.7), we have

lim
|n|→∞

∫
RN

|F(x, h(vn))|
‖vn‖2

h
dx =

1
2

. (2.10)

On the other hand, set ξn = h(vn)
h′(vn)

, then there exists C6 > 0 such that ‖ξn‖ ≤ C6‖vn‖. Since
{vn} is a (C)c sequence of J, by (2.8) we have

C6 ≥ J(vn)−
1
4
〈J′(vn), ξn〉

=
1
4

∫
RN

(
|∇h(vn)|2 −

µ

|x|2 h2(vn) + V(x)h2(vn)

)
dx

+
∫

RN

(
1
4

f (x, h(vn))h(vn)− F(x, h(vn))

)
dx

=
1
4
‖h(vn)‖2 +

∫
RN

F̃(x, h(vn))dx

≥
∫

RN
F̃(x, h(vn))dx.

(2.11)

Take l(a) = inf{F̃(x, h(vn)) | x ∈ RN , |h(vn)| ≥ a}, for a ≥ 0. By (1.5), we have l(a) → ∞ as
a→ ∞. For 0 ≤ b1 < b2, let

Bn(b1, b2) = {x ∈ RN : b1 ≤ |h(vn(x))| < b2}.

Combining with (2.11) that

C6 ≥
∫

Bn(0,a)
F̃(x, h(vn))dx +

∫
Bn(a,∞)

F̃(x, h(vn))dx

≥
∫

Bn(0,a)
F̃(x, h(vn))dx + l(a)meas{Bn(a, ∞)},

from this we get meas{Bn(a, ∞)} → 0 as a → ∞ uniformly in n. Hence, for r ∈ [2, 2∗) and
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(h11), there exist C, C7 > 0 such that

∫
Bn(a,∞)

h̃r(vn)dx ≤
( ∫

Bn(a,∞)
h̃22∗(vn)dx

) r
22∗ (

meas{Bn(a, ∞)}
) 22∗−r

22∗

=
1
‖vn‖r

h

( ∫
Bn(a,∞)

h22∗(vn)dx
) r

22∗ (
meas{Bn(a, ∞)}

) 22∗−r
22∗

≤ C
‖vn‖r

h

( ∫
Bn(a,∞)

|∇h2(vn)|2dx
) r

4 (
meas{Bn(a, ∞)}

) 22∗−r
22∗

≤ C6

‖vn‖r
h

( ∫
Bn(a,∞)

|∇vn|2dx
) r

4 (
meas{Bn(a, ∞)}

) 22∗−r
22∗

≤ C7‖vn‖−r/2
h

(
meas{Bn(a, ∞)}

) 22∗−r
22∗ → 0,

(2.12)

as a→ ∞ uniformly in n.
If ν = 0, then h̃(vn) → 0 in Lr(RN), 2 ≤ r < 2∗. For any 0 < ε < 1

8 , there exist a1, L large
enough, such that

∫
Bn(0,a1)

|F(x, h(vn))|
|h(vn)|2

|h̃(vn)|2dx ≤
∫

Bn(0,a1)

c1|h(vn)|2 + c2|h(vn)|p
|h(vn)|2

|h̃(vn)|2dx

≤ (c1 + c2ap−2
1 )

∫
Bn(0,r1)

|h̃(vn)|2dx

≤ (c1 + c2ap−2
1 )

∫
RN
|h̃(vn)|2dx

< ε,

(2.13)

for n > L. Set τ′ = σ
σ−1 , since σ ∈

(
max{1, 2N

N+2}, 2
)
, then 2τ′ ∈ (2, 22∗). Thus, by (F2) and

(2.12) we have

∫
Bn(a1,∞)

|F(x, h(vn))|
|h(vn)|2

|h̃(vn)|2dx

≤
( ∫

Bn(a1,∞)

(
|F(x, h(vn))|
|h(vn)|2

)σ

dx
) 1

σ
( ∫

Bn(a1,∞)
|h̃(vn)|2τ′dx

) 1
τ′

≤ c
1
σ
0

( ∫
Bn(a1,∞)

F̃(x, h(vn))dx
) 1

σ
( ∫

Bn(a1,∞)
|h̃(vn)|2τ′dx

) 1
τ′

≤ C8

( ∫
Bn(a1,∞)

|h̃(vn)|2τ′dx
) 1

τ′

< ε.

(2.14)

From (2.13) and (2.14), we can get

∫
RN

|F(x, h(vn))|
‖vn‖2

h
dx =

∫
Bn(0,a1)

|F(x, h(vn))|
|h(vn)|2

|h̃(vn)|2dx +
∫

Bn(a1,∞)

|F(x, h(vn))|
|h(vn)|2

|h̃(vn)|2dx

< 2ε <
1
4

,

for n > L, which contradicts (2.10).
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If ν 6= 0, then meas{B} > 0, where B = {x ∈ RN : ν 6= 0}. For x ∈ B, we have |h(vn)| → ∞
as n → ∞. Hence B ⊂ Bn(a0, ∞) for n ∈ N large enough, where a0 is given in (F1). By (F1),
we have

F(x, h(vn))

|h(vn)|4
→ ∞ as n→ ∞.

Using Fatou’s Lemma, then

∫
B

F(x, h(vn))

|h(vn)|4
dx → ∞ as n→ ∞. (2.15)

We see from (2.7) and (2.15)

0 = lim
n→∞

c + o(1)
‖vn‖2

h
= lim

n→∞

J(vn)

‖vn‖2
h

= lim
n→∞

1
‖vn‖2

h

(
1
2

∫
RN

(
|∇vn|2 −

µ

|x|2 h2(vn) + V(x)h2(vn)
)
dx−

∫
RN

F(x, h(vn))dx
)

= lim
n→∞

(
1
2
−
∫

Bn(0,a0)

F(x, h(vn))

|h(vn)|2
|h̃(vn)|2dx−

∫
Bn(a0,∞)

F(x, h(vn))

|h(vn)|2
|h̃(vn)|2dx

)
≤ 1

2
+ lim sup

n→∞

(
(c1 + c2ap−2

0 )
∫

RN
|h̃(vn)|2dx−

∫
Bn(a0,∞)

F(x, h(vn))

|h(vn)|2
|h̃(vn)|2dx

)
≤ C9 − lim inf

n→∞

∫
B

F(x, h(vn))

|h(vn)|4
|h(vn)h̃(vn)|2dx

= −∞,

which is a contradiction. Hence, (2.9) holds.
In order to prove that {vn} is bounded, we only need to show that there is C10 > 0 such

that
‖vn‖2

h ≥ C10‖vn‖2. (2.16)

Arguing indirectly, for a subsequence, we assume ‖vn‖2
h

‖vn‖2 → 0, where vn 6= 0 (if not, the result

is obvious). Take ξn,1 = vn
‖vn‖ , ηn,1 = h2(vn)

‖vn‖2 , then

∫
RN

(
|∇ξn,1|2 −

µ

|x|2 ηn,1(x) + V(x)ηn,1(x)
)

dx → 0. (2.17)

It follows from (h3) that

∫
RN

(
|∇ξn,1|2 −

µ

|x|2 ηn,1(x) + V(x)ηn,1(x)
)

dx

=
∫

RN

(
|∇ξn,1|2 −

µ

|x|2
h2(vn)

‖vn‖2 + V(x)ηn,1(x)
)

dx

≥
∫

RN

(
|∇ξn,1|2 −

µ

|x|2
v2

n
‖vn‖2 + V(x)ηn,1(x)

)
dx

=
∫

RN

(
|∇ξn,1|2 −

µ

|x|2 ξ2
n,1 + V(x)ηn,1(x)

)
dx

≥ 0.

(2.18)
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Combining (2.1), (2.17) and (2.18), we

∫
RN

(
|∇ξn,1|2 −

µ

|x|2 ξ2
n,1 + V(x)ηn,1(x)

)
dx → 0.

Hence∫
RN

(
|∇ξn,1|2 −

µ

|x|2 ξ2
n,1

)
dx → 0,

∫
RN

V(x)ηn,1(x)dx → 0 and
∫

RN
V(x)ξ2

n,1dx → 1.

Similar to the idea of [37], let Bn = {x ∈ RN : |vn(x)| ≥ C11}, where C11 > 0 is independent
of n. We suppose that for ε > 0, meas{Bn} < ε. If not, there exists ε′ > 0 and {vni} ⊂ {vn}
such that

meas{x ∈ RN : |vni(x)| ≥ i} ≥ ε′,

where i > 0 is a integer. Set Bni = {x ∈ RN : |vni(x)| ≥ i}. From (2.1), (h3) and (h9) we have

‖vni‖2
h =

∫
RN

(
|∇vni |2 −

µ

|x|2 h2(vni) + V(x)h2(vni)

)
dx

≥
∫

RN

(
|∇vni |2 −

µ

|x|2 v2
ni
+ V(x)h2(vni)

)
dx

>
∫

RN
V(x)h2(vni)dx

> Ciε′ → ∞.

as i → ∞, which is a contradiction. For constants C12, C13 > 0, it follows |vn(x)| ≤ C12, (h9)

and (h10) that
C

C2
12

v2
n ≤ h2

(
1

C12
vn

)
≤ C13h2(vn).

Hence ∫
RN\Bn

V(x)ξ2
n,1dx ≤ C14

∫
RN\Bn

V(x)
h2(vn)

‖vn‖
dx

≤ C14

∫
RN

V(x)ηn,1(x)dx → 0,
(2.19)

where C14 > 0 is a constant. For another, by absolute continuity of integral, there exists ε > 0
such that ∫

B′
V(x)ξ2

n,1dx ≤ 1
2

, (2.20)

where B′ ⊂ RN and meas{B′} < ε. By (2.19) and (2.20), we have∫
RN

V(x)ξ2
n,1dx =

∫
RN\Bn

V(x)ξ2
n,1dx +

∫
Bn

V(x)ξ2
n,1dx ≤ 1

2
+ o(1).

We can get a contradiction. Hence (2.16) holds. Combining (2.9) with (2.16), we complete the
proof of this lemma.

Lemma 2.7. Assume that (V1), (V2), (F0)–(F2) hold, then J satisfies (C)c-condition.
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Proof. Lemma 2.6 implies that {vn} is bounded in E. For a subsequence, we can assume that
vn ⇀ v in E. From Lemma 2.3, vn → v in Lr(RN) for all 2 ≤ r < 2∗ and vn → v a.e. on RN .
First, we claim that there exists C15 > 0 such that∫

RN

(
|∇(vn − v)|2 +

(
V(x)− µ

|x|2

)
(h(vn)h′(vn)− h(v)h′(v))

)
(vn − v)dx ≥ C15‖vn − v‖2

E

(2.21)
Indeed, we may assume vn 6= v (otherwise the conclusion is trivial). Set

ξn,2 =
vn − v
‖vn − v‖ and ηn,2 =

h(vn)h′(vn)− h(v)h′(v)
vn − v

,

we argue by contradiction and assume that∫
RN

(
|∇ξn,2|2 −

µ

|x|2 ηn,2(x)ξ2
n,2 + V(x)ηn,2(x)ξ2

n,2

)
dx → 0. (2.22)

Since
d
dt
(h(t)h′(t)) = h(t)h′′(t) + (h′(t))2 =

1
(1 + 2h2(t))2 > 0,

h(t)h′(t) is strictly increasing and for each C16 > 0, there is δ1 > 0 such that

d
dt
(h(t)h′(t)) ≥ δ1,

at |t| ≤ C16. From this, we see that ηn,2(x) is positive. On the other hand, for vn > v, there
exists θ ∈ (v, vn) such that

ηn,2 =
h(vn)h′(vn)− h(v)h′(v)

vn − v
=

d
dt
(h(θ)h′(θ)) =

1
(1 + 2h2(θ))2 ≤ 1.

Similarly, we can prove the case vn < v.
Hence,

ηn,2(x) ≤ 1 for all vn 6= v. (2.23)

It follows from (2.1), (2.22) and (2.23) that

0 ≤
∫

RN

(
|∇ξn,2|2 −

µ

|x|2 ξ2
n,2 + V(x)ηn,2(x)ξ2

n,2

)
dx

≤
∫

RN

(
|∇ξn,2|2 −

µ

|x|2 ηn,2(x)ξ2
n,2 + V(x)ηn,2(x)ξ2

n,2

)
dx

→ 0.

Then, we have∫
RN

(
|∇ξn,2|2 −

µ

|x|2 ξ2
n,2

)
dx → 0,

∫
RN

V(x)ηn,2(x)ξ2
n,2dx → 0,

and ∫
RN

V(x)ξ2
n,2dx → 1.

By a similar fashion as (2.19) and (2.20), we can conclude a contradiction.
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On the other hand, by (h2), (h3), (h8), (h11), (F0) and (1.5), there is C17 > 0 such that∣∣∣∣ ∫
RN

( f (x, h(vn))h′(vn)− f (x, h(v))h′(v))(vn − v)dx
∣∣∣∣

≤
∫

RN
C17(|vn|+ |vn|

p
2−1 + |v|+ |v|

p
2−1)|vn − v|dx

≤ C17(‖vn‖2 + ‖v‖2)‖vn − v‖2 +

(
‖vn‖

p−2
2

p
2

+ ‖v‖
p−2

2
p
2

)
‖vn − v‖ p

2

= o(1).

(2.24)

Therefore, by (2.21) and (2.24), we have

o(1) = 〈J′(vn)− J′(v), vn − v〉

=
∫

RN

(
|∇(vn − v)|2 + (V(x)− µ

|x|2 )(h(vn)h′(vn)− h(v)h′(v))(vn − v)
)

dx

−
∫

RN
( f (x, h(vn))h′(vn)− f (x, h(v))h′(v))(vn − v)dx

≥ C15‖vn − v‖+ o(1).

This implies that ‖vn − v‖ → 0 as n→ ∞. Thus, the proof is complete.

To prove our main result in this paper, we need the following lemma.

Lemma 2.8 (Symmetric Mountain Pass Theorem [26]). Let X be an infinite dimensional Banach
space, X = Y

⊕
Z, where Y is finite dimensional. If Ψ ∈ C1(X, R) satisfies (C)c-condition for all

c > 0, and

(I1) Ψ(0) = 0, Ψ(−u) = u for all u ∈ X;

(I2) there exist constants ρ, α > 0 such that Ψ |∂Bρ∩Z≥ α;

(I3) for any finite dimensional subspace X̃ ⊂ X, there is R = R(X̃) > 0 such that Ψ(u) ≤ 0 on
X̃ \ BR;

then Ψ possesses an unbounded sequence of critical values.

3 Proof of Theorem 1.1

Let {ei} is a total orthonormal basis of E and define Xi = Rei, then E =
⊕∞

i=1 Xi. Let

Yj =
i⊕

i=1

Xi, Zj =
∞⊕

j+1

Xi, j ∈ Z,

then E = Yj
⊕

Zj and Yj is finite-dimensional. Similar to Lemma 3.8 in [36], we have the
following lemma.

Lemma 3.1 ([36]). Under assumptions (V1) and (V2), for 2 ≤ r < 2∗,

β j(r) := sup
u∈Zj,‖v‖=1

‖v‖r → 0, j→ ∞.
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Before going further, we need to show that there exists C18 > 0 such that∫
RN

(
|∇v|2 − µ

|x|2 h2(v) + V(x)h2(v)
)

dx ≥ C18‖v‖2, ∀v ∈ Sρ, (3.1)

where Sρ = {v ∈ E : ‖v‖ = ρ}. Indeed, by a similar argument as (2.16), we can get this
conclusion. Moreover, by Lemma 3.1, we can choose an integer κ ≥ 1 such that

‖v‖2
2 ≤

C18

4c1
‖v‖, ‖v‖

p
2
p
2
≤ C18

4c2
‖v‖

p
2 , ∀v ∈ Zκ. (3.2)

Lemma 3.2. Assume that (V1), (V2) and (F0) hold, then there exist constants ρ, α > 0 such that
J|Sρ∩Zκ

≥ α.

Proof. For any v ∈ Zκ with ‖v‖ = ρ < 1, by (h3), (h8), (3.1) and (3.2), we have

J(v) =
1
2

∫
RN

(
|∇v|2 − µ

|x|2 h2(v) + V(x)h2(v)
)

dx−
∫

RN
F(x, h(v))dx

≥ C18

2
‖v‖2 −

∫
RN

(c1|h(v)|2 + c2|h(v)|p)dx

≥ C18

2
‖v‖2 −

∫
RN

(c1|v|2 + c2|v|
p
2 )dx

≥ C18

2
‖v‖2 − C18

4
‖v‖2 − C18

4
‖v‖

p
2

=
C18

4
‖v‖2

(
1− ‖v‖

p−4
2

)
> 0.

since p ∈ (4, 22∗). This completes the proof.

Lemma 3.3. Assume that (V1), (V2), (F0) and (F1) hold, for any finite dimensional subspace Ẽ ⊂ E,
there is R = R(Ẽ) > 0 such that

J(v) ≤ 0, ∀v ∈ Ẽ \ BR.

Proof. For any finite dimensional subspace Ẽ ⊂ E, there is a positive integral number κ such
that Ẽ ⊂ Yκ. Suppose to the contrary that there is a sequence {vn} ⊂ Ẽ such that ‖vn‖ → ∞
and J(vn) > 0. Hence

1
2

∫
RN

(
|∇vn|2 −

µ

|x|2 h2(vn) + V(x)h2(vn)

)
dx >

∫
RN

F(x, h(vn))dx. (3.3)

Jointly with (h3), we have ∫
RN F(x, h(vn))dx

‖vn‖2 <
1
2

. (3.4)

Set ηn = vn
‖vn‖ . Then up to a subsequence, we can assume that

ηn ⇀ η in E,

ηn → η in Lr(RN) for 2 ≤ r < 2∗

and

ηn → η a.e. on RN .
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Set A1 = {x ∈ RN : η(x) 6= 0} and A2 = {x ∈ RN : η(x) = 0}. If meas{A1} > 0, then by (F1),
(h5) and Fatou’s Lemma, we have

∫
A1

F(x, h(vn))

‖vn‖2 dx =
∫

A1

F(x, h(vn))

h4(vn)

h4(vn)

v2
n

η2
ndx → ∞.

By (F0) and (F1), there exists C19 > 0 such that

F(x, t) ≥ −C19t2, ∀(x, t) ∈ RN ×R.

Hence ∫
A2

F(x, h(vn))

‖vn‖2 dx ≥ −C19

∫
A2

h2(vn)

‖vn‖2 dx ≥ −C19

∫
A2

η2
ndx.

Since ηn → η in L2(RN), it is clear that

lim inf
n→∞

∫
A2

F(x, h(vn))

‖vn‖2 dx = 0.

Consequently,

lim
n→∞

∫
RN

F(x, h(vn))

‖vn‖2 dx = ∞.

By (3.4) we obtain 1
2 > ∞, a contradiction. This shows meas{A1} = 0 i.e. η(x) = 0 a.e. on RN .

By the equivalency of all norms in Ẽ, there exists C > 0 such that

‖v‖2
2 ≥ C‖v‖2, ∀v ∈ Ẽ.

Hence

0 = lim
n→∞
‖ηn‖2

2 ≥ C lim
n→+∞

‖ηn‖2 = C,

a contradiction. This completes the proof.

Now, we prove our main result.

Proof of Theorem 1.1. Let Ψ = J, X = E, Y = Yκ and Z = Zκ. Obviously, J(0) = 0 and (F3)

implies that J is even. By Lemma 2.7, 3.2 and Lemma 3.3, all conditions of Lemma 2.5 are
satisfied. Thus, problem (2.6) has infinitely many nontrivial solutions sequence {vn} such that
J(vn)→ ∞ as n→ ∞. Namely, problem (1.1) also has infinitely many solutions sequence {un}
such that I(un)→ ∞ as n→ ∞.

Acknowledgements

This work is supported in part by National Natural Science Foundation of China (11001274).
And the authors are grateful to Prof. Zhouxin Li for the reading of the paper and giving some
helpful suggestions.



Infinitely many solutions with Hardy potentials 15

References

[1] M. Badiale, G. Tarantello, A Sobolev–Hardy inequality with applications to a nonlin-
ear elliptic equation arising in astrophysics, Arch. Rat. Mechanics Anal. 163(2002), 259–293.
https://doi.org/10.1007/s002050200201; MR1918928; Zbl 1010.35041

[2] T. Bartsch, Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic
problems on RN , Comm. Partial Differential Equations 20(1995), 1725–1741. https://doi.
org/10.1080/03605309508821149; MR1349229; Zbl 0837.35043

[3] T. Bartsch, Z. Q. Wang, M. Willem, The Dirichlet problem for superlinear elliptic equa-
tions, in: Stationary partial differential equations. Vol. II, Handbook of Differential Equations,
Elsevier/North Holland, Amsterdam, 2005, pp. 1–55. https://doi.org/10.1016/S1874-
5733(05)80009-9; MR2181481; Zbl 1207.35001

[4] D. M. Cao, H. S. Zhou, Multiple positive solutions of nonhomogeneous semilinear
elliptic equations in RN , Proc. Roy. Soc. Edinburgh. Sect. A. 126(1996), 443–463. https:
//doi.org/10.1017/S0308210500022836; MR1386873; Zbl 0846.35042

[5] J. Chen, B. Guo, Multiple nodal bound states for a quasilinear Schrödinger equa-
tion, J. Math. Phys. 46(2005), 1–11. https://doi.org/10.1063/1.2138045; MR2194030;
Zbl 1111.34017

[6] K. J. Chen, C. C. Peng, Multipliticy and bifurcation of positive solutions for non-
homogeneous semilinear elliptic problems, J. Differential Equations. 240(2007), 58–91.
https://doi.org/10.1016/j.jde.2007.05.023; MR2349165; Zbl 1174.35006

[7] M. Colin, L. Janjean, Solutions for a quasilinear Schrödinger equation: a dual ap-
proach, Nonlinear Anal. 56(2004), 213–226. https://doi.org/10.1016/j.na.2003.09.008;
MR2029068; Zbl 1035.35038

[8] Y. B. Deng, Y. Li, W. Shuai, Existence of solutions for a class of p-Laplacian type
equation wiyh critical growth and potential vanishing at infinitely, Discrete. Contin.
Dyn. Syst. 36(2016), 683–699. https://doi.org/10.3934/dcds.2016.36.683; MR3392899;
Zbl 1323.35038

[9] Y. B. Deng, L. Y. Liu, S. J. Peng, Solutions of Schrödinger equations with inverse square
potential and critical nonlinearity, J. Differential Equations 253(2012), 1376–1398. https:
//doi.org/10.1016/j.jde.2012.05.009; MR2927385; Zbl 1248.35058

[10] N. Ghoussoub, C. Yuan, Multiple solutions for quasilinear PDEs involving the critical
Sobolev and Hardy exponents, Trans. Amer. Math. Soc. 352(2000), 5703-5743. https://
doi.org/10.1090/S0002-9947-00-02560-5; MR1695021; Zbl 0956.35056

[11] Q. Q. Guo, J. Mederski, Ground states of nonlinear Schrödinger equations with sum
of periodic and inverse square potentials, J. Differential Equations 260(2016), 4180–4202.
https://doi.org/10.1016/j.jde.2015.11.006; MR3437584; Zbl 1335.35232

[12] D. S. Kang, Solutions for semilinear elliptic problems with critical Sobolev–Hardy expo-
nents in RN , Nonlinear Anal. 66(2007), 241–252. https://doi.org/10.1016/j.na.2005.
11.028; MR2271652; Zbl 1387.35242

https://doi.org/10.1007/s002050200201
https://www.ams.org/mathscinet-getitem?mr=1918928
https://zbmath.org/?q=an:1010.35041
https://doi.org/10.1080/03605309508821149
https://doi.org/10.1080/03605309508821149
https://www.ams.org/mathscinet-getitem?mr=1349229
https://zbmath.org/?q=an:0837.35043
https://doi.org/10.1016/S1874-5733(05)80009-9
https://doi.org/10.1016/S1874-5733(05)80009-9
https://www.ams.org/mathscinet-getitem?mr=2181481
https://zbmath.org/?q=an:1207.35001
https://doi.org/10.1017/S0308210500022836
https://doi.org/10.1017/S0308210500022836
https://www.ams.org/mathscinet-getitem?mr=1386873
https://zbmath.org/?q=an:0846.35042
https://doi.org/10.1063/1.2138045
https://www.ams.org/mathscinet-getitem?mr=2194030
https://zbmath.org/?q=an:1111.34017
https://doi.org/10.1016/j.jde.2007.05.023
https://www.ams.org/mathscinet-getitem?mr=2349165
https://zbmath.org/?q=an:1174.35006
https://doi.org/10.1016/j.na.2003.09.008
https://www.ams.org/mathscinet-getitem?mr=2029068
https://zbmath.org/?q=an:1035.35038
https://doi.org/10.3934/dcds.2016.36.683
https://www.ams.org/mathscinet-getitem?mr=3392899
https://zbmath.org/?q=an:1323.35038
https://doi.org/10.1016/j.jde.2012.05.009
https://doi.org/10.1016/j.jde.2012.05.009
https://www.ams.org/mathscinet-getitem?mr=2927385
https://zbmath.org/?q=an:1248.35058
https://doi.org/10.1090/S0002-9947-00-02560-5
https://doi.org/10.1090/S0002-9947-00-02560-5
https://www.ams.org/mathscinet-getitem?mr=1695021
https://zbmath.org/?q=an:0956.35056
https://doi.org/10.1016/j.jde.2015.11.006
https://www.ams.org/mathscinet-getitem?mr=3437584
https://zbmath.org/?q=an:1335.35232
https://doi.org/10.1016/j.na.2005.11.028
https://doi.org/10.1016/j.na.2005.11.028
https://www.ams.org/mathscinet-getitem?mr=2271652
https://zbmath.org/?q=an:1387.35242


16 T. T. Shang and R. X. Liang

[13] D. S. Kang, Y. B. Deng, Existence of solutions for a singular critical elliptic equa-
tion, J. Math. Anal. Appl. 284(2003), 724–732. https://doi.org/10.1016/S0022-247X(03)
00394-9; MR1998664; Zbl 1094.35050

[14] J. Li, Existence of solution for a singular elliptic equation with critical Sobolev–Hardy ex-
ponents, Int. J. Math. Math. Sci. 2005(2005), 3213–3223. https://doi.org/10.1155/IJMMS.
2005.3213; MR2206527; Zbl 1119.35019

[15] H. L. Liu, H. B. Chen, Multiple solutions for a nonlinear Schrödinger–Poisson sys-
tem with sign-changing potential, Comput. Math. Appl. 71(2016), 1405–1416. https:
//doi.org/10.1016/j.camwa.2016.02.010; MR3477712

[16] J. Liu, J. F. Liao, C. L. Tang, A positive ground state solutions for a class of asyptotically
periodic Schrödinger equations, Comput. Math. Appl. 71(2016), 965–976. https://doi.
org/10.1016/j.camwa.2016.01.004; MR3461272;

[17] J. Liu, J. F. Liao, C. L. Tang, A positive ground state solutions for a class of asyp-
totically periodic Schrödinger equations with critical exponent, Comput. Math. Appl.
72(2016), 1851–1864. https://doi.org/10.1016/j.camwa.2016.08.010; MR3547688;
Zbl 1362.35114

[18] J. Q. Liu, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations. I, Proc.
Amer. Math. Soc. 131(2003), 441–448. https://doi.org/10.1090/S0002-9939-02-06783-
7; MR1933335; Zbl 1229.35269

[19] J. Liu, Y. Wang, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations. II,
J. Differential Equations. 187(2003), 473–493. https://doi.org/10.1016/S0022-0396(02)
00064-5; MR1949452; Zbl 1229.35268

[20] J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Solutions for quasilinear Schrödinger equations via
the Nehari method, Comm. Paritial Differential Equations 29(2004), 879–901. https://doi.
org/10.1081/PDE-120037335; MR2059151; Zbl 1140.35399

[21] V. G. Makhankov, V. K. Fedyanin, Nonlinear effects in quasi-one-dimensional models of
condensed matter theory, Phys. Rep. 104(1984), No. 1, 1–86. https://doi.org/10.1016/
0370-1573(84)90106-6; MR0740342

[22] J. M. B. do Ó, O. H. Miyagaki, S. H. M. Soares, Soliton solutions for quasilinear
Schrödinger equations: the critical exponential case, Nonlinear Anal. 67(2007), 3357–3372.
https://doi.org/10.1016/j.na.2006.10.018; MR2350892; Zbl 1151.35016

[23] J. M. B. do Ó, U. Severo, Quasilinear Schrödinger equations involving concave and
convex nonlinearities, Commum. Pure Appl. Anal. 8(2009), 621–644. https://doi.org/10.
3934/cpaa.2009.8.621; MR2461565; Zbl 1171.35118

[24] J. M. B. do Ó, U. Severo, Solitary waves for a class of quasilinear Schrödinger equations
in dimension two, Calc. Var. 38(2010), 275–315. https://doi.org/10.1007/s00526-009-
0286-6; MR2647122; Zbl 1194.35118

[25] M. Poppenberg, K. Schmitt, Z. Q. Wang, On the existence of soliton solutions to quasi-
linear Schrödinger equations, Calc. Var. Partial Differential Equtions 14(2002), 329–344.
https://doi.org/10.1007/s005260100105; MR1899450; Zbl 1052.35060

https://doi.org/10.1016/S0022-247X(03)00394-9
https://doi.org/10.1016/S0022-247X(03)00394-9
https://www.ams.org/mathscinet-getitem?mr=1998664
https://zbmath.org/?q=an:1094.35050
https://doi.org/10.1155/IJMMS.2005.3213
https://doi.org/10.1155/IJMMS.2005.3213
https://www.ams.org/mathscinet-getitem?mr=2206527
https://zbmath.org/?q=an:1119.35019
https://doi.org/10.1016/j.camwa.2016.02.010
https://doi.org/10.1016/j.camwa.2016.02.010
https://www.ams.org/mathscinet-getitem?mr=3477712
https://doi.org/10.1016/j.camwa.2016.01.004
https://doi.org/10.1016/j.camwa.2016.01.004
https://www.ams.org/mathscinet-getitem?mr=3461272
https://doi.org/10.1016/j.camwa.2016.08.010
https://www.ams.org/mathscinet-getitem?mr=3547688
https://zbmath.org/?q=an:1362.35114
https://doi.org/10.1090/S0002-9939-02-06783-7
https://doi.org/10.1090/S0002-9939-02-06783-7
https://www.ams.org/mathscinet-getitem?mr=1933335
https://zbmath.org/?q=an:1229.35269
https://doi.org/10.1016/S0022-0396(02)00064-5
https://doi.org/10.1016/S0022-0396(02)00064-5
https://www.ams.org/mathscinet-getitem?mr=1949452
https://zbmath.org/?q=an:1229.35268
https://doi.org/10.1081/PDE-120037335
https://doi.org/10.1081/PDE-120037335
https://www.ams.org/mathscinet-getitem?mr=2059151
https://zbmath.org/?q=an:1140.35399
https://doi.org/10.1016/0370-1573(84)90106-6
https://doi.org/10.1016/0370-1573(84)90106-6
https://www.ams.org/mathscinet-getitem?mr=0740342
https://doi.org/10.1016/j.na.2006.10.018
https://www.ams.org/mathscinet-getitem?mr=2350892
https://zbmath.org/?q=an:1151.35016
https://doi.org/10.3934/cpaa.2009.8.621
https://doi.org/10.3934/cpaa.2009.8.621
https://www.ams.org/mathscinet-getitem?mr=2461565
https://zbmath.org/?q=an:1171.35118
https://doi.org/10.1007/s00526-009-0286-6
https://doi.org/10.1007/s00526-009-0286-6
https://www.ams.org/mathscinet-getitem?mr=2647122
https://zbmath.org/?q=an:1194.35118
https://doi.org/10.1007/s005260100105
https://www.ams.org/mathscinet-getitem?mr=1899450
https://zbmath.org/?q=an:1052.35060


Infinitely many solutions with Hardy potentials 17

[26] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential
equations, CBMS Reg. Conf. Ser. Math. Providence, RI: American Mathematical Society
65(1986). MR0845785; Zbl 0609.58002

[27] H. X. Shi, H. B. Chen, Positive solutions for generalized quasilinear Schrödinger equa-
tions with potential vanishing at infinity, Appl. Math. Lett. 61(2016), 137–142. https:
//doi.org/10.1016/j.aml.2016.06.004; MR3518460; Zbl 1347.35116

[28] H. X. Shi, H. B. Chen, Existence and multiplicity of solutions for a class of generalized
quasilinear Schrödinger equations, J. Math. Anal. Appl. 452(2017), 578–594. https://doi.
org/10.1016/j.jmaa.2017.03.020; MR3628036; Zbl 1376.35017

[29] D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlin-
earities, Trans. Amer. Math. Soc. 357(2005), 2909–2938. https://doi.org/10.1090/S0002-
9947-04-03769-9; MR2139932; Zbl 1134.35348

[30] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev ex-
ponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 9(1992), 281–304. https://doi.org/10.
1016/S0294-1449(16)30238-4; MR1168304; Zbl 0785.35046

[31] S. Y. Tian, The eigenvalue problem and infinitely many sign-changing solutions for an
elliptic equations with critical Hardy constant, J. Math. Anal. Appl. 447(2017), 354–370.
https://doi.org/10.1016/j.jmaa.2016.10.022; MR3566476; Zbl 1364.35216

[32] C. Wang, Y. Y. Shang, Existence and multiplicity of solutions for Schrödinger equa-
tions with inverse square potential and Hardy–Sobolev critical exponent, Nonlinear Anal.
Real World Appl. 46(2019), 525–544. https://doi.org/10.1016/j.nonrwa.2018.10.002;
MR3887142; Zbl 1414.35063

[33] Y. J. Wang, J. Yang, Y. M. Zhang, Quasilinear elliptic equations involving the N-
Laplacian with critical exponential growth in RN , Nonlinear. Anal. 71(2009), 6157–6169.
https://doi.org/10.1016/j.na.2009.06.006; MR2566522; Zbl 1180.35262

[34] Y. J. Wang, Y. M. Zhang, Y. T. Shen, Multiple solutions for quasilinear Schrödinger
equations involving critical exponent, Appl. Math. Comp. 216(2010), 849–856. https://
doi.org/10.1016/j.amc.2010.01.091; MR2606992; Zbl 1189.35317

[35] Z. P. Wang, H. S. Zhou, Solutions for a nonhomogeneous elliptic problem involving
critical Sobolev–Hardy exponent in RN , Acta. Math. Sci. 26(2006), 525–536. https://doi.
org/10.1016/S0252-9602(06)60078-7; MR2244690; Zbl 1284.35180

[36] M. Willem, Minimax theorems, Birkhäuser. Berlin 1996. MR1400007; Zbl 0856.49001

[37] X. Wu, Multiple solutions for quasilinear Schrödinger equations with a parameter, J. Dif-
ferential Equations 256(2014), 2619–2632. https://doi.org/10.1016/j.jde.2014.01.026;
MR3160456; Zbl 1286.35089

[38] J. Zhang, X. H. Tang, W. Zhang, Existence of infinitely many solutions for a quasilinear
elliptic equation, Appl. Math. Lett. 37(2014), 131–135. https://doi.org/10.1016/j.aml.
2014.06.010; MR3231740; Zbl 1318.35043

https://www.ams.org/mathscinet-getitem?mr=0845785
https://zbmath.org/?q=an:0609.58002
https://doi.org/10.1016/j.aml.2016.06.004
https://doi.org/10.1016/j.aml.2016.06.004
https://www.ams.org/mathscinet-getitem?mr=3518460
https://zbmath.org/?q=an:1347.35116
https://doi.org/10.1016/j.jmaa.2017.03.020
https://doi.org/10.1016/j.jmaa.2017.03.020
https://www.ams.org/mathscinet-getitem?mr=3628036
https://zbmath.org/?q=an:1376.35017
https://doi.org/10.1090/S0002-9947-04-03769-9
https://doi.org/10.1090/S0002-9947-04-03769-9
https://www.ams.org/mathscinet-getitem?mr=2139932
https://zbmath.org/?q=an:1134.35348
https://doi.org/10.1016/S0294-1449(16)30238-4
https://doi.org/10.1016/S0294-1449(16)30238-4
https://www.ams.org/mathscinet-getitem?mr=1168304
https://zbmath.org/?q=an:0785.35046
https://doi.org/10.1016/j.jmaa.2016.10.022
https://www.ams.org/mathscinet-getitem?mr=3566476
https://zbmath.org/?q=an:1364.35216
https://doi.org/10.1016/j.nonrwa.2018.10.002
https://www.ams.org/mathscinet-getitem?mr=3887142
https://zbmath.org/?q=an:1414.35063
https://doi.org/10.1016/j.na.2009.06.006
https://www.ams.org/mathscinet-getitem?mr=2566522
https://zbmath.org/?q=an:1180.35262
https://doi.org/10.1016/j.amc.2010.01.091
https://doi.org/10.1016/j.amc.2010.01.091
https://www.ams.org/mathscinet-getitem?mr=2606992
https://zbmath.org/?q=an:1189.35317
https://doi.org/10.1016/S0252-9602(06)60078-7
https://doi.org/10.1016/S0252-9602(06)60078-7
https://www.ams.org/mathscinet-getitem?mr=2244690
https://zbmath.org/?q=an:1284.35180
https://www.ams.org/mathscinet-getitem?mr=1400007
https://zbmath.org/?q=an:0856.49001
https://doi.org/10.1016/j.jde.2014.01.026
https://www.ams.org/mathscinet-getitem?mr=3160456
https://zbmath.org/?q=an:1286.35089
https://doi.org/10.1016/j.aml.2014.06.010
https://doi.org/10.1016/j.aml.2014.06.010
https://www.ams.org/mathscinet-getitem?mr=3231740
https://zbmath.org/?q=an:1318.35043


18 T. T. Shang and R. X. Liang

[39] J. Zhang, X. H. Tang, W. Zhang, Infinitely many solutions of quasilinear Schrödinger
equation with sign-shanging potential, J. Math. Anal. Appl. 420(2014), 1762–1775. https:
//doi.org/10.1016/j.jmaa.2014.06.055; MR3240105; Zbl 1298.35080

[40] Y. M. Zhag, Y. J. Wang, Y. T. Shen, Solutions for quasilinear Schrödinger equations
with critical Sobolev–Hardy exponents, Commun. Pure Appl. Anal. 10(2011), 1037–1054.
https://doi.org/10.3934/cpaa.2011.10.1037; MR2787433; Zbl 1234.35084

[41] W. M. Zou, M. Schechter, Critical point theory and its applications, Springer, New York,
2006. https://doi.org/10.1007/0-387-32968-4; MR2232879; Zbl 1125.58004

https://doi.org/10.1016/j.jmaa.2014.06.055
https://doi.org/10.1016/j.jmaa.2014.06.055
https://www.ams.org/mathscinet-getitem?mr=3240105
https://zbmath.org/?q=an:1298.35080
https://doi.org/10.3934/cpaa.2011.10.1037
https://www.ams.org/mathscinet-getitem?mr=2787433
https://zbmath.org/?q=an:1234.35084
https://doi.org/10.1007/0-387-32968-4
https://www.ams.org/mathscinet-getitem?mr=2232879
https://zbmath.org/?q=an:1125.58004

	Introduction and main results
	Variational setting and preliminary results
	Proof of Theorem 1.1

