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Abstract. We address the existence of periodic orbits for periodic eco-epidemiological
system with disease in the prey for two distinct families of models. For the first one,
we use Mawhin’s continuation theorem in a wide general system that includes some
models discussed in the literature, and for the second family we obtain a sharp result
using a recent strategy that relies on the uniqueness of periodic orbits in the disease-free
space.
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1 Introduction

Eco-epidemiological models are ecological models that include infected compartments. In
many situations, these models describe more accurately the real ecological system than models
where the disease is not taken into account.

There is already a large number of works concerning eco-epidemiological models. To
mention just a few recent works, we refer [4] where a mathematical study on disease per-
sistence and extinction is carried out; [2] where the authors study the global stability of a
delayed eco-epidemiological model with Holling-type III functional response, and [11] where
an eco-epidemiological model with harvesting is considered.

One of the main concerns when studying eco-epidemiological models is to determine
conditions under which one can predict if the disease persists or dies out. In mathematical
epidemiology, these conditions are usually given in terms of the so called basic reproduc-
tion number R0, defined in [5] for autonomous systems as the spectral radius of the next
generation matrix.

In [3], R0 was introduced for the periodic models, and later on, in [16], the definition of
R0 was adapted to the study of periodic patchy models. In the recent article [6] the theory
in [16] was used in the study of persistence of the predator in general periodic predator-prey
models.
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When persistence is guaranteed, the obtention of conditions that assure the existence of
periodic orbits for periodic eco-epidemiological models is an important issue in the deepening
of the description of these models since these orbits correspond to situations where possibly
there is some equilibrium in the described ecological system, reflected in the fact that the
behaviour of the theoretical model is the same over the years. In [13] it was proved that there
is an endemic periodic orbit for the periodic version of the model considered in [18] when
the infected prey is permanent and some additional conditions are fulfilled, partially giving a
positive answer to a conjecture in this last paper.

The models in [18] and [13] assume that there is no predation on uninfected preys. In
spite of that, this assumption is not suitable for the description of many eco-epidemiological
models. The main purpose of this paper is to present some results on the existence of an
endemic periodic orbit for periodic eco-epidemiological systems with disease in the prey that
generalize the systems in [18] and [13] by including in the model a general function corre-
sponding to the predation of uninfected preys. Two slightly distinct families of models will
be considered separately, one of them in section 2 and the other is section 4. The proof of the
main result in section 2 relies on Mawhin’s continuation theorem. Following the approach
in [13], we begin by locating the components of possible periodic orbits for the one parame-
ter family of systems that arise in Mawhin’s result, allowing us to check that the conditions
of that theorem are fulfilled. Although the main steps in our proof correspond to the ones
in [13], several additional nontrivial arguments are needed in our case. Additionally, there is
also a substantial difference between our approach and the one in [13, 18]. In fact, we take
as a departure point some prescribed behaviour of the uninfected subsystem, corresponding
to the dynamics of preys and predators in the absence of disease: we will assume in this
work that we have global asymptotic stability of solutions of some special perturbations of
the bidimensional predator-prey system (the system obtained by letting I = 0 in the first and
third equations in (1.1)). Thus, when applying our results to particular situations, one must
verify that the underlying uninfected subsystem satisfies our assumptions. On the other hand,
our approach allows us to construct an eco-epidemiological model from a previously studied
predator-prey model (the uninfected subsystem) that satisfies our assumptions. This approach
has the advantage of highlighting the link between the dynamics of the eco-epidemiological
model and the dynamics of the predator-prey model used in its construction. For the family
of systems in section 4, we were able to obtain a sharp result using a recent strategy available
in the literature instead of Mawhin’s continuation theorem.

Considering what was said, as a generalization of the model studied in [13], a periodic
version of the general non-autonomous model introduced in [18], we consider the following
periodic eco-epidemiological model:

S′ = Λ(t)− µ(t)S− a(t) f (S, I, P)P− β(t)SI,

I′ = β(t)SI − η(t)g(S, I, P)I − c(t)I,

P′ = h(t, P) + γ(t)a(t) f (S, I, P)P + θ(t)η(t)g(S, I, P)I,

(1.1)

where S, I and P correspond, respectively, to the susceptible prey, infected prey and predator.
In our model h(t, P) correspond to the vital dynamics of predators in the absence of this prey.

In this work we consider two different scenarios: in the first one we will take

h(t, P) = (r(t)− b(t)P)P. (1.2)

When r(t) > 0 for all t, we obtain a model with linear vital dynamics of susceptible prey
in the absence of predators and disease and with logistic vital dynamics of predators in the
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absence of the considered prey. This model generalizes [18]. When r(t) < 0 for all t, we
obtain a model with a classical vital dynamics of the predators as in the family of Lotka–
Volterra models considered in [6]. In the second scenario we consider a linear vital dynamics
for predators by taking

h(t, P) = Υ(t)− ζ(t)P. (1.3)

This model has no periodic solutions on the axis, allowing us to use a different set of ar-
guments to establish the existence of an endemic periodic orbit. Note that, when h is given
by (1.2), there is space in our model for the possibility that predators survive in the absence of
this prey. In fact, when r(t) is nonnegative, predator have a logistic behaviour. A possible bio-
logical interpretation is that predators in this ecosystem possess different sources of food and,
in the absence of the prey in this model, the behaviour of the predator population is logistic.
When r(t) is nonpositive we obtain a usual behaviour for predators in the absence of preys.
When h is given by (1.3) predators always survive in the absence of the prey considered in the
model and we also interpret this fact as in the corresponding situation for the first scenario.

In the first scenario, for technical reasons, we have to make the restriction g(S, I, P) =

P, while in the second scenario we let g be a general function that satisfies some natural
assumptions.

In the first situation, r(t) and b(t) are parameters related to the vital dynamics of the
predator population that include the intra-specific competition between predators. This vital
dynamics is assumed to follow a logistic law when r(t) > 0 for all t > 0 and that is similar to
the vital dynamics of predator in a family of Lotka–Volterra models considered in [6] when
r(t) < 0 for all t > 0. In both scenarios Λ(t) is the recruitment rate of the prey population,
µ(t) is the natural death rate of the prey population, a(t) is the predation rate of susceptible
prey, β(t) is the incidence rate, η(t) is the predation rate of infected prey, c(t) is the death rate
in the infective class (c(t) > µ(t)), γ(t) is the rate of converting susceptible prey into predator
(biomass transfer), θ(t) is the rate of converting infected prey into predator. It is assumed that
only susceptible preys S are capable of reproducing, i.e, the infected prey is removed by death
(including natural and disease-related death) or by predation before having the possibility of
reproducing.

2 Eco-epidemiological models with classical or logistic vital dynam-
ics for predators

In this section we let g(S, I, P) = P and h(t, P) = (r(t) − b(t)P)P, obtaining a model that
generalizes the model in [13] by considering a function that corresponds to the predation of
uninfected preys:

S′ = Λ(t)− µ(t)S− a(t) f (S, I, P)P− β(t)SI,

I′ = β(t)SI − η(t)PI − c(t)I,

P′ = (r(t)− b(t)P)P + γ(t)a(t) f (S, I, P)P + θ(t)η(t)PI.

(2.1)

Given an ω-periodic function f , we will use throughout the paper the notations f ` =

inft∈(0,ω] f (t), f u = supt∈(0,ω] f (t) and f̄ = 1
ω

∫ ω
0 f (s) ds. We will assume the following struc-

tural hypothesis concerning the parameter functions and the function f appearing in our
model:



4 L. F. de Jesus, C. M. Silva and H. Vilarinho

S1) The real valued functions Λ, µ, a, β, η, c, γ, θ and b are periodic with period ω, nonnega-
tive and continuous; the real valued function r is periodic with period ω and continuous
and can be nonnegative or nonpositive;

S2) Function f is nonnegative and C1;

S3) Function x 7→ f (x, y, z) is nondecreasing;

S4) Functions z 7→ f (x, y, z) and y 7→ f (x, y, z) are nonincreasing;

S5) For all (x, y, z) we have

f (x, y, z) + z
∂ f
∂z

(x, y, z) > 0, η + a
∂ f
∂y

(x, y, z) > 0 and θη + γa
∂ f
∂y

(x, y, z) > 0;

S6) Λ̄ > 0, µ̄ > 0 and b̄ > 0;

S7) There is α > 1 and K > 0 such that f (x, 0, 0) 6 Kxα.

Note that our functional response must depend on I to be able to include functional response
functions with saturation, that must depend on the total population of preys (see [1, 14]).
Our setting includes several of the most common functional responses for the functional re-
sponse function f , including, among others, f (S, I, P) = kS (Holling-type I), f (S, I, P) =

kS/(1 + m(S + I)) (Holling-type II), f (S, I, P) = kSα/(1 + m(S + I)α) (Holling-type III),
f (S, I, P) = kS/(a+ b(S+ I)+ c(S+ I)2) (Holling-type IV), f (S, I, P) = kS/(a+ b(S+ I)+ cP)
(Beddington–De Angelis), f (S, I, P) = kS/(a + b(S + I) + cP + d(S + I)P) (Crowley–Martin).
Also note that conditions S3), S4) are natural from a biological perspective and naturally are
satisfied by the usual functional responses considered in the literature. Conditions S5) and S7)
are satisfied by most of the usual functional response functions.

To formulate our next assumptions we need to consider two auxiliary equations and one
auxiliary system. First, for each λ ∈ (0, 1], we need to consider the following equations:

x′ = λ(Λ(t)− µ(t)x) (2.2)

and
z′ = λ(r(t)− b(t)z)z. (2.3)

Note that, if we identify x with the susceptible prey population, equation (2.2) gives the be-
haviour of the susceptible preys in the absence of infected preys and predator and identifying
z with the predator population, equation (2.3) gives the behaviour of the predator in the ab-
sence of preys.

Equation (2.2) is a linear equation that was considered in countless papers on epidemi-
ological models and equation (2.3) was already studied in [8]. These equations have a well
known behaviour, given in the following lemmas:

Lemma 2.1. For each λ ∈ (0, 1] there is a unique ω-periodic solution of equation (2.2), x∗λ(t), that is
globally asymptotically stable in R+.

Lemma 2.2. If the function r is nonnegative, for each λ ∈ (0, 1] there is a unique ω-periodic solution
of equation (2.3), z∗λ(t), that is globally asymptotically stable in R+. If the function r is nonposi-
tive for each λ ∈ (0, 1] the zero solution of equation (2.3), that we still denote by z∗λ(t), is globally
asymptotically stable in R+

0 .
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For each λ ∈ (0, 1], we also need to consider the next family of systems, which corresponds
to behaviour of the preys and predators in the absence of infected preys (system (1.1) with
I = 0, S = x and P = z):{

x′ = λ(Λ(t)− µ(t)x− a(t) f (x, ε3, z)z− ε1x),

z′ = λ(γ(t)a(t) f (x, ε4, z) + r(t)− b(t)z + ε2)z.
(2.4)

We now make our last structural assumption on system (1.1):

S9) For each λ ∈ (0, 1] and each ε1, ε2, ε3, ε4 > 0 sufficiently small, system (2.4) has a unique
ω-periodic solution, (x∗λ,ε1,ε2,ε3,ε4

(t), z∗λ,ε1,ε2,ε3,ε4
(t)), with

x∗λ,ε1,ε2,ε3,ε4
(t) > 0 and z∗λ,ε1,ε2,ε3,ε4

(t) > 0,

that is globally asymptotically stable in the set

{(x, z) ∈ (R+
0 )

2 : x > 0 ∧ z > 0}.

We assume that (ε1, ε2, ε3, ε4) 7→ (x∗λ,ε1,ε2,ε3,ε4
(t), z∗λ,ε1,ε2,ε3,ε4

(t)) is continuous.

Denoting x∗λ = x∗λ,0,0,0,0 and z∗λ = z∗λ,0,0,0,0, we introduce the numbers

R0 =
β̄Λ̄/µ̄

c̄ + η̄r̄/b̄
, Rλ

0 =
βx∗λ

c + ηz∗λ
and R̃0 = inf

λ∈(0,1]
Rλ

0 (2.5)

Before presenting our main result we have to consider the averaged system corresponding
to (2.1): 

S′ = Λ− µS− a f (S, I, P)P− βSI,

I′ = βSI − ηPI − cI,

P′ = (r− bP)P + γa f (S, I, P)P + θηPI.

(2.6)

The number R0 is the basic reproductive number of (2.6) when f ≡ 0 (see [13, 18]). We now
present our main result.

Theorem 2.3. If R̃0 > 1, conditions S1) to S9) hold and there is a unique equilibrium of the averaged
system (2.6) in (R+)3, the interior of the first octant, then system (1.1) possesses an endemic periodic
orbit of period ω.

Our proof relies on an application of Mawhin’s continuation theorem. We will proceed in
several steps. Firstly, in subsection 2.1, we consider a one parameter family of systems and
obtain uniform bounds for the components of any periodic solution of these systems. Next,
in subsection 2.2 we make a suitable change of variables in our family of systems to establish
the setting where we will apply Mawhin’s continuation Theorem. Finally, in subsection 2.3,
we use Mawhin’s continuation Theorem to obtain our result.

2.1 Uniform persistence for the periodic orbits of a one parameter family of sys-
tems.

In this section, to obtain uniform bounds for the components of any periodic solution of the
family of systems that we can obtain multiplying the right hand side of (1.1) by λ ∈ (0, 1], we
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need to consider the auxiliary system
S′λ = λ(Λ(t)− µ(t)Sλ − a(t) f (Sλ, Iλ, Pλ)Pλ − β(t)Sλ Iλ),

I′λ = λ(β(t)Sλ Iλ − η(t)Pλ Iλ − c(t)Iλ),

P′λ = λ(γ(t)a(t) f (Sλ, Iλ, Pλ)Pλ + θ(t)η(t)Pλ Iλ + r(t)Pλ − b(t)P2
λ).

(2.7)

We will consider separately each of the several components of any periodic orbit.

Lemma 2.4. Let x∗λ(t) be the unique solution of (2.2). There is L1 > 0 such that, for any λ ∈ (0, 1]
and any periodic solution (Sλ(t), Iλ(t), Pλ(t)) of (2.7) with initial conditions Sλ(t0) = S0 > 0,
Iλ(t0) = I0 > 0 and Pλ(t0) = P0 > 0, we have Sλ(t) + Iλ(t) 6 x∗λ(t) 6 Λu/µ` and Sλ > L1, for all
t ∈ R.

Proof. Let (Sλ(t), Iλ(t), Pλ(t)) be some periodic solution of (2.7) with initial conditions
Sλ(t0) = S0 > 0, Iλ(t0) = I0 > 0 and Pλ(t0) = P0 > 0. Since c(t) > µ(t), we have, by
the first and second equations of (2.7),

(Sλ + Iλ)
′ 6 λΛ(t)− λµ(t)Sλ − λc(t)Iλ 6 λΛ(t)− λµ(t)(Sλ + Iλ).

Since, by Lemma 2.1, equation (2.2) has a unique periodic orbit, x∗λ(t), that is globally asymp-
totically stable, we conclude that Sλ(t) + Iλ(t) 6 x∗λ(t) for all t ∈ R. Comparing equation (2.2)
with equation x′ = λΛu − λµ`x, we conclude that x∗λ(t) 6 Λu/µ`.

Using conditions S3) and S4), by the third equation of (2.7), we have

P′λ 6 λ(r(t) + γ(t)a(t) f (x∗λ(t), 0, 0) + θ(t)η(t)x∗λ(t)− b(t)Pλ)Pλ 6 (Θu − b`Pλ)Pλ,

where function Θ is given by

Θ(t) = max
t∈[0,ω]

{r(t), 0}+ γ(t)a(t) f (x∗λ(t), 0, 0) + θ(t)η(t)x∗λ(t).

Thus, comparing with equation (2.3) and using Lemma 2.2, we get Pλ(t) 6 P∗λ(t) 6 Θu/b`.
Using the bound obtained above, since −β(t)Sλ(t) > −β(t)x∗λ(t), we have, by conditions S3),
S4) and S7),

S′λ = λΛ(t)− λµ(t)Sλ − λa(t) f (Sλ, Iλ, Pλ)Pλ − λβ(t)Sλ Iλ

> λΛ` −
(

λµu + λau f (Sλ, 0, 0)
Sλ

Θu

b`
+ λβu(x∗λ)

u
)

Sλ

> λΛ` −
(

λµu + λauK((x∗λ)
u)α−1Θu/b` + λβu(x∗λ)

u
)

Sλ.

According to computations above we have x∗λ(t) 6 Λu/µ` and thus

Sλ(t) >
λΛ`

λµu + λauK(Λu/µ`)α−1Θu/b` + λβuΛu/µ`
=: L1.

Lemma 2.5. Let z∗λ(t) be the unique solution of (2.3). There is L2 > 0 such that, for any λ ∈ (0, 1]
and any periodic solution (Sλ(t), Iλ(t), Pλ(t)) of (2.7) with initial conditions Sλ(t0) = S0 > 0,
Iλ(t0) = I0 > 0 and Pλ(t0) = P0 > 0, we have z∗λ(t) 6 Pλ(t) 6 L2, for all t ∈ R.



Periodic orbits for periodic eco-epidemiological systems with infected prey 7

Proof. Let λ ∈ (0, 1] and (Sλ(t), Iλ(t), Pλ(t)) be any periodic solution of (2.7) with initial con-
ditions Sλ(t0) = S0 > 0, Iλ(t0) = I0 > 0 and Pλ(t0) = P0 > 0. We have

P′λ = λPλ(γ(t)a(t) f (Sλ, Iλ, Pλ) + θ(t)η(t)Iλ + r(t)− b(t)Pλ) > (λr(t)− λb(t)Pλ)Pλ.

Comparing the previous inequality with equation (2.3) and using Lemma 2.2, we get Pλ(t) >
z∗λ(t). Using the computations in proof of the previous lemma, we have Pλ(t) 6 L1 and we
take L2 = L1.

Lemma 2.6. Let R̃0 > 1. There are L3, L4 > 0 such that, for any λ ∈ (0, 1] and any periodic
solution (Sλ(t), Iλ(t), Pλ(t)) of (2.7) with initial conditions Sλ(t0) = S0 > 0, Iλ(t0) = I0 > 0 and
Pλ(t0) = P0 > 0, we have L3 6 Iλ(t) 6 L4, for all t ∈ R.

Proof. We will first prove that there is ε1 > 0 such that, for any λ ∈ (0, 1], we have

lim sup
t→+∞

Iλ(t) > ε1. (2.8)

By contradiction, assume that (2.8) does not hold. Then, for any ε > 0, there must be λ > 0
such that Iλ(t) < ε for all t ∈ R. We have{

S′λ 6 λΛ(t)− λµ(t)Sλ − λa(t) f (Sλ, ε, Pλ)Pλ,

P′λ 6 λ(γ(t)a(t) f (Sλ, 0, Pλ) + r(t)− b(t)Pλ + λεθuηu)Pλ

and {
S′λ > λΛ(t)− λµ(t)Sλ − λa(t) f (Sλ, 0, Pλ)Pλ − ελβuSλ,

P′λ > λ(γ(t)a(t) f (Sλ, ε, Pλ) + r(t)− b(t)Pλ)Pλ.

By condition S9), we conclude that

x∗λ,ελβu,0,0,ε(t) 6 Sλ(t) 6 x∗λ,0,ελθuηu,ε,0(t)

and
z∗λ,ελβu,0,0,ε(t) 6 Pλ(t) 6 z∗λ,0,ελθuηu,ε,0(t).

Thus, using condition S9), we have

I′λ = λ(β(t)Sλ − η(t)Pλ − c(t))Iλ

> (λβ(t)x∗λ,ελβu,0,0,ε(t)− λη(t)z∗λ,0,ελθuηu,ε,0(t)− λc(t))Iλ

> (λβ(t)x∗λ(t)− λη(t)z∗λ(t)− λc(t)− ϕ(ε))Iλ,

(2.9)

where ϕ is a nonnegative function such that ϕ(ε) → 0 as ε → 0 (notice that, by continuity,
we can assume that ϕ is independent of λ and, by periodicity of the parameter functions, it is
independent of t).

Integrating in [0, ω] and using (S9)), we get

0 =
1
ω

(ln Iλ(ω)− ln Iλ(0)) =
1
ω

∫ ω

0
I′λ(s)/Iλ(s) ds

> λ
(

βx∗λ − c̄− ηz∗λ
)
+ ϕ(ε) = λ(c̄ + ηz∗λ)(R

λ
0 − 1) + ϕ(ε)

and since
Rλ

0 > inf
`∈(0,1]

R`
0 = R̃0 > 1,
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we have a contradiction. We conclude that (2.8) holds. Next we will prove that there is ε2 > 0
such that, for any λ ∈ (0, 1], we have

lim inf
t→+∞

Iλ(t) > ε2. (2.10)

Assuming by contradiction that (2.10) does not hold, we conclude that there is a sequence
(λn, Iλn(sn), Iλn(tn)) ⊂ (0, 1]×R+

0 ×R
+
0 such that sn < tn, tn − sn 6 ω,

Iλn(sn) = 1/n, Iλn(tn) = ε2/2 and Iλn(t) ∈ (1/n, ε2/2), for all t ∈ (sn, tn).

Since λn 6 1, by Lemma 2.4 we have

I′λn
= (λnβ(t)Sλn − λnη(t)Pλn − λnc(t))Iλn 6 βuΛu Iλn /µ`

and thus

ln(ε2n/2) = ln(Iλn(tn)/Iλn(sn)) =
∫ tn

sn

I′λn
(s)/Iλn(s) ds 6 βuΛuω/µ`,

which is a contradiction since the sequence (ln(ε2n/2))n∈N goes to +∞ as n→ +∞, and thus
is not bounded.

We conclude that there is ε2 > 0 such that (2.10) holds. Letting L3 = ε2, we obtain
Iλ(t) > L3 for all λ ∈ (0, 1].

Since Iλ(t) 6 Sλ(t)+ Iλ(t), by Lemma 2.4, we can take L4 = L2 and the result is established.

2.2 Setting where Mawhin’s continuation theorem will be applied.

To apply Mawhin’s continuation theorem to our model we make the change of variables:
S(t) = eu1(t), I(t) = eu2(t) and P(t) = eu3(t). With this change of variables, system (1.1)
becomes 

u′1 = Λ(t)e−u1 − a(t) f (eu1 , eu2 , eu3)eu3−u1 − β(t)eu2 − µ(t),

u′2 = β(t)eu1 − η(t)eu3 − c(t),

u′3 = γ(t)a(t) f (eu1 , eu2 , eu3) + θ(t)η(t)eu2 − b(t)eu3 + r(t).

(2.11)

Note that, if (u∗1(t), u∗2(t), u∗3(t)) is an ω-periodic solution of (2.11) then (eu1(t), eu2(t), eu3(t)) is
an ω-periodic solution of system (1.1).

To define the operators in Mawhin’s theorem (see appendix A), we need to consider the
Banach spaces (X, ‖ · ‖) and (Z, ‖ · ‖) where X and Z are the space of ω-periodic continuous
functions u : R→ R3:

X = Z = {u = (u1, u2, u3) ∈ C(R, R3) : u(t) = u(t + ω)}

and
‖u‖ = max

t∈[0,ω]
|u1(t)|+ max

t∈[0,ω]
|u2(t)|+ max

t∈[0,ω]
|u3(t)|.

Next, we consider the linear map L : X ∩ C1(R, R3)→ Z given by

Lu(t) =
du(t)

dt
(2.12)
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and the map N : X → Z defined by

N u(t) =

 Λ(t)e−u1(t) − a(t) f (eu1 , eu2 , eu3)eu3(t)−u1(t) − β(t)eu2(t) − µ(t)
β(t)eu1(t) − η(t)eu3(t) − c(t)
γ(t)a(t) f (eu1 , eu2 , eu3) + θ(t)η(t)eu2(t) − b(t)eu3(t) + r(t)

 . (2.13)

In the following lemma we show that the linear map in (2.12) is a Fredholm mapping of
index zero

Lemma 2.7. The linear map L in (2.12) is a Fredholm mapping of index zero.

Proof. We have

kerL =

{
(u1, u2, u3) ∈ X ∩ C1(R, R3) :

dui(t)
dt

= 0, i = 1, 2, 3
}

=
{
(u1, u2, u3) ∈ X ∩ C1(R, R3) : ui is constant, i = 1, 2, 3

}
and thus kerL can be identified with R3. Therefore dim kerL = 3. On the other hand

ImL =

{
(z1, z2, z3) ∈ Z : ∃ u ∈ X ∩ C1(R, R3) :

dui(t)
dt

= zi(t), i = 1, 2, 3
}

=

{
(z1, z2, z3) ∈ Z :

∫ ω

0
zi(s) ds = 0, i = 1, 2, 3

}
.

and any z ∈ Z can be written as z = z̃ + α, where α = (α1, α2, α3) ∈ R3 and z̃ ∈ ImL. Thus the
complementary space of ImL consists of the constant functions. Thus, the complementary
space has dimension 3 and therefore codim ImL = 3.

Given any sequence (zn) in ImL such that

zn = ((z1)n, (z2)n, (z3)n)→ z = (z1, z2, z3),

we have, for i = 1, 2, 3 (note that z ∈ Z since Z is a Banach space and thus it is integrable in
[0, ω] since it is continuous in that interval),∫ ω

0
zi(s) ds =

∫ ω

0
lim

n→+∞
(zi)n(s) ds = lim

n→+∞

∫ ω

0
(zi)n(s) ds = 0.

Thus, z ∈ ImL and we conclude that ImL is closed in Z. Thus L is a Fredholm mapping of
index zero.

Consider the projectors P : X → X and Q : Z → Z given by

Pu(t) =
1
ω

∫ ω

0
u(s)ds and Qz(t) =

1
ω

∫ ω

0
z(s)ds.

Note that Im P = kerL and that ker Q = Im(I −Q) = ImL.
Consider the generalized inverse of L, K : ImL → D ∩ ker P, given by

Kz(t) =
∫ t

0
z(s)ds− 1

ω

∫ ω

0

∫ r

0
z(s) ds dr
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the operator QN : X → Z given by

QN u(t) =



1
ω

∫ ω

0
Λ(s)e−u1(s) − a(s) f (eu1(s), eu2(s), eu3(s))eu3(s) − β(s)eu2(s) ds− µ

1
ω

∫ ω

0
β(s)eu1(s) − η(s)eu3(s) ds− c

1
ω

∫ ω

0
γ(s)a(s) f (eu1(s), eu2(s), eu3(s))eu3(s) + θ(s)η(s)eu2(s) − b(s)eu3(s) ds + r


and the mapping K(I −Q)N : X → D ∩ ker P given by

K(I −Q)N u(t) = B1(t)− B2(t)− B3(t),

where

B1(t) =



∫ t

0
Λ(s)e−u1(s) − a(s) f (eu1 , eu2 , eu3)eu3(s) − β(s)eu2(s) − µ(s) ds∫ t

0
β(s)eu1(s) − η(s)eu3(s) − c(s) ds∫ t

0
γ(s)a(s) f (eu1 , eu2 , eu3)eu3(s) + θ(s)η(s)eu2(s) − b(s)eu3(s)dt + r(s) ds


,

B2(t) =



1
ω

∫ ω

0

∫ r

0
Λ(s)e−u1(s) − a(s) f (eu1 , eu2 , eu3)eu3(s) − β(s)eu2(s) − µ(s) ds dr

1
ω

∫ ω

0

∫ r

0
β(s)eu1(s) − η(s)eu3(s) − c(s) ds dr

1
ω

∫ ω

0

∫ r

0
γ(s)a(s) f (eu1 , eu2 , eu3)eu3(s) + θ(s)η(s)eu2(s) − b(s)eu3(s) + r(s) ds dr


,

and

B3(t) =
(

t
ω
− 1

2

)


∫ ω

0
Λ(s)e−u1(s) − a(s) f (eu1 , eu2 , eu3)eu3(s) − β(s)eu2(s) − µ(s) ds∫ ω

0
β(s)eu1(s) − η(s)eu3(s) − c(s) ds∫ ω

0
γ(s)a(s) f (eu1 , eu2 , eu3)eu3(s) + θ(s)η(s)eu2(s) − b(s)eu3(s) + r(s) ds


.

The next lemma shows that N is L-compact in the closure of any open bounded subset of its
domain.

Lemma 2.8. The map N is L-compact in the closure of any open bounded set U ⊆ X.

Proof. Let U ⊆ X be an open bounded set and U its closure in X. Then, there is M > 0 such that, for any
u = (u1, u2, u3) ∈ U, we have that |ui(t)| 6 M, i = 1, 2, 3. Letting QN u = ((QN )1u, (QN )2u, (QN )3u),
we have

|(QN )1u(t)| 6 eM
(

Λ̄ + ā f (eM, 0, 0) + β̄
)
+ µ̄,

|(QN )2u(t)| 6 eM(β̄ + η̄) + c,

|(QN )3u(t)| 6 eM
(

γa f (eM, 0, 0) + θη + b̄
)
+ r

and we conclude that QN (U) is bounded.
Let now

K(I −Q)N u = ((K(I −Q)N )1u, (K(I −Q)N )2u, (K(I −Q)N )3u) .
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Let B ⊂ X be a bounded set. Note that the boundedness of B implies that there is M such that |ui| < M,
for all i = 1, 2, 3, and all u = (u1, u2, u3) ∈ B. It is immediate that {K(I − Q)N u : u ∈ B} is pointwise
bounded. Given u = (u1, u2, u3)n∈N ∈ B we have

(K(I −Q)N )1u(t)− (K(I −Q)N )1u(v)

=
∫ t

v
Λ(s)e−u1(s) − a(s) f (eu1(s), eu2(s), eu3(s))eu2(s) − β(s)eu2(s) − µ(s) ds

− t− v
ω

∫ ω

0
Λ(s)e−u1(s) − a(s) f (eu1(s), eu2(s), eu3(s))eu2(s) − β(s)eu2(s) − µ(s) ds

6 2(t− v)
[
eM(Λu + au f (eM, 0, 0) + βueM) + µM

]
,

(2.14)

and similarly

(K(I −Q)N )2u(t)− (K(I −Q)N )2u(v) 6 2(t− v)
[
eM(βu + ηu) + cu

]
(2.15)

and

(K(I −Q)N )3u(t)− (K(I −Q)N )3u(v))

6 2(t− v)
[
(γuau f (eM, 0, 0) + θuηu + bu)eM + ru

]
.

(2.16)

By (2.14), (2.15) and (2.16), we conclude that {K(I − Q)N u : u ∈ B} is equicontinuous. Therefore,
by the Ascoli–Arzelà theorem, K(I − Q)N (B) is relatively compact. Thus the operator K(I − Q)N is
compact.

We conclude that N is L-compact in the closure of any bounded set contained in X.

2.3 Application of Mawhin’s continuation theorem.

In this section we will construct the set where, applying Mahwin’s continuation theorem, we will find
the periodic orbit in the statement of our result.

Consider the system of algebraic equations:
Λe−u1 − a f (eu1 , eu2 , eu3)eu3−u1 − βeu2 − µ = 0,
βeu1 − ηeu3 − c = 0,
γa f (eu1 , eu2 , eu3) + θηeu2 − beu3 + r = 0.

(2.17)

Note that, by hypothesis, the system above has a unique solution on the interior of the first octant.
Denote this solution by p∗(t) = (p∗1 , p∗2 , p∗3). Note also that, by the second equation, we get

ηeu3 = βeu1 − c. (2.18)

By Lemmas 2.4, 2.5 and 2.6, there is a constant M0 > 0 such that ‖uλ(t)‖ < M0, for any t ∈ [0, ω]
and any periodic solution uλ(t) of (2.7). Let

U = {(u1, u2, u3) ∈ X : ‖(u1, u2, u3)‖ < M0 + ‖p∗‖}. (2.19)

Conditions M1. and M2. in Mawhin’s continuation theorem (see Appendix A) are fulfilled in the set
U defined in (2.19).

Using the notation v = (ep∗1 , ep∗2 , ep∗3 ), the Jacobian matrix of the vector field corresponding to (2.17)
computed in (p∗1 , p∗2 , p∗3) is

J =

 −a ∂ f
∂S (v) ep∗3 −β ep∗2 −µ −β ep∗2 −a ∂ f

∂I (v) ep∗3+p∗2−p∗1 −a ∂ f
∂P (v) e2p∗3−p∗1 −a f (v) ep∗3−p∗1

β ep∗1 0 −η ep∗3

γa ∂ f
∂S (v) ep∗1 θη ep∗2 +γa ∂ f

∂I (v) ep∗2 γa ∂ f
∂P (v) ep∗3 −b ep∗3

 .



12 L. F. de Jesus, C. M. Silva and H. Vilarinho

Thus

det J(p∗1 , p∗2 , p∗3)

= − β ep∗1

(
−β ep∗2

(
γa

∂ f
∂P

(v) ep∗3 −b ep∗3

)
+

(
a

∂ f
∂P

(v) e2p∗3−p∗1 +a f (v) ep∗3−p∗1

)
θη ep∗2

)
− β ep∗1

(
−a

∂ f
∂I

(v) ep∗2+p∗3−p∗1

(
γa

∂ f
∂P

(v) ep∗3 −b ep∗3

)
+

(
a

∂ f
∂P

(v) e2p∗3−p∗1 +a f (v) ep∗3−p∗1

)
γa

∂ f
∂I

(v) ep∗2

)
+ η ep∗3

((
−a

∂ f
∂S

(v) ep∗3 −β ep∗2 −µ

)
θη ep∗2 +β ep∗2 γa

∂ f
∂S

(v) ep∗1

)
+ η ep∗3

((
−a

∂ f
∂S

(v) ep∗3 −β ep∗2 −µ

)
γa

∂ f
∂I

(v) ep∗2 +a
∂ f
∂I

(v) ep∗2+p∗3−p∗1 γa
∂ f
∂S

(v) ep∗1

)
= − β ep∗1

(
−
(

β + a
∂ f
∂I

(v) ep∗3−p∗1

)
ep∗2

(
γa

∂ f
∂P

(v) ep∗3 −b ep∗3

)
+

(
a

∂ f
∂P

(v) e2p∗3−p∗1 +a f (v) ep∗3−p∗1

)(
θη + γa

∂ f
∂I

(v)
)

ep∗2

)
+ η ep∗3

((
−a

∂ f
∂S

(v) ep∗3 −β ep∗2 −µ

)(
θη + γa

∂ f
∂I

(v)
)

ep∗2

+

(
β ep∗2 +a

∂ f
∂I

(v) ep∗2+p∗3−p∗1

)
γa

∂ f
∂S

(v) ep∗1

)
.

Taking into account S5) and (2.18), we have

det J(p∗1 , p∗2 , p∗3) = − β ep∗1

(
− β

η

(
η + a

∂ f
∂I

(v)− ac
β

∂ f
∂I

(v) e−p∗1

)
ep∗2

(
γa

∂ f
∂P

(v) ep∗3 −b ep∗3

)
+a ep∗3−p∗1

(
∂ f
∂P

(v) ep∗3 + f (v)
)(

θη + γa
∂ f
∂I

(v)
)

ep∗2

)
+ η ep∗3

((
−a

∂ f
∂S

(v) ep∗3 −β ep∗2 −µ

)(
θη + γa

∂ f
∂I

(v)
)

ep∗2

+
β

η

(
η + a

∂ f
∂I

(v)− ac
β

∂ f
∂I

(v) e−p∗1

)
ep∗2 γa

∂ f
∂S

(v) ep∗1

)
< 0.

Let I : ImQ→ kerL be an isomorphism. Thus

deg(IQN , U ∩ kerL, 0) = det J(p∗1 , p∗2 , p∗3) 6= 0 (2.20)

and condition M3) in Mawhin’s continuation theorem (see appendix A) holds. Taking into account
Lemma 2.6, the proof of Theorem 2.3 is completed.

3 Examples.

In this section we present some examples to illustrate the main result in the previous section.

3.1 A model with Holling-type I functional response.

Letting f (S, I, P) = S (Holling-type I functional response) in system (2.1), we obtain the model:
S′ = Λ(t)− µ(t)S− a(t)SP + β(t)SI,
I′ = β(t)SI − η(t)PI − c(t)I,
P′ = (r(t)− b(t)P)P + γ(t)a(t)SP + θη(t)PI.

(3.1)

Since f (S, I, P) = S, conditions S2) to S5) are trivially satisfied and S7) is satisfied with K = α = 1. We
obtain the following corollary.
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Corollary 3.1. Assume that that conditions S1), S6) and S9) hold. If R̃0 > 1, β b− γ aη > 0 and

R0 > 1 + aη
γ Λ

µ(r η + b c)
+ a

β r + γa c
µ(b β− γ aη)

(3.2)

then system (3.1) possesses an endemic periodic orbit of period ω.

Proof. Consider the system of algebraic equations
Λe−u1 − aeu3 − βeu2 − µ = 0,
βeu1 − ηeu3 − c = 0,
γaeu1 + θηeu2 − beu3 + r = 0.

(3.3)

By the second and third equations we get

eu1 =
η eu3 +c

β
and eu2 =

β b− γ aη

β θη
eu3 − β r + γa c

β θη
.

Notice that by hypothesis β b− γ aη > 0 and the right hand side of the second equation is positive as
long as eu3 > (β r + c γa)/(β b− γ aη). Using the first equation we get

β Λ
η eu3 +c

−
(

a +
β b− γ aη

θ η

)
eu3 +

β r + γa c
θ η

− µ = 0.

Taking into account that we must have eu3 > (β r + c γa)/(β b − γ aη), we consider the function F :
[(β r + c γa)/(β b− γ aη),+∞[→ R given by

F(x) =
β Λ

ηx + c
−
(

a +
β b− γ aη

θ η

)
x +

β r + γa c
θ η

− µ.

It is immediate that F is decreasing and that, by the hypothesis in our corollary, we have

F

(
β r + c γa
β b− γ aη

)
= µ

(
R0 − 1− aη γ Λ

µ(r η + b c)
− a

β r + γa c
µ(b β− γ aη)

)
> 0

and limx→+∞ F(x) = −∞. We conclude that there is x0 ∈ [(β r + c γa)/(β b − γ aη),+∞[ such that
F(x0) = 0. This implies that there is a unique solution of (3.3). The result follows now from Theo-
rem 2.3.

We now assume that the real valued functions Λ, µ, r, b, γ and a are constant and positive.
Model (3.1) becomes 

S′ = Λ− µS− aSP + β(t)SI,
I′ = β(t)SI − η(t)PI − c(t)I,
P′ = (r− bP)P + γaSP + θη(t)PI.

(3.4)

We have the following corollary.

Corollary 3.2. Assume that that conditions S1) and S6) hold. If R̃0 > 1, bβ− γaη > 0, Λ < µ2/a and

R0 > 1 +
a
µ

(
ηγ Λ

r η + b c
+

β r + γa c
b β− γ aη

)

then system (3.4) possesses an endemic periodic orbit of period ω.
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Proof. We begin by noticing that system (2.4) becomes in our context{
x′ = λ(Λ− µx− axz− ε1x),
z′ = λ(r− bz + γax + ε2)z.

(3.5)

System (3.5) has two equilibriums: E1 = (Λ/(µ + ε1), 0) and

E2 =

(√
V2 + 4Λγa2/b−V

2γa2/b
,

√
V2 + 4Λγa2/b−V

2γa2/b
+ r + ε2

)
,

where V = µ + ε1 + a(r + ε2)/b. It is easy to check that E2 is locally attractive and that E1 is a saddle
point whose stable manifold coincides with the x-axis. If 0 < α < (r + ε2)/b then, in the line z = α the
flow points upward. Additionally, if Λ < µ(µ + ε1)/a, in the line x = µ/a the flow points to the left
and the x-coordinate of E1 is less than µ/a. Thus the region R = {(x, z) ∈ R2 : 0 6 x 6 µ/a ∧ z > α} is
positively invariant. Since the divergence of the vector field is given by −µ− ε1 + ε2− (a + 2b)z + γax,
we conclude that it is null on the line z = −µ−ε1+ε2

a+2b + γa
a+2b x. Thus the divergence of the vector field

doesn’t change sign on the region R and this forbids the existence of a periodic orbit on R. There
is also no periodic orbit on (R+

0 )
2 \ R since there is no additional equilibrium in (R+

0 )
2. Since E2 is

locally asymptotically stable, there is no homoclinic orbit connecting E2 to itself. Therefore, the ω-limit
of any orbit in (R2)+ must be the equilibrium point E2 and the global asymptotic stability of (3.5) for
sufficiently small ε1, ε2 > 0 follows. We conclude that condition S9) holds.

To do some simulation, we consider the following particular set of parameters: Λ = 0.1; µ = 0.6;
β(t) = 20(1 + 0.9 cos(2πt)); η(t) = 0.7(1 + 0.7 cos(π + 2πt)); c(t) = 0.1; r = 0.2; b = 0.3; θ = 10,
γ(t) = 0.1 and a = 3. We obtain the model

S′ = 0.1− 0.6S− 20(1 + 0.9 cos(2πt))SI − 3SP,
I′ = 20(1 + 0.9 cos(2πt))SI − 0.7(1 + 0.7 cos(π + 2πt))PI − 0.1I,
P′ = (0.2− 0.3P)P + 7(1 + 0.7 cos(π + 2πt))PI + 0.3SP.

(3.6)

Notice that, for our model, Λ = 0.1 > 0.012 = µ2/a, bβ− γaη = 3.99 > 0, R0 ≈ 5.88 > 1 + 1.86
and R̃0 ≈ 24.8 > 1, and thus the conditions in Corollary 3.1 are fulfilled. Considering the initial
condition (S0, I0, P0) = (0.03567, 0.02047, 0.88021) we obtain the periodic orbit in Figure 3.1. Although
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Figure 3.1: Periodic orbit for model (3.6)

our theoretical result doesn’t imply the attractivity of the periodic solution, the simulations carried out
suggest that this is the case.

3.2 A model with no predation on susceptible preys.

Letting f ≡ 0 in system (1.1), and still assuming that the real valued functions Λ, µ, β, η, c, γ, r, θ and
b are periodic with period ω, nonnegative, continuous and also that Λ̄ > 0, µ̄ > 0, r̄ > 0 and b̄ > 0, we
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obtain the periodic model considered in [13, 18]:
S′ = Λ(t)− µ(t)S− β(t)SI,
I′ = β(t)SI − η(t)PI − c(t)I,
P′ = (r(t)− b(t)P)P + θ(t)η(t)PI.

(3.7)

In [18], the authors refer that the assumption that predator mainly eats the infected prey (that is
modelled by assuming that no predation on uninfected preys occur) is in accordance with the fact that
the infected individuals are less active and can be caught more easily, or that infection modifies the
behavior of the preys in such a way that they start living in parts of the habitat which are accessible to
the predator. Some examples available in the literature are also provided in [18]: as an example of a
situation where infected individuals can be caught more easily, the authors cite [10], where it is showed
that wolf attacks on moose on Isle Royale in Lake Superior are more successful if the moose are heavily
infected with a lungworm; as an example of a situation where the behavior of the prey individuals is
modified, favoring predation, the authors cite [7].

Note that conditions S2) to S5) and S7) are trivially satisfied since f ≡ 0. Also note that system (2.4)
becomes in this context {

x′ = λ(Λ(t)− µ(t)x− ε1x),
z′ = λ(r(t)− b(t)z + ε2)z.

(3.8)

and, by Lemmas 1 to 4 in [18] we conclude that condition S9) holds in this setting. Note also that
condition (3.2) becomes R0 > 1 and condition b β − γ aη 6 0 is trivially satisfied since we can take
γ = 0 or a = 0. We obtain the following corollary that recovers the result in [13]:

Corollary 3.3. If R̃0 > 1 and R0 > 1 hold, then system (3.7) possesses an endemic periodic orbit of period ω.

4 Eco-epidemiological models with linear vital dynamics for preda-
tors

In this section we let h(t, P) = Υ(t)− ζ(t)P, obtaining the following model:
S′ = Λ(t)− µ(t)S− a(t) f (S, I, P)P− β(t)SI,
I′ = β(t)SI − η(t)g(S, I, P)I − c(t)I,
P′ = Υ(t)− ζ(t)P + γ(t)a(t) f (S, I, P)P + θ(t)η(t)g(S, I, P)I.

(4.1)

To establish the existence of an endemic periodic orbit for system (4.1) we assume the following natural
conditions:

R1) The real valued functions Λ, µ, a, β, η, c, Υ, ζ, γ and θ are periodic with period ω, nonnegative
and continuous;

R2) Functions y 7→ f (x, y, z) and z 7→ f (x, y, z) is nonincreasing; function x 7→ f (x, y, z) is nonde-
creasing;

R3) Functions x 7→ g(x, y, z), y 7→ g(x, y, z) are nonincreasing; function z 7→ g(x, y, z) is nondecreas-
ing;

R4) Function f is C1;

R5) Λ̄ > 0, µ̄ > 0, Ῡ > 0 and ζ̄ > 0.

Note that our setting includes several of the most common functional responses for both functions
f and g: f (S, I, P) = kS and g(S, I, P) = kP (Holling-type I), f (S, I, P) = kS/(1 + m(S + I)) and
g(S, I, P) = kP/(1 + m(S + I)) (Holling-type II), f (S, I, P) = kSα/(1 + m(S + I)α) and g(S, I, P) =
kPα/(1 + m(S + I)α) (Holling-type III), f (S, I, P) = kS/(a + b(S + I) + c(S + I)2) and g(S, I, P) =
kP/(a + b(S + I) + c(S + I)2) (Holling-type IV), f (S, I, P) = kS/(a + b(S + I) + cP) and g(S, I, P) =
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kP/(a + b(S + I) + cP) (Beddington–De Angelis), f (S, I, P) = kS/(a + b(S + I) + cP + d(S + I)P) and
g(S, I, P) = kP/(a + b(S + I) + cP + d(S + I)P) (Crowley–Martin). Also note that conditions S3), S4)
are natural from a biological perspective and naturally are satisfied by the usual functional responses
considered in the literature. Conditions S5) and S7) are satisfied by most of the usual functional
response functions.

We also need to consider the following auxiliary system that corresponds to perturbations of the
disease-free system for (4.1):{

x′ = Λ(t)− µ(t)x− a(t) f (x, ε3, z)z− ε1x,
z′ = Υ(t)− ζ(t)z + γ(t)a(t) f (x, ε4, z)z + ε2z.

(4.2)

We now make our last structural assumption on system (4.1):

R5) For each ε1, ε2, ε3, ε4 > 0 sufficiently small, system (4.2) has a unique ω-periodic solution

(x∗ε1,ε2,ε3,ε4
(t), z∗ε1,ε2,ε3,ε4

(t)),

with
x∗ε1,ε2,ε3,ε4

(t) > 0 and z∗ε1,ε2,ε3,ε4
(t) > 0,

that is globally asymptotically stable in the set

{(x, z) ∈ (R+
0 )

2 : x > 0 ∧ z > 0}.

We assume that (ε1, ε2, ε3, ε4) 7→ (x∗ε1,ε2,ε3,ε4
(t), z∗ε1,ε2,ε3,ε4

(t)) is continuous.

To obtain the basic reproductive number for our model we consider the ordering (I, S, P) instead of
(S, I, P), so that the infected compartment becomes the first one and the uninfected compartments
became the last ones. Our new notation corresponds to the one in [12]. With this ordering, the
functions F , V+ and V− in [12] become respectively

F (t, (I, S, P)) = (β(t)SI, 0, 0),

V+(t, (I, S, P)) = (0, 0, Υ(t) + γ(t)a(t) f (S, I, P)P + θ(t)η(t)g(S, I, P)I)

and
V−(t, (I, S, P)) = (η(t)g(S, I, P)I + c(t)I, µ(t)S + a(t) f (S, I, P)P + β(t)SI, ζ(t)P).

Having identified F and V we can compute the matrices F(t) and V(t) in [12] that in our context
reduce to one dimensional matrices (that we identify with real numbers). In fact, we have

F(t) =
∂

∂I
(β(t)SI)|(x∗(t),0,z∗(t)) = β(t)x∗(t)

and
V(t) =

∂

∂I
(η(t)g(S, P, I)I + c(t)I)|(x∗(t),0,z∗(t)) = η(t)g(x∗(t), 0, z∗(t)) + c(t).

The evolution operator W(s, t, λ) associated with the linear ω-periodic parametric system w′ =
(−V(t) + F(t)/λ)w is easily seen to be given by

W(s, t, λ) = e−
∫ t

s β(r)x∗(r)/λ−c(r)−η(r)g(x∗(r),0,z∗(r)) dr

and thus

W(ω, 0, λ) = 1 ⇔ βx∗/λ− c− ηg(x∗, 0, z∗) = 0 ⇔ λ =
βx∗

c + ηg(x∗, 0, z∗)
.

Define

R0 =
βx∗

c + ηg(x∗, 0, z∗)
. (4.3)

Note that our system satisfies conditions (A1) to (A7) in [6].
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Theorem 4.1. Assume conditions R1) to R5). If R0 > 1, then model (4.1) has an endemic periodic orbit in
(R+

0 )
3.

The proof of our theorem adapts to our situation the strategy in [6,12]. It will be developed in two
steps: using a result derived in [12], we obtain persistence of the infective prey in subsection 4.1 and
then, using a Poincaré map, we establish the existence of a periodic orbit in subsection 4.2.

4.1 Uniform persistence

The first step in the proof of Theorem 4.1 is to establish the persistence of all the compartments in our
model. To do so we will use Theorem 2 in [12]. Note first that, as long as α3 max{θ, γ} < α2 < α1, we
have

〈(S′, I′, P′), (α1, α2, α3)〉 = α1 (Λ(t)− µ(t)S− a(t) f (S, I, P)P− β(t)SI)
+α2 (β(t)SI − η(t)g(S, I, P)I − c(t)I)
+α3 (Υ(t)− ζ(t)P + γ(t)a(t) f (S, I, P)P + θ(t)η(t)g(S, I, P)I)

< α1Λu + α3Υu −min{µ` + c` + ζ`}(α1S + α2 I + α3P).

(4.4)

Thus, defining

K =
α1Λu + α3Υu

min{µ` + c` + ζ`}
,

we conclude 〈(S′, I′, P′), (α1, α2, α3)〉 < 0 when α1S + α2 I + α3P < K and that the set

K = {(S, I, P) ∈ (R+
0 )

3 : α1S + α2 I + α3P ≤ K} (4.5)

is forward invariant for the flow of system (4.1). Additionally, letting W = α1S + α2 I + α3P, t0 > 0 and
W0 = α1S(t0) + α2 I(t0) + α3P(t0), by (4.4) we have for t > t0

W(t) < K− (K−W0) e−min{µ`+c`+ζ`}(t−t0)

and thus lim supt→+∞ W(t) < K. We conclude that K is an absorbing set for the flow. Thus the set K
satisfies assumption (A8) in [6].

Let now (S(t), I(t), P(t)) be a solution of (4.1) such that I(t) 6 ε, for t > 0. Since, by the first and
third equations in (4.1), we have{

S′ > Λ(t)− µ(t)S− a(t) f (S, 0, P)P− βuSε,
P′ > Υ(t)− ζ(t)P + γ(t)a(t) f (S, ε, P)P

and {
S′ 6 Λ(t)− µ(t)S− a(t) f (S, ε, P)P,
P′ 6 Υ(t)− ζ(t)P + γ(t)a(t) f (S, 0, P)P + θuηuPε,

condition R5), allows us to conclude that for sufficiently large t > 0 we have S(t) > x∗βuε,0,0,ε(t) >
x∗(t)− σ1(ε) and P(t) 6 z∗0,θuηuε,ε,0(t) 6 z∗(t) + σ2(ε) with σ1(ε), σ2(ε) → 0 as ε → 0. Thus, taking into
account R2) and R3), if I(t) 6 ε we have

I′ = β(t)SI − η(t)g(S, I, P)I − c(t)I

>
(

β(t)x∗(t)− β`σ1(ε)− η(t)g(x∗(t)− σ1(ε), 0, z∗(t) + σ2(ε))− c(t)
)

I

> (F(t)/λ(ε)−V(t)) I

where λ :]0, ε∗[→ R, well-defined when we take ε∗ > 0 sufficiently small, is given by

λ(ε) = max
t∈ ]0,ε[

β(t)x∗(t)
β(t)x∗(t)− β`σ1(ε) + η(t)g(x∗(t), 0, z∗(t))− η(t)g(x∗(t)− σ1(ε), 0, z∗(t) + σ2(ε))
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and we can immediately see that λ(ε)→ 1 as ε→ 0.
By Theorem 2 in [12], we conclude that the infective prey is uniformly strong persistent in sys-

tem (4.1). The uniform strong persistence of the susceptible prey and the predator, in our situa-
tion, is a consequence of the uniform strong persistence of the infectives. In fact, given δ > 0, if
lim supt→+∞ S(t) < δ for some solution (S(t), I(t), P(t)) then I′ 6 (βuδ − c`)I. Thus, if we had a
solution such that δ < c`/βu it would follow that I(t) → 0, contradicting the uniform persistence of
I. Therefore S is uniformly weak persistent. By Theorem 1.3.3 in [17], we conclude that S must be
uniformly strong persistent. Finally, the uniform strong persistence of P is a consequence of the bound
P′ > Υ` − ζuP.

4.2 Existence of a periodic orbit

Next, to establish the existence of a positive periodic orbit for (4.1) we use the following result.

Theorem 4.2 ([17, Theorem 1.3.6]). Let τ : X → X be a continuous map with τ(X0) ⊂ X0 that is point
dissipative, compact and uniform persistent with respect to (X0, ∂X0). Then there exists a global attractor A0
for S in X0 that attracts strongly bounded sets in X0 and S has a coexistence state x0 ∈ A0.

To apply this result to our model we let X = (R+
0 )

3, X0 = K and S = τ, where τ : (R+
0 )

3 → (R+
0 )

3

ia a time-ω map associated to our system and given by τ(S0, I0, P0) = (S(ω), I(ω), P(ω)), where
(S(t), I(t), P(t)) is the solution of (4.1) such that (S(0), I(0), P(0)) = (S0, I0, P0).

Since the bounded set K is an absorbing set for the flow of (4.1), we conclude that τ is point
dissipative. It is immediate that τ is compact and, by the discussion in subsection 4.1, we conclude that
τ is uniformly persistent with respect to (K, ∂K). Therefore, Theorem 4.2 allows us to conclude that
τ has a coexistence state in K. This coexistence state is a periodic orbit of our system contained in K.
This established our result.

A Mawhin’s continuation theorem

In this appendix we state Mawhin’s continuation theorem [9, Part IV]. Let X and Z be Banach spaces.

Definition A.1. A linear map L : D ⊆ X → Z is called a Fredholm mapping of index zero if

1. dim kerL = codim ImL 6 ∞;

2. ImL is closed in Z.

Given a Fredholm mapping of index zero L : D ⊆ X → Z it is well known that there are continuous
projectors P : X → X and Q : Z → Z such that:

1. Im P = kerL;

2. ker Q = ImL = Im(I −Q);

3. X = kerL⊕ ker P;

4. Z = ImL⊕ Im Q.

It follows that L|D⋂
ker P : (I − P)X → ImL is invertible. We denote the inverse of that map by K.

Definition A.2. A continuous mapping N : X → Z is called L-compact on U ⊂ X, where U is an open
bounded set, if

1. QN(U) is bounded;

2. K(I −Q)N : U → X is compact.

Note that, since Im Q is isomorphic to ker L, there is an isomophism I : ImQ→ kerL. We are now
prepared to state the Mawhin’s continuation theorem.
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Theorem A.3 (Mawhin’s continuation theorem). Let X and Z be Banach spaces and let U ⊂ X be an open
set. Assume that L : D ⊆ X → Z is a Fredholm mapping of index zero and let N : X → Z be L-compact on U.
Additionally, assume that

M1) for each λ ∈ (0, 1) and x ∈ ∂U ∩ D we have Lx 6= λN x;

M2) for each x ∈ ∂U ∩ kerL we have QN x 6= 0;

M3) deg(IQN , U ∩ kerL, 0) 6= 0.

Then the operator equation Lx = N x has at least one solution in D ∩U.
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