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Abstract

We prove oscillation theorems for the nonlinear delay differential equation
“

|y′(t)|
α−2

y′(t)
”′

+ q(t) |y(τ (t))|β−2
y(τ (t)) = 0, t ≥ t∗ > 0,

where β > 1, α > 1, q(t) ≥ 0 and locally integrable on [t∗,∞), τ (t) is a
continuous function satisfiying 0 < τ (t) ≤ t and limt→∞τ (t) = ∞. The
results obtained essentially improve the known results in the literature and
can be applied to linear and half-linear delay type differential equations.
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1 Introduction

In the last decades, there has been an increasing interest in obtaining suffi-
cient conditions for the oscillation and/or nonoscillation of solutions for dif-
ferent classes of second order differential equations with or without deviating
arguments. For interested readers we refer to the papers [7, 8, 12, 13, 15] and
the references quoted therein.

∗Dedicated to Professor A. Okay Çelebi on the occasion of his 70th birthday
†Corresponding author
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Before we continue with the description of the content of this paper, we
present a short survey of the most basic results in the literature.

Let us consider the following linear differential equation

y′′ + q(t)y = 0, t ≥ t0 ≥ t∗ > 0, (1)

where q(t) ≥ 0 is locally integrable on [t0,∞).
In 1948, Hille [6] established the following results:

Theorem A. If q ∈ L1[t0,∞) and

lim sup
t→∞

t

∫ ∞

t

q(s)ds ≤ 1

4
, (2)

then equation (1) is nonoscillatory.
Theorem B. If q ∈ L1[t0,∞) and

lim inf
t→∞

t

∫ ∞

t

q(s)ds >
1

4
, (3)

then equation (1) is oscillatory.
In 1997, Huang [7] obtained the following interval criteria:

Theorem C. If there exists t0 ≥ t∗ such that for each n ∈ N0 = {0, 1, 2, ...} ,

q(t) satisfies
∫ 2n+1t0

2nt0

q(s)ds ≤ θ0

2n+1t0
, (4)

where θ0 = 3 − 2
√

2, then equation (1) is nonoscillatory.
Theorem D. If there exists t0 ≥ t∗ such that for each n ∈ N0 = {0, 1, 2, ...} ,

q(t) satisfies
∫ 2n+1t0

2nt0

q(s)ds ≥ θ

2nt0
, (5)

where θ > θ0, then equation (1) is oscillatory.
In 2004, by replacing the sequence {2n} in Theorems C and D by {λn} with

λ > 1, Wong [15] generalized Theorems C and D as follows:
Theorem E. Let λ > 1. If there exists some t0 such that for each n ∈ N0 =
{0, 1, 2, ...} , q(t) satisfies

∫ λn+1t0

λnt0

q(s)ds ≤ θ

(λ − 1)λn+1t0
, (6)

where θ ≤ k0(λ) = (
√

λ − 1)2, then equation (1) is nonoscillatory.
Theorem F. Let λ > 1. If there exists some t0 such that for each n ∈ N0 =
{0, 1, 2, ...} , q(t) satisfies

∫ λn+1t0

λnt0

q(s)ds ≥ θ

(λ − 1)λnt0
, (7)
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where θ > k0(λ), then equation (1) is oscillatory.
Furthermore, Wong [15] extended the oscillation criteria (3) and (7) for

equation (1) to the following linear delay differential equation

y′′(t) + q(t)y(τ(t)) = 0, t ≥ t0, (8)

where q(t) ≥ 0 and locally integrable on [t0,∞), and τ(t) is a continuous function
satisfying 0 < τ(t) ≤ t and limt→∞τ(t) = ∞.

In 1987, Yan [16] proved the following result for equation (8), but Wong gave
an alternative and simpler proof in [15].
Theorem G. Suppose that for all sufficiently large t, q(t) satisfies

∫ ∞

t

q(s)
τ(s)

s
ds ≥ θ

t
(9)

for some fixed constant θ > 1
4 , then all solutions of equation (8) are oscillatory.

Wong also proved the extension of Theorem F for equation (8).
Theorem H. Let λ > 1. If there exists t0 ≥ t∗ and for each n ∈ N0 =
{0, 1, 2, ...} , q(t) satisfies

∫ λn+1t0

λnt0

q(s)
τ(s)

s
ds ≥ θ

(λ − 1)λnt0
, (10)

where θ > k0(λ). Then all solutions of equation (8) are oscillatory.
Now, let us consider the following half-linear differential equation

(

|y′(t)|α−2
y′(t)

)′

+ q(t) |y(t)|α−2
y(t) = 0, t ≥ t0, (11)

where α > 1, q(t) ≥ 0 is locally integrable on [t0,∞).
In 1995, Kusano and Yoshida [9] generalized Theorems A and B as follows:

Theorem I. If q ∈ L1[t0,∞), and

lim sup
t→∞

tα−1

∫ ∞

t

q(s)ds ≤ (α − 1)α−1

αα
, (12)

then equation (11) is nonoscillatory.
Theorem J. If q ∈ L1[t0,∞), and

lim inf
t→∞

tα−1

∫ ∞

t

q(s)ds >
(α − 1)α−1

αα
, (13)

then equation (11) is oscillatory.
In 2004, Yang [17] extended Theorems I and J as follows:

Theorem K. If q ∈ L1[t0,∞), and for large t > t0,

tα−1

∫ ∞

t

q(s)ds ≤ (α − 1)α−1

αα
, (14)

then equation (11) is nonoscillatory.
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Theorem L. If q ∈ L1[t0,∞), and for large t > t0,

tα−1

∫ ∞

t

q(s)ds ≥ α0, (15)

where α0 >
(α−1)α−1

αα
, then equation (11) is oscillatory.

In 2007, Kong [8] extended the results of Wong [15], namely Theorems E and
F, for the linear differential equation (1) to the half-linear differential equation
(11) as follows:
Theorem M. Let λ > 1 and ξ∗ = ξ∗(α). Assume there exists t0 ∈ (0,∞) such
that for each n ∈ N0 = {0, 1, 2, ...} , q(t) satisfies

(

∫ λn+1t0

λnt0

q(s)ds

)
1

α−1

≤ ξ∗

(λ − 1)λn+1t0
, (16)

then equation (11) is nonoscillatory.
Theorem N. Let λ > 1 and ξ∗ = ξ∗(α). Assume there exists t0 ∈ (0,∞) and
ξ > ξ∗ such that for each n ∈ N0 = {0, 1, 2, ...} , q(t) satisfies

(

∫ λn+1t0

λnt0

q(s)ds

)
1

α−1

≥ ξ

(λ − 1)λnt0
, (17)

then equation (11) is oscillatory.
In this paper, by using the same method in Wong [15], we extend Theorems

G, H and N to the following nonlinear delay differential equation

(

|y′(t)|α−2
y′(t)

)′

+ q(t) |y(τ(t))|β−2
y(τ(t)) = 0, t ≥ t0, (18)

where β > 1, α > 1, q(t) ≥ 0 and locally integrable on [t0,∞), τ(t) is continuous
function satisfying 0 < τ(t) ≤ t and limt→∞τ(t) = ∞.

Note that the equation (18) with τ(t) = t is referred to as a super-half-linear
equation, a sub-half-linear equation and an Emden-Fowler type equation for
β > α, β < α and β 6= α, respectively. We refer the readers to the introductory
books by Agarwal et al. [2] and by Došlý and R̆ehák [4] for the equation (18)
with τ(t) = t.

To present our results, we need the following lemma which is given by Erbe
[5].
Lemma P. Assume that τ ∈ C ([t0,∞), R+) , 0 < τ(t) < t for t ≥ t0 and
limt→∞ τ(t) = ∞. Let y ∈ C2 ([t0,∞), R+) be such that y′′(t) ≤ 0 for t ≥ T ≥
t0. Then for each constant k ∈ (0, 1) , there is a Tk ≥ T such that

y (τ (t))

y (t)
≥ k

τ (t)

t
for t ≥ Tk. (19)
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2 Main Results

First, we obtain two theorems which concern the oscillatory behaviour of equa-
tion (18) with β = α. Next, motivated by the ideas of Agarwal and Grace [1]
and Çakmak [3], we present two other results for β 6= α.

Theorem 1 Suppose that for all sufficiently large t, q(t) satisfies

∫ ∞

t

q(s)

(

τ(s)

s

)α−1

ds ≥ α1

tα−1
(20)

for some fixed constant α1 >
(α−1)α−1

αα
, then all solutions of equation (18) with

β = α are oscillatory.

Proof. Assume on the contrary that equation (18) with β = α has a nontrivial
nonoscillatory solution y(t), we can assume without loss of generality that y(t) >

0 for t ≥ t0. Since limt→∞ τ(t) = ∞, there exists t1 ≥ t0 such that y(τ(t)) > 0

for t ≥ t1. By equation (18) with β = α, since q(t) ≥ 0, |y′(t)|α−2
y′(t) is

nonincreasing on [t1,∞), so is y′(t). This implies that y′(t) > 0 and y′′(t) ≤ 0

for t ≥ t1. Define w(t) =
|y′(t)|α−2

y′(t)

|y(t)|α−2y(t)
, then w(t) satisfies the equation

w′(t) + (α − 1) |w(t)|
α

α−1 + q(t)

(

y(τ(t))

y(t)

)α−1

= 0 (21)

on [t1,∞). Thus, by Lemma P, for each constant k ∈ (0, 1) , there exists t2,
depending on k, such that for t ≥ t2 ≥ t1,

y (τ (t))

y (t)
≥ k

τ (t)

t
. (22)

Substituting (22) into (21), we find

w′(t) + (α − 1) |w(t)|
α

α−1 +

(

k
τ(t)

t

)α−1

q(t) ≤ 0, (23)

since q(t) ≥ 0. It follows from the result of Li and Yeh [10, Theorem 3.2] that
(23) implies the half-linear differential equation

(

|u′(t)|α−2
u′(t)

)′

+

(

k
τ(t)

t

)α−1

q(t) |u(t)|α−2
u(t) = 0 (24)

is nonoscillatory for every k, 0 < k < 1. Note that µ = kα−1 ∈ (0, 1) for every

0 < k < 1 and α > 1. Choose µ sufficiently close to 1 so that µα1 >
(α−1)α−1

αα

which is possible since α1 >
(α−1)α−1

αα
; for example, choose µ = 1

2 + (α−1)α−1

2ααα1
< 1.

Condition (20) implies

µ

∫ ∞

t

(

τ(s)

s

)α−1

q(s)ds ≥ µα1

tα−1
and µα1 >

(α − 1)α−1

αα
, (25)
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which in turn implies the oscillation criteria (15) given by Yang [17] that equa-
tion (24) is oscillatory. This is a contradiction, hence equation (18) with β = α

is oscillatory.
Using the same argument as in the proof of Theorem 1, we can also prove

the following result.

Theorem 2 Let λ > 1 and ξ∗ = ξ∗(α). Assume there exists t0 ∈ (0,∞) and
ξ > ξ∗ such that for each n ∈ N0 = {0, 1, 2, ...} , q(t) satisfies

(

∫ λn+1t0

λnt0

q(s)

(

τ(s)

s

)α−1

ds

)
1

α−1

≥ ξ

(λ − 1)λnt0
. (26)

Then all solutions of equation (18) with β = α are oscillatory.

Proof. We follow the proof of Theorem 1 and conclude that the existence of a
nonoscillatory solution of (18) with β = α lead to the conclusion that the half-
linear differential equation (24) is nonoscillatory for every k, 0 < k < 1. For
every 0 < k < 1 and α > 1, we can again choose µ = kα−1 ∈ (0, 1) sufficiently
close to 1 so that µξ > ξ∗. Now the coefficient function of equation (24) satisfies

µ

(

∫ λn+1t0

λnt0

q(s)

(

τ(s)

s

)α−1

ds

)
1

α−1

≥ ξ1

(λ − 1)λnt0
, (27)

where ξ1 = µξ > ξ∗, so we can apply Theorem N given by Kong [8] to equation
(24) and conclude that it is oscillatory for such µ, 0 < µ < 1, but µξ > ξ∗. This
contradicts the fact that equation (24) is nonoscillatory for all k, 0 < k < 1.

The proof is complete.

Remark 3 When α = 2, Theorems 1 and 2 reduce to Theorems G and H,
respectively.

Remark 4 If the delayed argument is absent, i.e. τ(t) = t, then Theorems 1
and 2 reduce to Theorems L and N, respectively. Furthermore, Theorem 1 is an
extension of Theorem J.

Remark 5 Let α = 2 and τ(t) = t. In this case, Theorem 1 is an extension
of Theorem B. Moreover, Theorem 2 (or Theorem 2 with λ = 2) reduces to
Theorem F (or Theorem D).

Theorem 6 Suppose that for all sufficiently large t, q(t) satisfies

c

∫ ∞

t

q(s)

(

τ(s)

s

)β−1

ds ≥ α1

tα−1
(28)

for some fixed constant α1 >
(α−1)α−1

αα
and any constant c > 0, then the following

assertions are true:
(i) all unbounded solutions of equation (18) with β > α are oscillatory.
(ii) all bounded solutions of equation (18) with β < α are oscillatory.
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Proof. Assume on the contrary that equation (18) with β 6= α has a nontrivial
nonoscillatory solution y(t), we can assume without loss of generality that y(t) >

0 for t ≥ t0. Since limt→∞ τ(t) = ∞, there exists t1 ≥ t0 such that y(τ(t)) > 0

for t ≥ t1. By equation (18) with β 6= α, since q(t) ≥ 0, |y′(t)|α−2
y′(t) is

nonincreasing on [t1,∞), so is y′(t). This implies that y′(t) > 0 and y′′(t) ≤ 0

for t ≥ t1. Define w(t) =
|y′(t)|α−2

y′(t)

|y(t)|α−2y(t)
, then w(t) satisfies the equation

w′(t) + (α − 1) |w(t)|
α

α−1 + q(t)

(

y(τ(t))

y(t)

)β−1

(y(t))β−α = 0 (29)

on [t1,∞). Next, we consider the following two cases:
(i) If y(t) is an unbounded nonoscillatory solution of equation (18) with

β > α for t ≥ t0, then there exist a constant k1 > 0 and t2 ≥ t1 ≥ t0 such that
y(t) ≥ k1 for t ≥ t2. Therefore,

(y(t))β−α ≥ k1
β−α = c1 for t ≥ t2, (30)

where c1 is a constant. Using (30) in the equation (29), and proceeding as in
the proof of Theorem 1, we arrive at the desired contradiction.

(ii) If y(t) is a bounded nonoscillatory solution of equation (18) with β < α

for t ≥ t0, then there exist a constant k2 > 0 and t2 ≥ t1 ≥ t0 such that
y(t) ≤ k2 for t ≥ t2. Therefore,

(y(t))β−α ≥ k2
β−α = c2 for t ≥ t2, (31)

where c2 is a constant. The rest of the proof is similar to that of previous case
and, hence omitted.

Combining some ingredients of the proofs of Theorems 2 and 6, we give the
following result for equation (18) with β 6= α, the proof of which is similar to
that of Theorem 6, and hence omitted.

Theorem 7 Let λ > 1 and ξ∗ = ξ∗(α). Assume there exists t0 ∈ (0,∞) and
ξ > ξ∗ such that for each n ∈ N0 = {0, 1, 2, ...} and any constant c > 0, q(t)
satisfies

(

c

∫ λn+1t0

λnt0

q(s)

(

τ(s)

s

)β−1

ds

)
1

α−1

≥ ξ

(λ − 1)λnt0
. (32)

Then the following assertions are true:
(i) all unbounded solutions of equation (18) with β > α are oscillatory.
(ii) all bounded solutions of equation (18) with β < α are oscillatory.

Finally, we generalize above results for a class of more general nonlinear
delay differential equations as follows:

Let α, β, q(t), and τ(t) be as above, and consider

(

|y′(t)|α−2
y′(t)

)′

+ f(t, y(τ(t))) = 0, t ≥ t0, (33)
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where the function f satisfies

sf(t, s) ≥ q(t) |s|β for t ≥ t0 and s ∈ R. (34)

The proof of the following results are exactly as in that of above theorems and
hence omitted.

Theorem 8 In addition to the conditions of Theorem 1 (or Theorem 2), if (34)
with β = α holds, then all solutions of equation (33) are oscillatory.

Theorem 9 In addition to the conditions of Theorem 6 (or Theorem 7), if (34)
with β > α holds, then all unbounded solutions of equation (33) are oscillatory.

Theorem 10 In addition to the conditions of Theorem 6 (or Theorem 7), if
(34) with β < α holds, then all bounded solutions of equation (33) are oscilla-
tory.

Remark 11 For another oscillation criteria contain for equation (18) with β ≥
α and (33) with f(t, y(τ(t))) = F (y(τ(t))) under different sufficient conditions,
the reader is referred to [13].

Remark 12 In case the delay is bounded, i.e., 0 ≤ t − τ(t) ≤ M , then τ(t)
t

in
conditions (20), (26), (28) and (32) can be replaced by 1. In other words, Hille’s
oscillation criterion (3) is also valid oscillation criteria for equations (18) and
(33) with β = α = 2 and bounded delay; see [11, 14, 15].
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[12] A. Tiryaki and Y. Başcı, Interval oscillation criteria for second-order quasi-
linear functional differential equations, Dyn. Contin. Discrete Impuls. Syst.
Ser. A Math. Anal. 16 (2009), 233-252.

[13] A. Tiryaki, Oscillation criteria for a certain second-order nonlinear differ-
ential equations with deviating arguments, E. J. Qualitative Theory of Diff.
Equ. 61 (2009), 1-11.

[14] J.S.W. Wong, Second order oscillation with retarded arguments, in: L.
Weiss (Ed.), Ordinary Differential Equations, 1971 NRL-MRC Conference,
Academic Press, New York, 1972, pp. 581-596.

[15] J.S.W. Wong, Remarks on a paper of C. Huang, J. Math. Anal. Appl. 291
(2004), 180-88.

[16] J. Yan, Oscillatory property for second order linear differential equations,
J. Math. Anal. Appl. 122 (1987), 380-384.

[17] X. Yang, Oscillation criterion for a class of quasilinear differential equations,
Appl. Math. Comput. 153 (2004), 225-229.

(Received April 25, 2011)

EJQTDE, 2011 No. 84, p. 9


