Oscillation Criteria for Nonlinear Delay Differential Equations of Second Order^{*}

Devrim Çakmak[†] Gazi University Faculty of Education Department of Mathematics Education 06500 Teknikokullar, Ankara, Turkey dcakmak@gazi.edu.tr

Aydın Tiryaki Izmir University Faculty of Arts and Sciences Department of Mathematics and Computer Sciences 35350 Uckuyular, Izmir, Turkey aydin.tiryaki@izmir.edu.tr

Abstract

We prove oscillation theorems for the nonlinear delay differential equation $(|y'(t)|^{\alpha-2} y'(t))' + q(t) |y(\tau(t))|^{\beta-2} y(\tau(t)) = 0, \quad t \ge t_* > 0,$ where $\beta > 1, \alpha > 1, q(t) \ge 0$ and locally integrable on $[t_*, \infty), \tau(t)$ is a continuous function satisfying $0 < \tau(t) \le t$ and $\lim_{t\to\infty} \tau(t) = \infty$. The results obtained essentially improve the known results in the literature and can be applied to linear and half-linear delay type differential equations.

AMS Subject Classification: 34C10, 34C15. Keywords: Oscillation; Second order; Ordinary differential equation; Emden-Fowler equation; Delayed argument; Riccati transformation.

1 Introduction

In the last decades, there has been an increasing interest in obtaining sufficient conditions for the oscillation and/or nonoscillation of solutions for different classes of second order differential equations with or without deviating arguments. For interested readers we refer to the papers [7, 8, 12, 13, 15] and the references quoted therein.

^{*}Dedicated to Professor A. Okay Çelebi on the occasion of his 70th birthday $^{\dagger}\mathrm{Corresponding}$ author

Before we continue with the description of the content of this paper, we present a short survey of the most basic results in the literature.

Let us consider the following linear differential equation

$$y'' + q(t)y = 0, \qquad t \ge t_0 \ge t_* > 0, \tag{1}$$

where $q(t) \ge 0$ is locally integrable on $[t_0, \infty)$.

In 1948, Hille [6] established the following results: **Theorem A.** If $q \in L^1[t_0, \infty)$ and

$$\limsup_{t \to \infty} t \int_{t}^{\infty} q(s) ds \le \frac{1}{4},$$
(2)

then equation (1) is nonoscillatory. **Theorem B.** If $q \in L^1[t_0, \infty)$ and

$$\liminf_{t \to \infty} t \int_{t}^{\infty} q(s) ds > \frac{1}{4},\tag{3}$$

then equation (1) is oscillatory.

 $\{0, 1, 2, ...\}, q(t) \text{ satisfies}$

In 1997, Huang [7] obtained the following interval criteria:

Theorem C. If there exists $t_0 \ge t_*$ such that for each $n \in \mathbb{N}_0 = \{0, 1, 2, ...\}$, q(t) satisfies

$$\int_{2^{n}t_0}^{2^{n+1}t_0} q(s)ds \le \frac{\theta_0}{2^{n+1}t_0},\tag{4}$$

where $\theta_0 = 3 - 2\sqrt{2}$, then equation (1) is nonoscillatory. **Theorem D.** If there exists $t_0 \ge t_*$ such that for each $n \in \mathbb{N}_0 = \{0, 1, 2, ...\}$, q(t) satisfies

$$\int_{2^{n}t_0}^{2^{n+1}t_0} q(s)ds \ge \frac{\theta}{2^n t_0},\tag{5}$$

where $\theta > \theta_0$, then equation (1) is oscillatory.

In 2004, by replacing the sequence $\{2^n\}$ in Theorems C and D by $\{\lambda^n\}$ with $\lambda > 1$, Wong [15] generalized Theorems C and D as follows: **Theorem E.** Let $\lambda > 1$. If there exists some t_0 such that for each $n \in \mathbb{N}_0 =$

$$\int_{\lambda^n t_0}^{\lambda^{n+1} t_0} q(s) ds \le \frac{\theta}{(\lambda - 1)\lambda^{n+1} t_0},\tag{6}$$

where $\theta \leq k_0(\lambda) = (\sqrt{\lambda} - 1)^2$, then equation (1) is nonoscillatory. **Theorem F.** Let $\lambda > 1$. If there exists some t_0 such that for each $n \in \mathbb{N}_0 = \{0, 1, 2, ...\}, q(t)$ satisfies

$$\int_{\lambda^n t_0}^{\lambda^{n+1} t_0} q(s) ds \ge \frac{\theta}{(\lambda - 1)\lambda^n t_0},\tag{7}$$

where $\theta > k_0(\lambda)$, then equation (1) is oscillatory.

Furthermore, Wong [15] extended the oscillation criteria (3) and (7) for equation (1) to the following linear delay differential equation

$$y''(t) + q(t)y(\tau(t)) = 0, \qquad t \ge t_0,$$
(8)

where $q(t) \ge 0$ and locally integrable on $[t_0, \infty)$, and $\tau(t)$ is a continuous function satisfying $0 < \tau(t) \le t$ and $\lim_{t\to\infty} \tau(t) = \infty$.

In 1987, Yan [16] proved the following result for equation (8), but Wong gave an alternative and simpler proof in [15].

Theorem G. Suppose that for all sufficiently large t, q(t) satisfies

$$\int_{t}^{\infty} q(s) \frac{\tau(s)}{s} ds \ge \frac{\theta}{t}$$
(9)

for some fixed constant $\theta > \frac{1}{4}$, then all solutions of equation (8) are oscillatory. Wong also proved the extension of Theorem F for equation (8).

Theorem H. Let $\lambda > 1$. If there exists $t_0 \ge t_*$ and for each $n \in \mathbb{N}_0 = \{0, 1, 2, ...\}, q(t)$ satisfies

$$\int_{\lambda^n t_0}^{\lambda^{n+1}t_0} q(s) \frac{\tau(s)}{s} ds \ge \frac{\theta}{(\lambda-1)\lambda^n t_0},\tag{10}$$

where $\theta > k_0(\lambda)$. Then all solutions of equation (8) are oscillatory.

Now, let us consider the following half-linear differential equation

$$\left(\left|y'(t)\right|^{\alpha-2}y'(t)\right)' + q(t)\left|y(t)\right|^{\alpha-2}y(t) = 0, \quad t \ge t_0, \quad (11)$$

where $\alpha > 1$, $q(t) \ge 0$ is locally integrable on $[t_0, \infty)$.

In 1995, Kusano and Yoshida [9] generalized Theorems A and B as follows: **Theorem I.** If $q \in L^1[t_0, \infty)$, and

$$\limsup_{t \to \infty} t^{\alpha - 1} \int_{t}^{\infty} q(s) ds \le \frac{(\alpha - 1)^{\alpha - 1}}{\alpha^{\alpha}},\tag{12}$$

then equation (11) is nonoscillatory. **Theorem J.** If $q \in L^1[t_0, \infty)$, and

$$\liminf_{t \to \infty} t^{\alpha - 1} \int_t^\infty q(s) ds > \frac{(\alpha - 1)^{\alpha - 1}}{\alpha^\alpha},\tag{13}$$

then equation (11) is oscillatory.

In 2004, Yang [17] extended Theorems I and J as follows: **Theorem K.** If $q \in L^1[t_0, \infty)$, and for large $t > t_0$,

$$t^{\alpha-1} \int_{t}^{\infty} q(s) ds \le \frac{(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}},\tag{14}$$

then equation (11) is nonoscillatory.

Theorem L. If $q \in L^1[t_0, \infty)$, and for large $t > t_0$,

$$t^{\alpha-1} \int_{t}^{\infty} q(s) ds \ge \alpha_0, \tag{15}$$

where $\alpha_0 > \frac{(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}}$, then equation (11) is oscillatory. In 2007, Kong [8] extended the results of Wong [15], namely Theorems E and F, for the linear differential equation (1) to the half-linear differential equation (11) as follows:

Theorem M. Let $\lambda > 1$ and $\xi^* = \xi^*(\alpha)$. Assume there exists $t_0 \in (0, \infty)$ such that for each $n \in \mathbb{N}_0 = \{0, 1, 2, ...\}, q(t)$ satisfies

$$\left(\int_{\lambda^n t_0}^{\lambda^{n+1}t_0} q(s)ds\right)^{\frac{1}{\alpha-1}} \le \frac{\xi^*}{(\lambda-1)\lambda^{n+1}t_0},\tag{16}$$

then equation (11) is nonoscillatory.

Theorem N. Let $\lambda > 1$ and $\xi^* = \xi^*(\alpha)$. Assume there exists $t_0 \in (0, \infty)$ and $\xi > \xi^*$ such that for each $n \in \mathbb{N}_0 = \{0, 1, 2, ...\}, q(t)$ satisfies

$$\left(\int_{\lambda^n t_0}^{\lambda^{n+1}t_0} q(s)ds\right)^{\frac{1}{\alpha-1}} \ge \frac{\xi}{(\lambda-1)\lambda^n t_0},\tag{17}$$

then equation (11) is oscillatory.

In this paper, by using the same method in Wong [15], we extend Theorems G, H and N to the following nonlinear delay differential equation

$$\left(\left|y'(t)\right|^{\alpha-2}y'(t)\right)' + q(t)\left|y(\tau(t))\right|^{\beta-2}y(\tau(t)) = 0, \quad t \ge t_0, \quad (18)$$

where $\beta > 1, \alpha > 1, q(t) \ge 0$ and locally integrable on $[t_0, \infty), \tau(t)$ is continuous function satisfying $0 < \tau(t) \leq t$ and $\lim_{t \to \infty} \tau(t) = \infty$.

Note that the equation (18) with $\tau(t) = t$ is referred to as a super-half-linear equation, a sub-half-linear equation and an Emden-Fowler type equation for $\beta > \alpha, \beta < \alpha$ and $\beta \neq \alpha$, respectively. We refer the readers to the introductory books by Agarwal et al. [2] and by Došlý and Řehák [4] for the equation (18) with $\tau(t) = t$.

To present our results, we need the following lemma which is given by Erbe [5].

Lemma P. Assume that $\tau \in C([t_0,\infty),\mathbb{R}^+)$, $0 < \tau(t) < t$ for $t \geq t_0$ and $\lim_{t\to\infty} \tau(t) = \infty$. Let $y \in C^2([t_0,\infty),\mathbb{R}^+)$ be such that $y''(t) \leq 0$ for $t \geq T \geq T$ t₀. Then for each constant $k \in (0, 1)$, there is a $T_k \ge T$ such that

$$\frac{y(\tau(t))}{y(t)} \ge k \frac{\tau(t)}{t} \quad \text{for } t \ge T_k.$$
(19)

2 Main Results

First, we obtain two theorems which concern the oscillatory behaviour of equation (18) with $\beta = \alpha$. Next, motivated by the ideas of Agarwal and Grace [1] and Çakmak [3], we present two other results for $\beta \neq \alpha$.

Theorem 1 Suppose that for all sufficiently large t, q(t) satisfies

$$\int_{t}^{\infty} q(s) \left(\frac{\tau(s)}{s}\right)^{\alpha-1} ds \ge \frac{\alpha_1}{t^{\alpha-1}}$$
(20)

for some fixed constant $\alpha_1 > \frac{(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}}$, then all solutions of equation (18) with $\beta = \alpha$ are oscillatory.

Proof. Assume on the contrary that equation (18) with $\beta = \alpha$ has a nontrivial nonoscillatory solution y(t), we can assume without loss of generality that y(t) > 0 for $t \ge t_0$. Since $\lim_{t\to\infty} \tau(t) = \infty$, there exists $t_1 \ge t_0$ such that $y(\tau(t)) > 0$ for $t \ge t_1$. By equation (18) with $\beta = \alpha$, since $q(t) \ge 0$, $|y'(t)|^{\alpha-2}y'(t)$ is nonincreasing on $[t_1, \infty)$, so is y'(t). This implies that y'(t) > 0 and $y''(t) \le 0$ for $t \ge t_1$. Define $w(t) = \frac{|y'(t)|^{\alpha-2}y'(t)}{|y(t)|^{\alpha-2}y(t)}$, then w(t) satisfies the equation

$$w'(t) + (\alpha - 1) |w(t)|^{\frac{\alpha}{\alpha - 1}} + q(t) \left(\frac{y(\tau(t))}{y(t)}\right)^{\alpha - 1} = 0$$
(21)

on $[t_1, \infty)$. Thus, by Lemma P, for each constant $k \in (0, 1)$, there exists t_2 , depending on k, such that for $t \ge t_2 \ge t_1$,

$$\frac{y\left(\tau\left(t\right)\right)}{y\left(t\right)} \ge k\frac{\tau\left(t\right)}{t}.$$
(22)

Substituting (22) into (21), we find

$$w'(t) + (\alpha - 1) |w(t)|^{\frac{\alpha}{\alpha - 1}} + \left(k\frac{\tau(t)}{t}\right)^{\alpha - 1} q(t) \le 0,$$
(23)

since $q(t) \ge 0$. It follows from the result of Li and Yeh [10, Theorem 3.2] that (23) implies the half-linear differential equation

$$\left(\left|u'(t)\right|^{\alpha-2}u'(t)\right)' + \left(k\frac{\tau(t)}{t}\right)^{\alpha-1}q(t)\left|u(t)\right|^{\alpha-2}u(t) = 0$$
(24)

is nonoscillatory for every k, 0 < k < 1. Note that $\mu = k^{\alpha - 1} \in (0, 1)$ for every 0 < k < 1 and $\alpha > 1$. Choose μ sufficiently close to 1 so that $\mu \alpha_1 > \frac{(\alpha - 1)^{\alpha - 1}}{\alpha^{\alpha}}$ which is possible since $\alpha_1 > \frac{(\alpha - 1)^{\alpha - 1}}{\alpha^{\alpha}}$; for example, choose $\mu = \frac{1}{2} + \frac{(\alpha - 1)^{\alpha - 1}}{2\alpha^{\alpha}\alpha_1} < 1$. Condition (20) implies

$$\mu \int_{t}^{\infty} \left(\frac{\tau(s)}{s}\right)^{\alpha-1} q(s) ds \ge \frac{\mu \alpha_1}{t^{\alpha-1}} \quad \text{and} \quad \mu \alpha_1 > \frac{(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}}, \qquad (25)$$

which in turn implies the oscillation criteria (15) given by Yang [17] that equation (24) is oscillatory. This is a contradiction, hence equation (18) with $\beta = \alpha$ is oscillatory.

Using the same argument as in the proof of Theorem 1, we can also prove the following result.

Theorem 2 Let $\lambda > 1$ and $\xi^* = \xi^*(\alpha)$. Assume there exists $t_0 \in (0, \infty)$ and $\xi > \xi^*$ such that for each $n \in \mathbb{N}_0 = \{0, 1, 2, ...\}, q(t)$ satisfies

$$\left(\int_{\lambda^n t_0}^{\lambda^{n+1}t_0} q(s) \left(\frac{\tau(s)}{s}\right)^{\alpha-1} ds\right)^{\frac{1}{\alpha-1}} \ge \frac{\xi}{(\lambda-1)\lambda^n t_0}.$$
 (26)

Then all solutions of equation (18) with $\beta = \alpha$ are oscillatory.

Proof. We follow the proof of Theorem 1 and conclude that the existence of a nonoscillatory solution of (18) with $\beta = \alpha$ lead to the conclusion that the half-linear differential equation (24) is nonoscillatory for every k, 0 < k < 1. For every 0 < k < 1 and $\alpha > 1$, we can again choose $\mu = k^{\alpha-1} \in (0, 1)$ sufficiently close to 1 so that $\mu \xi > \xi^*$. Now the coefficient function of equation (24) satisfies

$$\mu\left(\int_{\lambda^n t_0}^{\lambda^{n+1}t_0} q(s)\left(\frac{\tau(s)}{s}\right)^{\alpha-1} ds\right)^{\frac{1}{\alpha-1}} \ge \frac{\xi_1}{(\lambda-1)\lambda^n t_0},\tag{27}$$

where $\xi_1 = \mu \xi > \xi^*$, so we can apply Theorem N given by Kong [8] to equation (24) and conclude that it is oscillatory for such μ , $0 < \mu < 1$, but $\mu \xi > \xi^*$. This contradicts the fact that equation (24) is nonoscillatory for all k, 0 < k < 1. The proof is complete.

Remark 3 When $\alpha = 2$, Theorems 1 and 2 reduce to Theorems G and H, respectively.

Remark 4 If the delayed argument is absent, i.e. $\tau(t) = t$, then Theorems 1 and 2 reduce to Theorems L and N, respectively. Furthermore, Theorem 1 is an extension of Theorem J.

Remark 5 Let $\alpha = 2$ and $\tau(t) = t$. In this case, Theorem 1 is an extension of Theorem B. Moreover, Theorem 2 (or Theorem 2 with $\lambda = 2$) reduces to Theorem F (or Theorem D).

Theorem 6 Suppose that for all sufficiently large t, q(t) satisfies

$$c\int_{t}^{\infty} q(s)\left(\frac{\tau(s)}{s}\right)^{\beta-1} ds \ge \frac{\alpha_1}{t^{\alpha-1}}$$
(28)

for some fixed constant $\alpha_1 > \frac{(\alpha-1)^{\alpha-1}}{\alpha^{\alpha}}$ and any constant c > 0, then the following assertions are true:

(i) all unbounded solutions of equation (18) with $\beta > \alpha$ are oscillatory.

(ii) all bounded solutions of equation (18) with $\beta < \alpha$ are oscillatory.

Proof. Assume on the contrary that equation (18) with $\beta \neq \alpha$ has a nontrivial nonoscillatory solution y(t), we can assume without loss of generality that y(t) > 0 for $t \geq t_0$. Since $\lim_{t\to\infty} \tau(t) = \infty$, there exists $t_1 \geq t_0$ such that $y(\tau(t)) > 0$ for $t \geq t_1$. By equation (18) with $\beta \neq \alpha$, since $q(t) \geq 0$, $|y'(t)|^{\alpha-2}y'(t)$ is nonincreasing on $[t_1, \infty)$, so is y'(t). This implies that y'(t) > 0 and $y''(t) \leq 0$ for $t \geq t_1$. Define $w(t) = \frac{|y'(t)|^{\alpha-2}y'(t)}{|y(t)|^{\alpha-2}y(t)}$, then w(t) satisfies the equation

$$w'(t) + (\alpha - 1) |w(t)|^{\frac{\alpha}{\alpha - 1}} + q(t) \left(\frac{y(\tau(t))}{y(t)}\right)^{\beta - 1} (y(t))^{\beta - \alpha} = 0$$
(29)

on $[t_1, \infty)$. Next, we consider the following two cases:

(i) If y(t) is an unbounded nonoscillatory solution of equation (18) with $\beta > \alpha$ for $t \ge t_0$, then there exist a constant $k_1 > 0$ and $t_2 \ge t_1 \ge t_0$ such that $y(t) \ge k_1$ for $t \ge t_2$. Therefore,

$$(y(t))^{\beta-\alpha} \ge k_1^{\beta-\alpha} = c_1 \quad \text{for } t \ge t_2, \tag{30}$$

where c_1 is a constant. Using (30) in the equation (29), and proceeding as in the proof of Theorem 1, we arrive at the desired contradiction.

(ii) If y(t) is a bounded nonoscillatory solution of equation (18) with $\beta < \alpha$ for $t \ge t_0$, then there exist a constant $k_2 > 0$ and $t_2 \ge t_1 \ge t_0$ such that $y(t) \le k_2$ for $t \ge t_2$. Therefore,

$$(y(t))^{\beta-\alpha} \ge k_2^{\beta-\alpha} = c_2 \quad \text{for } t \ge t_2, \tag{31}$$

where c_2 is a constant. The rest of the proof is similar to that of previous case and, hence omitted.

Combining some ingredients of the proofs of Theorems 2 and 6, we give the following result for equation (18) with $\beta \neq \alpha$, the proof of which is similar to that of Theorem 6, and hence omitted.

Theorem 7 Let $\lambda > 1$ and $\xi^* = \xi^*(\alpha)$. Assume there exists $t_0 \in (0, \infty)$ and $\xi > \xi^*$ such that for each $n \in \mathbb{N}_0 = \{0, 1, 2, ...\}$ and any constant c > 0, q(t) satisfies

$$\left(c\int_{\lambda^n t_0}^{\lambda^{n+1}t_0} q(s)\left(\frac{\tau(s)}{s}\right)^{\beta-1} ds\right)^{\frac{1}{\alpha-1}} \ge \frac{\xi}{(\lambda-1)\lambda^n t_0}.$$
(32)

Then the following assertions are true:

- (i) all unbounded solutions of equation (18) with $\beta > \alpha$ are oscillatory.
- (ii) all bounded solutions of equation (18) with $\beta < \alpha$ are oscillatory.

Finally, we generalize above results for a class of more general nonlinear delay differential equations as follows:

Let α , β , q(t), and $\tau(t)$ be as above, and consider

$$\left(\left|y'(t)\right|^{\alpha-2}y'(t)\right)' + f(t, y(\tau(t))) = 0, \quad t \ge t_0,$$
(33)

where the function f satisfies

$$sf(t,s) \ge q(t) |s|^{\beta}$$
 for $t \ge t_0$ and $s \in \mathbb{R}$. (34)

The proof of the following results are exactly as in that of above theorems and hence omitted.

Theorem 8 In addition to the conditions of Theorem 1 (or Theorem 2), if (34) with $\beta = \alpha$ holds, then all solutions of equation (33) are oscillatory.

Theorem 9 In addition to the conditions of Theorem 6 (or Theorem 7), if (34) with $\beta > \alpha$ holds, then all unbounded solutions of equation (33) are oscillatory.

Theorem 10 In addition to the conditions of Theorem 6 (or Theorem 7), if (34) with $\beta < \alpha$ holds, then all bounded solutions of equation (33) are oscillatory.

Remark 11 For another oscillation criteria contain for equation (18) with $\beta \geq \alpha$ and (33) with $f(t, y(\tau(t))) = F(y(\tau(t)))$ under different sufficient conditions, the reader is referred to [13].

Remark 12 In case the delay is bounded, i.e., $0 \le t - \tau(t) \le M$, then $\frac{\tau(t)}{t}$ in conditions (20), (26), (28) and (32) can be replaced by 1. In other words, Hille's oscillation criterion (3) is also valid oscillation criteria for equations (18) and (33) with $\beta = \alpha = 2$ and bounded delay; see [11, 14, 15].

References

- R.P. Agarwal and S.R. Grace, Second-order nonlinear forced oscillations, Dynam. Systems Appl. 10 (2001), no. 4, 455-464.
- [2] R.P. Agarwal, S.R. Grace and D. O'Regan, Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations, Kluwer, Dordrecht, 2002.
- [3] D. Çakmak, Oscillation criteria for nonlinear second-order differential equations with damping, Ukrainian Math. J. 60 (2008), no. 5, 799-809.
- [4] O. Došlý and P. Rehák, Half-linear Differential Equations, Mathematics Studies 202, North-Holland, 2005.
- [5] L. Erbe, Oscillation criteria for second order nonlinear delay equations, Canad. Math. Bull. 16 (1973), no. 1, 49-56.
- [6] E. Hille, Nonoscillation theorems, Trans. Amer. Math. Soc. 64 (1948), 234-252.

- [7] C. Huang, Oscillation and nonoscillation for second order linear differential equations, J. Math. Anal. Appl. 210 (1997), 712-723.
- [8] Q. Kong, Nonoscillation and oscillation of second order half-linear differential equations, J. Math. Anal. Appl. 332 (2007), 512-522.
- [9] K. Kusano and N. Yoshida, Nonoscillation theorems for a class of quasilinear differential equations of second order, J. Math. Anal. Appl. 189 (1995), 115-127.
- [10] H.J. Li and C.C. Yeh, Sturmian comparison theorem for half-linear second order differential equations, Proc. Roy. Soc. Edin. 125A (1995), 1193-1204.
- [11] W.E. Mahfoud, Oscillation theorems for a second order delay differential equation, J. Math. Anal. Appl. 63 (1978), 339-346.
- [12] A. Tiryaki and Y. Başcı, Interval oscillation criteria for second-order quasilinear functional differential equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 16 (2009), 233-252.
- [13] A. Tiryaki, Oscillation criteria for a certain second-order nonlinear differential equations with deviating arguments, E. J. Qualitative Theory of Diff. Equ. 61 (2009), 1-11.
- [14] J.S.W. Wong, Second order oscillation with retarded arguments, in: L. Weiss (Ed.), Ordinary Differential Equations, 1971 NRL-MRC Conference, Academic Press, New York, 1972, pp. 581-596.
- [15] J.S.W. Wong, Remarks on a paper of C. Huang, J. Math. Anal. Appl. 291 (2004), 180-88.
- [16] J. Yan, Oscillatory property for second order linear differential equations, J. Math. Anal. Appl. 122 (1987), 380-384.
- [17] X. Yang, Oscillation criterion for a class of quasilinear differential equations, Appl. Math. Comput. 153 (2004), 225-229.

(Received April 25, 2011)