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1. Introduction

In [1], Gurney et al. proposed the following nonlinear autonomous delay equation

N ′(t) = −δN(t) + pN(t − τ)e−aN(t−τ), δ, p, τ, a ∈ (0, +∞) (1.1)

to describe the population of the Australian sheep-blowfly and to agree with the experimental

data obtained in [2]. Here, N(t) is the size of the population at time t, p is the maximum

per capita daily egg production, 1
a

is the size at which the population reproduces at its

maximum rate, δ is the per capita daily adult death rate, and τ is the generation time.

Since this equation explains Nicholson’s data of blowfly more accurately, the model and its
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modifications have been now refereed to as the Nicholson’s Blowflies Model. In the past forty

years, the theory of the Nicholson’s blowflies model has made a remarkable progress with

main results scattered in numerous research papers, see, for example, [3−8]. In particular,

there have been extensive results on the problem of the existence of positive periodic solutions

for Nicholson’s blowflies equation in the literature. We refer the reader to [9−11] and the

references cited therein.

Recently, assuming that a harvesting function is a function of the delayed estimate of the

true population, L. Berezansky et al. [12] proposed the Nicholson’s blowflies model with a

linear harvesting term:

N ′(t) = −δN(t) + pN(t − τ)e−aN(t−τ) − HN(t − σ), δ, p, τ, a,H, σ ∈ (0, +∞). (1.2)

Moreover, L. Berezansky et al. [12] pointed out an open problem: How about the dynamic

behaviors of the Nicholson’s blowflies model with a linear harvesting term.

The main purpose of this paper is to give the conditions for the existence and uniqueness

of positive periodic solutions for Nicholson’s blowflies models with a linear harvesting term.

Since the coefficients and delays in differential equations of population and ecology problems

are usually time-varying in the real world, so we’ll consider the delayed Nicholson’s blowflies

models with a linear harvesting term:

N ′(t) = −δ(t)N(t) + p(t)N(t − τ(t))e−a(t)N(t−τ(t)) − H(t)N(t − τ(t)), (1.3)

where δ, p, a ∈ C(R, (0,∞)) and τ,H ∈ C(R, [0,∞)) are T -periodic functions.

Throughout this paper, given a bounded continuous function g defined on R, let g+ and

g− be defined as

g− = inf
t∈R

g(t), g+ = sup
t∈R

g(t). (1.4)

Then, we denote

A = 2

∫ T

0
δ(t)dt, f(t) =

p(t)

a(t)δ(t)e
, h(t) =

p(t)

δ(t) + H(t)
. (1.5)

For the sake of convenience, we choose a constant κ such that

0 < κ < 1,
1 − κ

eκ
=

1

e2
, (1.6)

which implies that

sup
x≥κ

|
1 − x

ex
| =

1

e2
. (1.7)
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The remaining part of this paper is organized as follows. In section 2, we shall derive new

sufficient conditions for checking the existence and uniqueness of positive periodic solutions

of model (1.3). In Section 3, we shall give an example and a remark to illustrate our results

obtained in the previous sections.

2. Existence and Uniqueness of Positive Periodic Solutions

The following continuation theorem of coincidence degree is crucial in the arguments of

our main results.

Lemma 2.1 (Continuation Theorem) [13]. Let X and Z be two Banach spaces.

Suppose that L : D(L) ⊂ X → Z is a Fredholm operator with index zero and N : X → Z is

L -compact on Ω, where Ω is an open subset of X. Moreover, assume that all the following

conditions are satisfied:

(1) Lx 6= λNx, for all x ∈ ∂Ω ∩ D(L), λ ∈ (0, 1);

(2) Nx 6∈ ImL, for all x ∈ ∂Ω ∩ KerL;

(3) The Brouwer degree

deg{QN,Ω ∩ KerL, 0} 6= 0.

Then equation Lx = Nx has at least one solution in D(L) ∩ Ω.

Theorem 2.1. Set

p−e−a+f+
− H+ ≥ 0. (2.1)

Then (1.3) has a positive T -periodic solution.

Proof. Set N(t) = ex(t), then (1.3) can be rewritten as

x′(t) = −δ(t) + p(t)ex(t−τ(t))−x(t)−a(t)ex(t−τ(t))
− H(t)ex(t−τ(t))−x(t)

:= ∆(x, t). (2.2)

Then, to prove Theorem 2.1, it suffices to show that equation (2.2) has at least one T -periodic

solution. Let X = Z = {x ∈ C(R,R) : x(t + T ) = x(t) for all t ∈ R} be Banach spaces

equipped with the norm ||·||, where ||x|| = max
t∈[0,T ]

|x(t)|. For any x ∈ X, because of periodicity,

it is easy to see that ∆(x, ·) ∈ C(R,R) is T -periodic, Let

L : D(L) = {x ∈ X : x ∈ C1(R,R)} ∋ x 7−→ x′ ∈ Z,

P : X ∋ x 7−→
1

T

∫ T

0
x(s)ds ∈ X,
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Q : Z ∋ z 7−→
1

T

∫ T

0
z(s)ds ∈ Z,

N : X ∋ x 7−→ ∆(x, ·) ∈ Z.

Clearly,

ImL = {x|x ∈ Z,

∫ T

0
x(s)ds = 0},KerL = R, ImP = KerL,KerQ = ImL.

It follows that the operator L is a Fredholm operator with index zero. Set LP = L|D(L)∩KerP ,

then LP has continuous inverse L−1
P defined by

L−1
P : ImL → D(L) ∩ KerP,L−1

P y(t) = −
1

T

∫ T

0

∫ t

0
y(s)dsdt +

∫ t

0
y(s)ds. (2.3)

To apply Lemma 2.1, we first claim that N is L-compact on Ω, where Ω is a bounded open

subset of X. From (2.3), it follows that

QNx =
1

T

∫ T

0
Nx(t)dt

=
1

T

∫ T

0
[−δ(t) + p(t)ex(t−τ(t))−x(t)−a(t)ex(t−τ(t))

− H(t)ex(t−τ(t))−x(t)]dt, (2.4)

L−1
P (I − Q)Nx =

∫ t

0
Nx(s)ds −

t

T

∫ T

0
Nx(s)ds −

1

T

∫ T

0

∫ t

0
Nx(s)dsdt

+
1

T

∫ T

0

∫ t

0
QNx(s)dsdt. (2.5)

Obviously, QN and L−1
P (I − Q)N are continuous. It is not difficult to show that L−1

P (I −

Q)N(Ω) is compact for any open bounded set Ω ⊂ X by using the Arzela-Ascoli theorem.

Moreover, QN(Ω) is clearly bounded. Thus, N is L−compact on Ω with any open bounded

set Ω ⊂ X.

Considering the operator equation Lx = λNx, λ ∈ (0, 1), we have

x′(t) = λ∆(x, t). (2.6)

Assume that x ∈ X is a solution of (2.6) for some λ ∈ (0, 1). Then, there exist ξ, η ∈ [0, T ]

such that

x(ξ) = min
t∈[0,T ]

x(t), x(η) = max
t∈[0,T ]

x(t), x′(ξ) = x′(η) = 0. (2.7)
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In view of the fact that sup
u≥0

ue−u = 1
e
, using (2.6) and (2.7), we obtain

δ(η) ≤ δ(η) + H(η)ex(η−τ(η))−x(η)

= p(η)ex(η−τ(η))−x(η)−a(η)ex(η−τ(η))

= p(η)
a(η)ex(η−τ(η))e−a(η)ex(η−τ(η))

a(η)ex(η)

≤
p(η)

a(η)e

1

ex(η)
,

which implies that

x(t) ≤ x(η) < ln(
p(η)

a(η)δ(η)e
) ≤ ln f+ := H1, for all t ∈ R. (2.8)

According to p−e−a+f+
− H+ ≥ 0, we have

p(t)ex(t−τ(t))−x(t)−a(t)ex(t−τ(t))
− H(t)ex(t−τ(t))−x(t)

= ex(t−τ(t))−x(t)[p(t)e−a(t)ex(t−τ(t))
− H(t)]

≥ ex(t−τ(t))−x(t)[p−e−a+ex(η)
− H+]

≥ ex(t−τ(t))−x(t)[p−e−a+f+
− H+]

≥ 0.

Thus,

∫ T

0
|p(t)ex(t−τ(t))−x(t)−a(t)ex(t−τ(t))

− H(t)ex(t−τ(t))−x(t) |dt

=

∫ T

0
[p(t)ex(t−τ(t))−x(t)−a(t)ex(t−τ(t))

− H(t)ex(t−τ(t))−x(t) ]dt

=

∫ T

0
δ(t)dt. (2.9)

It follows from (2.6) and (2.9) that

∫ T

0
|x′(t)|dt ≤ λ

∫ T

0
|p(t)ex(t−τ(t))−x(t)−a(t)ex(t−τ(t))

− H(t)ex(t−τ(t))−x(t)|dt

+λ

∫ T

0
|δ(t)|dt

< 2

∫ T

0
δ(t)dt = A. (2.10)

Since

p(ξ)e−a(ξ)ex(ξ−τ(ξ))
− H(ξ) ≥ p−e−a+f+

− H+ ≥ 0,
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again from (2.6) and (2.7), we obtain

δ(ξ) = ex(ξ−τ(ξ))−x(ξ)[p(ξ)e−a(ξ)ex(ξ−τ(ξ))
− H(ξ)]

≥ p(ξ)e−a(ξ)ex(ξ−τ(ξ))
− H(ξ),

which yields

x(ξ − τ(ξ)) ≥ ln(
1

a(ξ)
ln

p(ξ)

δ(ξ) + H(ξ)
) ≥ ln(

1

a+
ln h−). (2.11)

Let ξ − τ(ξ) = ñT + γ̃, where γ̃ ∈ [0, T ] and ñ is an integer. Then (2.10) and (2.11) imply

that

x(t) ≥ x(γ̃) −

∫ T

0
|x′(t)|dt ≥ ln(

1

a+
ln h−) − A := H2, for all t ∈ R. (2.12)

Let

K = 1 + max{|H1|, |H2|, | ln(
1

a+
ln(

∫ T
0 p(t)dt∫ T

0 (δ(t) + H(t))dt
))|, | ln(

1

a−
ln(

∫ T
0 p(t)dt∫ T

0 (δ(t) + H(t))dt
))|},

(2.13)

and define Ω = {x ∈ X : ||x|| < K}. Then (2.8) and (2.12) imply that there is no λ ∈ (0, 1)

and x ∈ ∂Ω such that Lx = λNx.

When x ∈ ∂Ω ∩ KerL = ∂Ω ∩ R, x = ±K. Then

QN(−K) > 0 and QN(K) < 0. (2.14)

Otherwise, if QN(−K) ≤ 0, it follows from (2.4) that

∫ T

0
δ(t)dt ≥

∫ T

0
p(t)e−a(t)e−K

dt −

∫ T

0
H(t)dt ≥

∫ T

0
p(t)e−a+e−K

dt −

∫ T

0
H(t)dt,

which yields

−K ≥ ln(
1

a+
ln(

∫ T
0 p(t)dt∫ T

0 (δ(t) + H(t))dt
)) ≥ −| ln(

1

a+
ln(

∫ T
0 p(t)dt∫ T

0 (δ(t) + H(t))dt
))|.

This is a contradiction the choice of K. Thus, QN(−K) > 0.

If QN(K) ≥ 0, it follows from (2.4) that

∫ T

0
δ(t)dt ≤

∫ T

0
p(t)e−a(t)eK

dt −

∫ T

0
H(t)dt ≤

∫ T

0
p(t)e−a−eK

dt −

∫ T

0
H(t)dt.

Consequently,

K ≤ ln(
1

a−
ln(

∫ T
0 p(t)dt∫ T

0 (δ(t) + H(t))dt
)) ≤ | ln(

1

a−
ln(

∫ T
0 p(t)dt∫ T

0 (δ(t) + H(t))dt
))|,
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This is a contradiction to the choice of K. Thus, QN(K) < 0.

Furthermore, define continuous function H̄(x, µ) by setting

H̄(x, µ) = −(1 − µ)x + µ
1

T

∫ T

0
[−δ(t) + p(t)e−a(t)ex

− H(t)]dt.

It follows from (2.14) that xH̄(x, µ) 6= 0 for all x ∈ ∂Ω ∩ kerL. Hence, using the homotopy

invariance theorem, we obtain

deg{QN,Ω ∩ kerL, 0} = deg{ 1
T

∫ T
0 [−δ(t) + p(t)e−a(t)ex

− H(t)]dt,Ω ∩ kerL, 0}

= deg{−x,Ω ∩ kerL, 0} 6= 0.

In view of all the discussions above, we conclude from Lemma 2.1 that Theorem 2.1 is proved.

Corollary 2.1. Let (2.1) hold, and

ln(
1

a+
ln h−) − A := H2 ≥ ln

κ

a−
. (2.15)

If N(t) is a positive T -periodic solution of (1.3), then,

N(t) ≥
κ

a−
for all t ∈ R. (2.16)

Proof. If N(t) is a positive T -periodic solution of (1.3). Let x(t) = ln N(t), then x(t) is

a T -periodic solution of (2.2). Applying the similar mathematical analysis techniques as in

the proof of Theorem 2.1, we can obtain

x(t) ≥ ln(
1

a+
ln h−) − A := H2 ≥ ln

κ

a−
for all t ∈ R,

which implies that

N(t) = ex(t) ≥
κ

a−
for all t ∈ R.

This completes the proof.

Theorem 2.2. Let (2.1) and (2.15) hold. Moreover, assume that

−δ− + p+ 1

e2
+ H+ < 0. (2.17)

Then equation (1.3) has a unique positive T -periodic solution.

Proof. Assume that N1(t) and N2(t) are two positive T -periodic solutions of equation

(1.3). Set y(t) = N1(t) − N2(t), where t ∈ R. Then

y′(t) = −δ(t)y(t) + p(t)[N1(t − τ(t))e−a(t)N1(t−τ(t))
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−N2(t − τ(t))e−a(t)N2(t−τ(t))] − H(t)y(t − τ(t)). (2.18)

Define a continuous function Γ(u) by setting

Γ(u) = −(δ− − u) + p+ 1

e2
euτ+

+ H+euτ+
, u ∈ [0, 1]. (2.19)

Then, from (2.17), we have

Γ(0) = −δ− + p+ 1

e2
+ H+ < 0,

which implies that there exist two constants η̄ > 0 and λ ∈ (0, 1] such that

Γ(λ) = −(δ− − λ) + p+ 1

e2
eλτ+

+ H+eλτ+
< −η̄ < 0. (2.20)

We consider the Lyapunov functional

V (t) = |y(t)|eλt. (2.21)

Calculating the upper right derivative of V (t) along the solution y(t) of (2.18), we have

D+(V (t)) ≤ −δ(t)|y(t)|eλt + p(t)|N1(t − τ(t))e−a(t)N1(t−τ(t))

−N2(t − τ(t))e−a(t)N2(t−τ(t))|eλt + H(t)|y(t − τ(t))|eλt + λ|y(t)|eλt

= [(λ − δ(t))|y(t)| + p(t)|N1(t − τ(t))e−a(t)N1(t−τ(t))

−N2(t − τ(t))e−a(t)N2(t−τ(t))| + H(t)|y(t − τ(t))|]eλt, for all t ∈ R. (2.22)

For any fixed t0 ∈ R, we claim that

V (t) = |y(t)|eλt < eλt0( max
t∈[0, T ]

|N1(t) − N2(t)| + 1) := M for all t > t0. (2.23)

Contrarily, there must exist t∗ > t0 such that

V (t∗) = M and V (t) < M for all t < t∗, (2.24)

which implies that

V (t∗) − M = 0 and V (t) − M < 0 for all t < t∗. (2.25)

By Corollary 2.1, we get

Ni(t) ≥
κ

a−
for all t ∈ R, i = 1, 2. (2.26)
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From (1.7), (2.22), (2.25) and the inequality

|se−s − te−t| = |
1 − (s + θ(t − s))

es+θ(t−s)
||s − t|

≤
1

e2
|s − t| where s, t ∈ [κ,+∞), 0 < θ < 1, (2.27)

we obtain

0 ≤ D+(V (t∗) − M)

= D+(V (t∗))

≤ [(λ − δ(t∗))|y(t∗)| + p(t∗)|N1(t∗ − τ(t∗))e
−a(t∗)N1(t∗−τ(t∗))

−N2(t∗ − τ(t∗))e
−a(t∗)N2(t∗−τ(t∗))| + H(t∗)|y(t∗ − τ(t∗))|]e

λt∗

= [(λ − δ(t∗))|y(t∗)| +
p(t∗)

a(t∗)
|a(t∗)N1(t∗ − τ(t∗))e

−a(t∗)N1(t∗−τ(t∗))

−a(t∗)N2(t∗ − τ(t∗))e
−a(t∗)N2(t∗−τ(t∗))| + H(t∗)|y(t∗ − τ(t∗))|]e

λt∗

≤ (λ − δ(t∗))|y(t∗)|e
λt∗ + p(t∗)

1

e2
|y(t∗ − τ(t∗))|e

λ(t∗−τ(t∗))eλτ(t∗)

+H(t∗)|y(t∗ − τ(t∗))|e
λ(t∗−τ(t∗))eλτ(t∗)

≤ [(λ − δ−) + p+ 1

e2
eλτ+

+ H+eλτ+
]M. (2.28)

Thus,

0 ≤ (λ − δ−) + p+ 1

e2
eλτ+

+ H+eλτ+
,

which contradicts with (2.20). Hence, (2.23) holds. It follows that

|y(t)| < Me−λt for all t > t0. (2.29)

In view of (2.29) and the periodicity of y(t), we have

y(t) = N1(t) − N2(t) = 0 for all t ∈ R.

This completes the proof.

3. An Example

In this section we present an example to illustrate our results.

Example 3.1. Consider the Nicholson’s blowflies model with a linear harvesting term:

N ′(t) = − 1
1000000 (1.000001 + 0.000001 cos t)N(t)

+ e1.9999

1000000 (0.999999 + 0.000001 sin t)N(t − 1 − 10−4| sin t|)e−N(t−1−10−4 | sin t|)

− 1
10000000 (1 − e−0.0001)| cos t|N(t − 1 − 10−4| sin t|). (3.1)
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Obviously,

δ(t) =
1

1000000
(1.000001 + 0.000001 cos t),

p(t) =
e1.9999

1000000
(0.999999 + 0.000001 sin t),

H(t) =
1

10000000
(1 − e−0.0001)| cos t|,

τ(t) = 1 + 0.00001| sin t|, a(t) ≡ 1,

A = 2

∫ 2π

0
δ(t)dt = 4.000004π × 10−6,

f(t) =
p(t)

a(t)δ(t)e
≤ e0.9999,

h(t) =
p(t)

δ(t) + H(t)
≥

0.999998e1.9999

1.100002
,

p(t) ≤
e1.9999

1000000
.

Then

p−e−a+f+
− H+ ≥

0.999998e1.9999e−e0.9999

1000000
−

1

10000000
> 0,

ln(
1

a+
ln h−) − A ≥ ln(ln(

0.999998e1.9999

1.100002
)) − 4.000004π × 10−6 > 0 > ln κ,

−δ− + p+ 1

e2
+ H+ < −

1

1000000
+

e−0.0001

1000000
+

1

10000000
(1 − e−0.0001) < 0.

This implies that the Nicholson’s blowflies model (3.1) satisfies (2.1), (2.15) and (2.17) .

Hence, from Theorems 2.2 , equation (3.1) has a unique positive 2π-periodic solution.

Remark 3.1. Equation (3.1) is a form of Nicholson’s blowflies models with a linear

harvesting term. Therefore, all the results in [8-12] and the references therein are inapplicable

for proving the existence and uniqueness of positive 2π-periodic solution of equation (3.1).

This implies that the results of this paper are essentially new.

References

[1] W.S.C. Gurney, S.P. Blythe, R.M. Nisbet, Nicholson’s blowflies revisited, Nature, 287 (1980) 17-21.

[2] A.J. Nicholson, An outline of the dynamics of animal populations, Aust. J. Zool., 2 (1954) 9-65.

[3] R. Nisbet, W. Gurney, Modelling Fluctuating Populations, John Wiley and Sons, NY, 1982

EJQTDE, 2011 No. 41, p. 10



[4] K. Cook, P. van den Driessche, X. Zou, Interaction of maturation delay and nonlinear birth in population

and epidemic models, J. Math. Biol., 39 (1999) 332-352.
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