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Abstract. Oscillation of solutions of even order half-linear differential equations of the
form

D(αn, . . . , α1)x + q(t)|x|β sgn x = 0, t ≥ a > 0, (1.1)

where αi, 1 ≤ i ≤ n, and β are positive constants, q is a continuous function from [a, ∞)
to (0, ∞) and the differential operator D(αn, . . . , α1) is defined by

D(α1)x =
d
dt
(
|x|α1 sgn x

)
and

D(αi, . . . , α1)x =
d
dt
(
|D(αi−1, . . . , α1)x|αi sgn D(αi−1, . . . , α1)x

)
, i = 2, . . . , n,

is proved in the case where α1 · · · αn = β through reduction to the problem of oscillation
of solutions of some lower order differential equations associated with (1.1).

Keywords: half-linear differential equation, oscillation test.
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1 Introduction

Consider differential equations of the form

D(αn, . . . , α1)x + q(t)|x|β sgn x = 0, t ≥ a > 0, (1.1)

where n ≥ 2 is an even integer, α1, α2, . . . , αn and β are positive constants, q : [a, ∞) →
(0, ∞), a > 0, is a continuous function and the differential operator D(αn, . . . , α1)x is defined
recursively by

D(α1)x =
d
dt
(
|x|α1 sgn x

)
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and

D(αi, . . . , α1)x =
d
dt
(
|D(αi−1, . . . , α1)x|αi sgn D(αi−1, . . . , α1)x

)
, i = 2, . . . , n.

It is convenient to denote by C(αj, . . . , α1)[t0, ∞), 1 ≤ j ≤ n, the set of continuous functions
x : [t0, ∞)→ R such that D(αi, . . . , α1)x, i = 1, . . . , j, exist and are continuous on [t0, ∞).

A function x(t) from C(αn, . . . , α1)[t0, ∞) is called a solution of equation (1.1) on [t0, ∞) if it
satisfies (1.1) at each t ∈ [t0, ∞). We restrict our consideration to the so called proper solutions
of (1.1), i.e., solutions which are not trivial in any neighborhood of infinity. Such a solution is
called oscillatory if it has an unbounded set of zeros, and it is called nonoscillatory otherwise.

It is known that for any nonoscillatory solution x(t) of (1.1) there exist a t0 ≥ a and an odd
integer l, 1 ≤ l ≤ n− 1, such that for t ≥ t0

x(t)D(αj, . . . , α1)x(t) > 0 for j = 1, . . . , l, (1.2)

and
(−1)n+jx(t)D(αj, . . . , α1)x(t) < 0 for j = l + 1, . . . , n, (1.3)

(see Naito [19]). Functions belonging to C(αn, . . . , α1)[t0, ∞) and satisfying (1.2) and (1.3) for
t ≥ t0, will be called nonoscillatory functions of Kiguradze’s degree l. We denote by Nl the set
of all nonoscillatory solutions of equation (1.1) which are of degree l. The elements of N1

(resp. Nn−1) will be called nonoscillatory solutions of the minimal (resp. maximal) Kiguradze’s
degree.

Existence and asymptotic behavior of positive solutions of nonlinear differential equations
of the form (1.1) in the case where the exponents satisfied either β < α1 · · · αn or β > α1 · · · αn

were studied by Naito in [18,19] (for some particular cases see also [7,8,11–13,16,17,20–22,24,
25]), but the important special case in which β = α1 · · · αn seems to remain untouched until
now. As far as we know, the paper by Došlý et al. [4] devoted to the study of nonoscillation
of solutions of higher order half-linear differential equations of the form

n

∑
k=0

(−1)k
(

rk(t)
∣∣x(k)∣∣α sgn x(k)

)(k)

= 0,

where rk, 0 ≤ k ≤ n, are continuous functions with rn(t) > 0 in the interval under considera-
tion, is the only work on the subject.

Recently, the present author in [6] gave an oscillation criterion which (when specialized to
equation (1.1)) says that all solutions of (1.1) are oscillatory if there exists an ε ∈ (0, 1] such
that ∫ ∞

a
tα2···αn+α3···αn+···+(1−ε)αn q(t)dt = ∞. (1.4)

The result is sharp in the sense that if ε = 0 in (1.1)), then equation (1.1) may have nonoscil-
latory solutions. On the other hand, the above criterion does not apply to such an important
special case of (1.1) as the nonlinear Euler-type differential equation

D(αn, . . . , α1)x +
γ

tα2···αn+α3···αn+···+αn+1 |x|
α1···αn sgn x = 0, t ≥ a > 0, (1.5)

where γ > 0 is a constant.
Thus, our main purpose here is to obtain criteria which would be more sensitive to oscilla-

tory behaviour of solutions of equations of the form (1.1) and would apply also to higher order
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half-linear equations of the Euler type. Our approach is based on reduction of the problem
of oscillation of equation (1.1) to the problem of oscillation of solutions of some lower order
equations and inequalities. In the linear case this approach was used successfully by various
authors in [1, 2, 5, 9, 10, 14, 15, 23].

2 Preliminaries

We begin with some preparatory results which will be needed in the sequel.

Lemma 2.1. Let α > 0 and y ∈ C(α)[t0, ∞) be such that either

y(t)D(α)y(t) > 0 for t ≥ t0, (2.1)

or
y(t)D(α)y(t) < 0 for t ≥ t0 (2.2)

and ∫ ∞

t0

|D(α)y(t)|dt < ∞. (2.3)

Then y ∈ C1[t0, ∞), i.e., the usual derivative y′(t) exists and is continuous on [t0, ∞).

Proof. We will assume that y(t) > 0 on [t0, ∞). (The proof in the case y(t) < 0 for t ≥ t0 is
similar and is omitted.)

If y satisfies (2.1), then we can integrate D(α)y(t) from t0 to t and raise the result to the
power 1/α to get

y(t) =
[

y(t0)
α +

∫ t

t0

D(α)y(s)ds
] 1

α

, t ≥ t0. (2.4)

Similarly, if y satisfies (2.2) and (2.3), then D(α)y(t) < 0 for t ≥ t0 implies that y(∞)α =

limt→∞ y(t)α exists as a nonnegative finite number and after integration of D(α)y(t) from
t(≥ t0) to ∞ we arrive at

y(t) =
[

y(∞)α −
∫ ∞

t
D(α)y(s)ds

] 1
α

, t ≥ t0. (2.5)

From (2.4) (resp. (2.5)) it is clear that in both cases the function y(t) is continuously differen-
tiable on [t0, ∞).

Remark 2.2. Repeated application of Lemma 2.1 shows that if y is a nonoscillatory solution
of equation (1.1) on an interval [t0, ∞), then y and D(αi, . . . , α1)y, i = 1, . . . , n− 1, are contin-
uously differentiable functions, that is,

d
dt

y(t) and
d
dt
[
D(αi, . . . , α1)y(t)

]
, i = 1, . . . , n− 1,

exist and are continuous on [t0, ∞).

To formulate and prove our next lemma, we define the numbers ri(k), 1 ≤ i ≤ n− 1 and
k = 0, 1, . . . , i, by

ri(0) = 1 and ri(k) =
1

αi−k+1
ri(k− 1) + 1 for k = 1, . . . , i. (2.6)

We also set
ri := ri(i) = 1 +

1
α1

+
1

α1α2
+ · · ·+ 1

α1α2 · · · αi
.
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Lemma 2.3. If y ∈ C(αl , . . . , α1)[t0, ∞) satisfies D(αi, . . . , α1)y(t) > 0, i = 0, . . . , l and
D(αl+1, . . . , α1)y(t) < 0 for t ≥ t0, then

(t− t0)D(αl−k, . . . , α1)y(t) ≤ rl(k)
[
D(αl−k−1, . . . , α1)y(t)

]αl−k , k = 0, 1, . . . , l − 1, (2.7k)

for t ≥ t0.

Proof. Since D(αl , . . . , α1)y(t) is decreasing for t ≥ t0, integrating on [t0, t] we obtain

(t− t0)D(αl , . . . , α1)y(t) ≤
∫ t

t0

D(αl , . . . , α1)y(s)ds =
∫ t

t0

(
[D(αl−1, . . . , α1)y(s)]αl

)′ds

=
[
D(αl−1, . . . , α1)y(t)

]αl −
[
D(αl−1, . . . , α1)y(t0)

]αl

≤
[
D(αl−1, . . . , α1)y(t)

]αl , (2.8)

which gives inequality (2.7k) for k = 0. Next, since by the remark after Lemma 2.1,
D(αl−1, . . . , α1)y(t) is continuously differentiable function, we can express (2.8) explicitly as

αl(t− t0)
[
D(αl−1, . . . , α1)y(t)

]αl−1(D(αl−1, . . . , α1)y(t)
)′ ≤ [D(αl−1, . . . , α1)y(t)

]αl ,

or, equivalently,

[
(t− t0)D(αl−1, . . . , α1)y(t)

]′ ≤ 1 + αl

αl
D(αl−1, . . . , α1)y(t), (2.9)

for t ≥ t0. Integrating (2.9) from t0 to t we obtain

(t− t0)D(αl−1, . . . , α1)y(t) ≤
1 + αl

αl

[
D(αl−2, . . . , α1)y(t)

]αl−1 , t ≥ t0, (2.10)

which is (2.7k) for k = 1.
Repeated application of the above procedure yields (2.7k) also for k = 2, . . . , l − 1 where

D(αj, . . . , α1)y(t) for j = 0 should be interpreted as y(t).

The following comparison lemma will play an important role in our later discussions. For
the proof see Naito [19].

Lemma 2.4. Let l ∈ {1, 3, . . . , n− 1} be a fixed odd number and let the differential inequality

D(αn, . . . , α1)y + q(t)|y|α1···αn sgn y ≤ 0, t ≥ a > 0, (2.11)

where q : [a, ∞)→ (0, ∞) is a continuous function, have a positive solution y(t) of degree l for t ≥ t0.
Then there exists a positive solution x(t) of equation (1.1) which has the same degree l.

3 Reduction to the existence of solutions of minimal degree

Define numbers Ri, 1 ≤ i ≤ n− 1, by

R1 = 1 and Ri =

(
1

ri(i− 1)

) 1
α1
(

1
ri(i− 2)

) 1
α1α2
· · ·
(

1
ri(1)

) 1
α1 ···αi−1

, i = 2, . . . , n− 1,

where ri(k), k = 0, 1, . . . , i, are given by (2.6).
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Theorem 3.1. Eq. (1.1) has a nonoscillatory solution of the Kiguradze’s degree l, 1 ≤ l ≤ n− 1, if and
only if the differential equation

D(αn, . . . , αl)z + Rβ
l (t− t0)

(rl−1−1)βq(t)|z|αl ···αn sgn z = 0, t ≥ t0, (3.1l)

has a nonoscillatory solution of the Kiguradze’s degree 1.

Proof. (Necessity.) Suppose that (1.1) has a nonoscillatory solution x(t) whose Kiguradze’s
degree is l, 1 ≤ l ≤ n− 1. We may assume that x(t) is positive and satisfies (1.2) and (1.3) on
[t0, ∞). If we chain the inequalities (2.7k), k = 1, . . . , l − 1, together, we obtain

x(t) ≥ Rl(t− t0)
rl−1−1[D(αl−1, . . . , α1)x(t)

] 1
α1 ···αl−1 , t ≥ t0. (3.2)

Substituting this inequality into (1.1), we obtain that x(t) satisfies the inequality

D(αn, . . . , α1)x(t) + Rα1···αn
l (t− t0)

(rl−1−1)α1···αn q(t)
[
D(αl−1, . . . , α1)x(t)

]αl ···αn ≤ 0.

Put y(t) = D(αl−1, . . . , α1)x(t). Then the function y(t) satisfies

D(αn, . . . , αl)y(t) + Rα1···αn
l (t− t0)

(rl−1−1)α1···αn q(t)|y(t)|αl ···αn sgn y(t) ≤ 0, t ≥ t0, (3.3)

and its Kiguradze’s degree is 1. By Lemma 2.4, the corresponding differential equation (3.1l)
has a positive solution z(t) of the same degree 1.

(Sufficiency.) Let (3.1l) have a nonoscillatory solution z(t) of degree 1. We may assume that
z(t) > 0 for t ≥ t0. Then the function

w(t) =
(

Rl/Rl−1
)( ∫ t

t0

( ∫ s1

t0

. . .
( ∫ sl−2

t0

z(sl−1)dsl−1

) 1
αl−1

. . . ds2

) 1
α2

ds1

) 1
α1

(3.4)

satisfies
D(αl−1, . . . , α1)w(t) =

(
Rl/Rl−1

)α1···αl−1 z(t)

and since z(t) has degree 1, the function w(t) satisfies

D(αk, . . . , α1)w(t) > 0 for k = 1, . . . , l,

and
(−1)n+kD(αk, . . . , α1)w(t) < 0 for k = l + 1, . . . , n.

Hence, w(t) is a function having degree l for t ≥ t0. Since z(t) is increasing, from (3.4) we
obtain

w(t) ≤
(

Rl/Rl−1
)
z(t)1/(α1···αl−1)

( ∫ t

t0

( ∫ s1

t0

. . .
( ∫ sl−2

t0

dsl−1

) 1
αl−1

. . . ds2

) 1
α2

ds1

) 1
α1

= Rl(t− t0)
rl−1−1z(t)1/(α1···αl−1).

Now, as a consequence of the relation

rl(k) = rl−1(k− 1) +
1

αl−k+1 · · · αl
, k = 1, . . . , l,
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we get rl(k) ≥ rl−1(k− 1), k = 1, . . . , l, which implies(
Rl/Rl−1

)α1···αl−1 ≤ 1.

Thus,

D(αn, . . . , α1)w(t) =
(

Rl/Rl−1
)α1···αl−1 D(αn, . . . , αl)z(t) ≤ D(αn, . . . , αl)z(t)

and so for t ≥ t0,

D(αn, . . . , α1)w(t) + q(t)w(t)α1···αn ≤D(αn, . . . , αl)z(t) + Rα1···αn
l (t− t0)

(rl−1−1)α1···αn q(t)z(t)αl ···αn

showing that w(t) is a solution of (2.11) for t ≥ t0 since z(t) is a solution of (3.1l). Finally, by
Lemma 2.4, there exists a positive solution x(t) of (1.1) of degree l. This completes the proof
of the theorem.

Remark 3.2. If l = n− 1, then (3.1l) reduces to the second-order equation

D(αn, αn−1)z + Rβ
n−1(t− t0)

(rn−2−1)βq(t)|z|αn−1αn sgn z = 0. (3.1n−1)

From Theorem 3.1 it follows that if (3.1n−1) is nonoscillatory, then equation (1.1) is nonoscilla-
tory, too. (More precisely, it has a nonoscillatory solution of the maximal degree l = n− 1.)

However, if l < n− 1, then equations (3.1l) are of orders greater than 2 and it may not be
an easy matter to determine whether or not (3.1l) has a nonoscillatory solutions of degree 1.

Thus, we proceed further and associate with (1.1) a set of half-linear differential equations
all of which are of the second order.

For this purpose we assume that the integrals

I1(q) =
∫ ∞

a
q(t)dt,

I2(q) =
∫ ∞

a

( ∫ ∞

t
q(s)ds

) 1
αn

dt,

...

In−l−1(q) =
∫ ∞

a

( ∫ ∞

sl+3

. . .
( ∫ ∞

sn−1

q(s)ds
) 1

αn

. . . dsl+4

) 1
αl+3

dsl+3, 1 ≤ l ≤ n− 2,

converge and define continuous functions ρ0(t), . . . , ρn−l−1(t) by

ρ0(t) = q(t), ρk(t) =
[ ∫ ∞

t
ρk−1(s)ds

] 1
αn−k+1

, k = 1, . . . , n− l − 1. (3.5)

The following theorem is the main result of this paper.

Theorem 3.3. Suppose that (1.1) has a nonoscillatory solution x(t) which is of degree l, 1 ≤ l ≤ n− 1,
for t ≥ t0. Then, the second order half-linear differential equation

D(αl+1, αl)z + Rα1···αl+1
l (t− t0)

(rl−1−1)α1···αl+1 ρn−l−1(t)|z|αlαl+1 sgn z = 0, t ≥ t0, (3.6l)

has a nonoscillatory solution of degree 1.
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Proof. Suppose that equation (1.1) has an eventually positive solution x(t) which is of degree
l, 1 ≤ l ≤ n − 1, for t ≥ t0. (If x(t) is a solution which is eventually negative, the proof is
similar and is omitted.)

By Theorem 3.1, there exists a positive solution z(t) of the lower order differential equation
(3.1l) which is of degree 1, i.e., it satisfies for t ≥ t0

D(αl)z(t) > 0 and (−1)n+jD(αj, . . . , αl)z(t) < 0 for j = l + 1, . . . , n. (3.7)

Integrating (3.1l) from t to ∞ and using (3.7), we get

D(αn−1, . . . , αl)z(t) ≥ Rα1···αn−1
l

( ∫ ∞

t
(s− t0)

(rl−1−1)α1···αn q(s)z(s)αl ···αn ds
)1/αn

, t ≥ t0.

Continuing in this fashion and using the fact that z(t) and (t− t0)(rl−1−1)α1···αn are increasing
functions for t ≥ t0, we obtain

−
[
D((αl+1, αl)z(t)

]αl+2

≥ Rα1···αl+1
l (t− t0)

(rl−1−1)α1···αl+1 z(t)αlαl+1αl+2

( ∫ ∞

t

(
. . .
( ∫ ∞

sn−1

q(s)ds
) 1

αn

. . .
) 1

αl+3
dsl+2

)
,

or, equivalently,

D(αl+1, αl)z(t) + Rα1···αl+1
l (t− t0)

(rl−1−1)α1···αl+1 ρn−l−1(t)z(t)αlαl+1 ≤ 0, t ≥ t0, (3.8)

where ρn−l−1(t) is defined by (3.5). Thus, by Lemma 2.4, the differential equation (3.6l) has a
positive solution of degree 1 as claimed. The proof of the theorem is complete.

As an immediate consequence of Theorem 3.3 we get the following oscillation result.

Corollary 3.4. If all of the second order half-linear differential equations (3.6l), l = 1, 3, . . . , n− 1, are
oscillatory, then all solutions of the n-th order differential equation (1.1) are oscillatory.

Example 3.5. Consider the Euler-type nonlinear differential equation

D(αn, . . . , α1)x + γt−(α2···αn+α3···αn+···+αn+1)|x|α1···αn sgn x = 0, t ≥ 1, (3.9)

where n is an even integer and α1, . . . , αn and γ are positive constants.
To simplify notation and formulation of our results for equation (3.9), we define the num-

bers qi and Qi, i = 1, . . . , n, by

q1 = 0, qi = αi(qi−1 + 1) for i = 2, . . . , n, (3.10)

and

Q1 = 1, Qi =

(
1
qi

) 1
αi
(

1
qi+1

) 1
αiαi+1

. . .
(

1
qn−1

) 1
αi ···αn−1

(
1
qn

) 1
αi ···αn

, i = 2, . . . , n. (3.11)

It is a matter of easy computation to verify that if q(t) = γt−qn−1, γ > 0, then the functions
ρn−l−1 defined by (3.5) become

ρn−l−1(t) = γ1/(αl+2···αn)Ql+2t−ql+1+1, l = 1, . . . , n− 3, (3.12)
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and the second order half-linear differential equations (3.6l) associated with (3.9) reduce re-
spectively to(

|z′|αl+1 sgn z′
)′
+ γ1/(α1···αn)Rα1···αl+1

l Ql+2t−ql+1−1|z|αl+1 sgn z = 0, t ≥ 1, (3.13l)

if 1 ≤ l ≤ n− 3, and(
|z′|αn sgn z′

)′
+ γRα1···αn

n−1 t−qn−1|z|αn sgn z = 0, t ≥ 1, (3.14)

if l = n− 1.
If we apply the well-known result which says that all solutions of the generalized second

order Euler differential equation(
|z′|α sgn z

)′
+ λt−α−1|z|α sgn z = 0, t ≥ 1, (3.15)

are oscillatory if and only if

λ >

(
α

α + 1

)α+1

, (3.16)

(see, for example, [3]), then we get that for oscillation of all solutions of equation (3.7) it is
sufficient that

γ1/(αl+2···αn)Rα1···αl+1
l Ql+2 >

(
αl+1

αl+1 + 1

)αl+1+1

, l = 1, 3, . . . , n− 3, (3.17l)

and

γRα1···αn
n−1 >

(
αn

αn + 1

)αn+1

. (3.18)

Example 3.6. Consider the fourth order half-linear differential equation

D(α4, α3, α2, α1)x + q(t)|x|α1α2α3α4 sgn x = 0, t ≥ a > 0, (3.19)

where αi, 1 ≤ i ≤ 4, are positive constants and q : [a, ∞) → (0, ∞) is continuous function.
Second order equations associated with (3.19) are

(
|z′|α2 sgn z′

)′
+

( ∫ ∞

t

( ∫ ∞

s
q(τ)dτ

)1/α4

ds
)1/α3

|z|α2 sgn z = 0, t ≥ t0, (3.20)

and(
|z′|α4 sgn z′

)′
+

(
α2α3

1 + α3 + α2α3

)α2α3α4( α3

1 + α3

)α3α4(
t− t0

)(1+α2)α3α4 q(t)|z|α4 sgn z = 0, t ≥ t0.

(3.21)
From Corollary 3.4 we know that oscillation of both equations (3.20) and (3.21) implies

oscillation of all solutions of equation (3.19).
This occurs, for example, if for some ε ∈ (0, 1]

∫ ∞

a
t1−ε

( ∫ ∞

t

( ∫ ∞

s
q(τ)dτ

)1/α4

ds
)1/α3

dt = ∞ (3.22)

and ∫ ∞

a
t(1+α2)α3α4+1−εq(t)dt = ∞, (3.23)

(see [6]).
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4 Reduction to the existence of solutions of maximal degree

In the last section we indicate an alternative way how to obtain the set of second-order equa-
tions (3.6l) associated with the even order half-linear differential equation (1.1). Here, the
problem of the existence of nonoscillatory solutions of an arbitrary degree l of equation(1.1)
is converted into the problem of the existence of solutions of the maximal Kiguradze’s degree
of certain lower order half-linear differential equation.

Theorem 4.1. If the n-th order equation (1.1) has a nonoscillatory solution of degree l, then the (l + 1)-
order differential equation

D(αl+1, . . . , α1)z(t) + ρn−l−1(t)|z(t)|α1···αl+1 sgn z(t) = 0, t ≥ t0, (4.1l)

has a nonoscillatory solution of the same degree l.

Proof. Let x(t) be a nonoscillatory solution of equation (1.1) which is of Kiguradze’s degree l.
We may suppose that x(t) is eventually positive and satisfies (1.2) and (1.3) on [t0, ∞), t0 ≥ a.

If l = n− 1, then the proof is trivial because (4.1n−1) is the same as (1.1).
Let 1 ≤ l < n− 1. Integrating (1.1) from t(≥ t0) to ∞, we get

D(αn−1, . . . , α1)x(t) ≥
( ∫ ∞

t
q(s)x(s)α1···αn ds

)1/αn

, t ≥ t0.

Continuing in this way, we finally arrive at

− D(αl+1, . . . , α1)x(t)

≥
( ∫ ∞

t

( ∫ ∞

sl+2

. . .
( ∫

sn−1

q(s)x(s)α1···αn ds
)1/αn

. . . dsl+3

)1/αl+3

dsl+2

)1/αl+2

(4.2)

for t ≥ t0. Since x(t) is increasing for t ≥ t0, from (4.2) it follows that

D(αl+1, . . . , α1)x(t) + ρn−l−1(t)x(t)α1···αn ≤ 0, t ≥ t0.

Application of Lemma 2.4 shows that (4.1l) has a positive solution z(t) which satisfies (1.2)
and (1.3) with n replaced by l + 1. The proof of the theorem is complete.

If we estimate x(t) from below as in the proof of Theorem 3.1 and substitute it into (4.1l),
we obtain

D(αl+1, . . . , α1)x(t) + Rα1···αl+1
l (t− t0)

(rl−1−1)α1···αl+1 ρn−l−1(t)
[
D(αl−1, . . . , α1)x(t)

]αlαl+1 ≤ 0
(4.3)

for t ≥ t0. Let y(t) be given by

y(t) =
[
D(αl−1, . . . , α1)x(t)

]αl .

Then y(t) satisfies the second order differential inequality(
|y′(t)|αl+1 sgn y′(t)

)′
+ Rα1···αl+1

l (t− t0)
(rl−1−1)α1···αl+1 ρn−l−1(t)|y(t)|αl+1 sgn y(t) ≤ 0, t ≥ t0,

and, by Lemma 2.4, there exists a nonoscillatory solution z(t) (of degree 1) of the correspond-
ing differential equation(
|z′(t)|αl+1 sgn z′(t)

)′
+ Rα1···αl+1

l (t− t0)
(rl−1−1)α1···αl+1 ρn−l−1(t)|z(t)|αl+1 sgn z(t) = 0, t ≥ t0,

(4.4l)
which is the same as (3.6l).
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[1] T. A. Čanturija, On some asymptotic properties of solutions of linear ordinary differen-
tial equations (in Russian), Bull. Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys. 25(1977), No. 8,
757–762. MR0481247; Zbl 0375.34022
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