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1 Introduction

Let Ω be a bounded domain in R3 with a smooth boundary Γ := ∂Ω, Ω1 ⊂ R3 be a subdomain
of Ω with a smooth boundary Σ := ∂Ω1 and Ω1 ⊂ Ω. Assume that Ω2 = Ω \Ω1 is connected.
Obviously, Γ ∩ Σ = ∅ and ∂Ω2 = Γ ∪ Σ. In the present paper we study the existence of
solutions for the following Kirchhoff-type transmission problem

α

(∫
Ω1

g2(u)|∇u|2
) [
−div

(
g2(u)∇u

)
+ g(u)g′(u)|∇u|2

]
= f (u) + λφ(u), in Ω1,

β

(∫
Ω2

g2(v)|∇v|2
) [
−div

(
g2(v)∇v

)
+ g(v)g′(v)|∇v|2

]
= h(v) + λψ(v), in Ω2,

v = 0, on Γ,

u = v, on Σ,

α

(∫
Ω1

g2(u)|∇u|2
)

∂u
∂ν

= β

(∫
Ω2

g2(v)|∇v|2
)

∂v
∂ν

, on Σ,

(1.1)

where λ ∈ R+ := [0, ∞) and ν is the unit outward normal vector to ∂Ω1. This system is a
modified version of Kirchhoff-type transmission problem because the appearance of nonlocal
terms

∫
Ω1

g2(u)|∇u|2 and
∫

Ω2
g2(v)|∇v|2.
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There are two motivations for studying equation (1.1). The first one is the generalized
quasilinear Schrödinger equations. The second one is the classical Kirchhoff-type transmission
problem.

In 2015, Deng, Peng, and Yan in [9] researched the generalized quasilinear Schrödinger
equations

− div
(

g2(u)∇u
)
+ g(u)g′(u)|∇u|2 + V(x)u = f (x, u), x ∈ RN , (1.2)

where N > 3, the potential function V ∈ C(RN) and f ∈ C(RN ×R). If we take g2(t) =

1 +
[
(l(t2))′

]2 /2 for t ∈ R and l being a suitable function defined on R+, then the equation
(1.2) turns into

− ∆u + V(x)u− ∆[l(u2)]l′(u2)u = f (x, u), x ∈ RN . (1.3)

Solutions of (1.3) is related to the existence of solitary wave solutions for the following quasi-
linear Schrödinger equation

i∂tz = −∆z + V(x)z− f (x, z)− ∆[l(|z|2)]l′(|z|2)z, x ∈ RN . (1.4)

This quasilinear version of Schrödinger equations is derived from several models of various
physical phenomena. The equation (1.4) is called the superfluid film equation in plasma
physics when l(t) = t for t ∈ R+, see [13] or [14, 15]. If l(t) = (1 + t)1/2 for t ∈ R+, the
equation (1.4) was used for the self-channeling of a high-power ultrashort laser in matter, see
[4,5,7,24]. In mathematics, many results about the equation (1.3) with l(t) = tα for some α > 1
have been obtained, see [1, 2, 6, 8, 10, 18–20, 22, 23, 29–31] and the references therein. Equation
(1.3) with a general l was studied in the recent papers [9, 25]. We can see that the equation
(1.2) is more general and more practical than the equation (1.3).

If we choose g(t) = 1 for t ∈ R and λ = 0, then the equation (1.1) becomes the classical
Kirchhoff-type transmission problem

−α

(∫
Ω1

|∇u|2
)

∆u = f (u), in Ω1,

−β

(∫
Ω2

|∇v|2
)

∆v = h(v), in Ω2,

v = 0, on Γ,

u = v, on Σ,

α

(∫
Ω1

|∇u|2
)

∂u
∂ν

= β

(∫
Ω2

|∇v|2
)

∂v
∂ν

, on Σ.

(1.5)

It is well known that this problem is related to the stationary analogue of the problem

utt − α

(∫
Ω1

|∇u|2
)

∆u = f (u), x ∈ Ω1, t > 0,

vtt − β

(∫
Ω2

|∇v|2
)

∆v = g(v), x ∈ Ω2, t > 0,

v = 0, on Γ,

u = v, on Σ,

α

(∫
Ω1

|∇u|2
)

∂u
∂ν

= β

(∫
Ω2

|∇v|2
)

∂v
∂ν

, on Σ,

u(0) = u0, ut(0) = u1, x ∈ Ω1,

v(0) = v0, vt(0) = v1, x ∈ Ω2,

(1.6)
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which models the transverse vibrations of a membrane composed of two different materials
in Ω1 and Ω2. According to [21], we call the problem (1.6) a transmission problem because the
boundary conditions u = v and α

( ∫
Ω1
|∇u|2

)
∂u
∂ν = β

( ∫
Ω2
|∇v|2

)
∂v
∂ν on Σ. This transmission

problem (1.6) arises in physics and biology phenomena, such as in the study of electromag-
netic processes in ferromagnetic media with different dielectric constants [3], and in thinking
about the population distribution of subjects living in an environment composed of different
ecological media. In 2003, Ma and Muñoz Rivera [21] discussed the existence and nonexistence
of positive solution to the Kirchhoff-type transmission problem (1.5) by using minimization
arguments with f and g having subcritical growth. In [16], Li, Zhang, Zhu, and Liang investi-
gated the existence of the ground-state solutions to the following Kirchhoff-type transmission
problem with critical perturbation

−α

(∫
Ω1

|∇u|2
)

∆u = f (u) + λu5, in Ω1,

−β

(∫
Ω2

|∇v|2
)

∆v = g(v) + λv5, in Ω2,

v = 0, on Γ,

u = v, on Σ,

α

(∫
Ω1

|∇u|2
)

∂u
∂ν

= β

(∫
Ω2

|∇v|2
)

∂v
∂ν

, on Σ.

(1.7)

Here, we will establish the existence of ground-state solutions to Kirchhoff-type transmis-
sion problem with more general g and more general perturbation terms φ and ψ. To obtain the
existence of ground-state solutions to the more general Kirchhoff-type transmission problem
(1.1), we assume that four pairs of functions (α, g, f ), (β, g, h), (α, g, φ), and (β, g, ψ) belong to
the set A, where a pair of functions (α, g, f ) is said to belongs to A, if (α, g, f ) satisfies the
following assumptions

(A0) α ∈ C1(R+) is an increasing function and α(0) > 0;

(A1) there exists γ ∈ (0, 2) such that [α(s)− α(0)]/sγ is decreasing on (0, ∞);

(G) g ∈ C1(R, R+) is even with g′(s) > 0 for s ∈ R+ and g(0) = 1;

(F0) f ∈ C1(R, R) and lims→0 f (s)/s = 0;

(F1) there exists l f ∈ R such that

lim
|s|→∞

f (s)
g(s)G5(s)

= l f ,

where G(s) =
∫ s

0 g(t)dt for s ∈ R. And if l f = 0, we call that f has a quasicritical
growth; if l f 6= 0, we call that f has a critical growth;

(F2) f (s)/(g(s)|G(s)|2γG(s)) is nondecreasing on (0, ∞) and nonincreasing on (−∞, 0), and
lim|s|→∞ F(s)/|G(s)|2γ+2 = ∞, where F(s) =

∫ s
0 f (t)dt for s ∈ R and γ is as in (A1).

Remark 1.1. Assuming that g satisfies (G) and γ ∈ (0, 2), let f (s) = g(s)|G(s)|2γG(s) ln |G(s)|
and φ(s) = g(s)(G(s))5 for s ∈ R. Then f and φ satisfy (F0), (F1), and (F2).

Example 1.2. Let α(s) = 1 + s2 for s ∈ R+, and for γ ∈ (0, 2), define g(s) = s2 + 1, f (s) =

(s2 + 1)
∣∣s3/3 + s

∣∣2γ (s3/3 + s
)

ln
∣∣s3/3 + s

∣∣, φ(s) = (s2 + 1)
(
s3/3 + s

)5 for s ∈ R. Then
(α, g, f ) and (α, g, φ) belong to A.
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Example 1.3. For a, b > 0, let α(s) = a + bs for s ∈ R+, and for γ ∈ (0, 2), define g(s) =√
2s2 + 1,

f (s) =
√

2
4

√
2s2 + 1

∣∣∣√2s
√

2s2 + 1 + ln
(√

2s +
√

2s2 + 1
)∣∣∣2γ (√

2s
√

2s2 + 1

+ ln
(√

2s +
√

2s2 + 1
))
× ln

∣∣∣√2s
√

2s2 + 1 + ln
(√

2s +
√

2s2 + 1
)∣∣∣ ,

φ(s) =
√

2
4

√
2s2 + 1

[√
2s
√

2s2 + 1 + ln
(√

2s +
√

2s2 + 1
)]5

for s ∈ R. Then (α, g, f ) and
(α, g, φ) belong to A.

Remark 1.4. We know that the critical exponent of equation (1.7) is 6 which has a significant
influence on the properties of the solution. The critical exponent of equation (1.1) is different
for different g and the critical exponent depends on G6. This is an interesting phenomenon.
For example, when g(s) =

√
2s2 + 1 for s ∈ R, the critical exponent is 12; when g(s) = s2 + 1

for s ∈ R, the critical exponent is 18.

For any given subdomain D of R3, the standard norm on Lp(D) is denoted by | · |p,D for
p ∈ [1, ∞). Let H1(Ω1) and H1(Ω2) be the usual Sobolev spaces. Then H1(Ω1)× H1(Ω2) is
also a Sobolev space with the norm

‖(u, v)‖ =
(
|∇u|22,Ω1

+ |u|22,Ω1
+ |∇v|22,Ω2

+ |v|22,Ω2

)1/2
, (u, v) ∈ H1(Ω1)× H1(Ω2). (1.8)

Our analysis is based on the following Sobolev space

E = {(u, v) ∈ H1(Ω1)× H1
Γ(Ω2) : u = v on Σ},

where
H1

Γ(Ω2) = {v ∈ H1(Ω2) : v = 0 on Γ}.

In [21] Ma and Muñoz Rivera established the following lemma which gave the definition of
norm for the Sobolev space E.

Lemma 1.5 ([21, Lemma 1]). E is a closed subspace of H1(Ω1)× H1(Ω2), and

‖(u, v)‖E =
(
|∇u|22,Ω1

+ |∇v|22,Ω2

)1/2
, (u, v) ∈ E,

defines also a norm on E, which is equivalent to the standard norm (1.8).

Remark 1.6. From Lemma 1.5, we know that the space E is embedded into Lp(Ω1)× Lq(Ω2)

for all p, q ∈ [1, 6], and these embeddings are compact for all p, q ∈ [1, 6). In particular, for
each p = q ∈ [1, 6], there exists νp > 0 such that

|(u, v)|p :=
(
|u|pp,Ω1

+ |v|pp,Ω2

)1/p
6 νp‖(u, v)‖E, (u, v) ∈ E. (1.9)

In order to solve the transmission problem (1.1), due to the appearance of nonlocal terms∫
Ω1

g2(u)|∇u|2 and
∫

Ω2
g2(v)|∇v|2, the potential working space seems to be

E0 =

{
(u, v) ∈ E :

∫
Ω1

g2(u)|∇u|2 < ∞,
∫

Ω2

g2(v)|∇v|2 < ∞
}

.
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Obviously, E0 may not be a linear space under the assumed condition of (G). To avoid this
drawback, we gave a change of variables,

(u, v) =
(

G−1(u1), G−1(v1)
)

, (u1, v1) ∈ E,

which is motivated by [9, 25]. According to the properties of g, G, and G−1 which will
be given in Section 2, if (u1, v1) ∈ E, then (u, v) = (G−1(u1), G−1(v1)) ∈ E (see Remark
2.3),

∫
Ω1

g2(u)|∇u|2 =
∫

Ω1
g2(G−1(u1))|∇G−1(u1)|2 = |∇u1|22 < ∞, and

∫
Ω2

g2(v)|∇v|2 =∫
Ω2

g2(G−1(v1))|∇G−1(v1)|2 = |∇v1|22 < ∞. Thus, it follows from the change of variables that
E can be used as the working space and the transmission problem (1.1) turns into

−α

(∫
Ω1

|∇u1|2
)

g(G−1(u1))∆u1 = f (G−1(u1)) + λφ(G−1(u1)), in Ω1,

−β

(∫
Ω2

|∇v1|2
)

g(G−1(v1))∆v1 = h(G−1(v1)) + λψ(G−1(v1)), in Ω2,

v1 = 0, on Γ,

u1 = v1, on Σ,

α

(∫
Ω1

|∇u1|2
)

∂u1

∂ν
= β

(∫
Ω2

|∇v1|2
)

∂v1

∂ν
, on Σ.

(1.10)

Furthermore, we can prove that if (u1, v1) ∈ E ∩
(

H2
loc(Ω1)× H2

loc(Ω2)
)

is a strong solution to
the equation (1.10), then (u, v) = (G−1(u1), G−1(v1)) ∈ E ∩

(
H2

loc(Ω1)× H2
loc(Ω2)

)
is a strong

solution to the equation (1.1). Here, we call that (u, v) ∈ E∩
(

H2
loc(Ω1)× H2

loc(Ω2)
)

is a strong
solution to the transmission problem (1.10) or (1.1) if the first two equations in (1.10) or (1.1)
hold in the sense of almost everywhere. Actually, we only need to verify that for any an
open bounded set D ⊂ R3 if u1 ∈ H2(D), then G−1(u1) ∈ H2(D)(see Lemma 4.2). Moreover,
because of the continuity of g, G, and G−1, to obtain a strong solution to the transmission
problem (1.10), it suffices to seek for the weak solution to the following transmission problem

−α

(∫
Ω1

|∇u1|2
)

∆u1 =
f (G−1(u1))

g(G−1(u1))
+ λ

φ(G−1(u1))

g(G−1(u1))
, in Ω1,

−β

(∫
Ω2

|∇v1|2
)

∆v1 =
h(G−1(v1))

g(G−1(v1))
+ λ

ψ(G−1(v1))

g(G−1(v1))
, in Ω2,

v1 = 0, on Γ,

u1 = v1, on Σ,

α

(∫
Ω1

|∇u1|2
)

∂u1

∂ν
= β

(∫
Ω2

|∇v1|2
)

∂v1

∂ν
, on Σ.

(1.11)

In fact, if (u1, v1) ∈ E is a weak solution to the transmission problem (1.11), then it should
satisfy, for all (w1, z1) ∈ E,

α
(
|∇u1|22,Ω1

) ∫
Ω1

∇u1 · ∇w1 + β
(
|∇v1|22,Ω2

) ∫
Ω2

∇v1 · ∇z1

=
∫

Ω1

f (G−1(u1))

g(G−1(u1))
w1 +

∫
Ω2

h(G−1(v1))

g(G−1(v1))
z1 + λ

∫
Ω1

φ(G−1(u1))

g(G−1(u1))
w1 + λ

∫
Ω2

ψ(G−1(v1))

g(G−1(v1))
z1.

Hence, u1 ∈ H1(Ω1) weakly solves the equation

−α
(
|∇u1|22,Ω1

)
∆u1 = a(x)(1 + u1), in Ω1,
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with

a(x) =
1

1 + u1(x)

(
f (G−1(u1))

g(G−1(u1))
+ λ

φ(G−1(u1))

g(G−1(u1))

)
=:

1
1 + u1(x)

(
f̃ (u1) + λφ̃(u1)

)
,

where f̃ (s) := f (G−1(s))
g(G−1(s)) and φ̃(s) := φ(G−1(s))

g(G−1(s)) for s ∈ R. The condition (F2) implies that

a ∈ L3/2
loc (Ω1). By the Brézis–Kato theorem, see also [26, Lemma B.3, p. 244] , we know that u1 ∈

Lq
loc(Ω1) for any q ∈ [1, ∞). Theorem 8.8 in [11, p. 183] shows that u1 ∈ H1(Ω1) ∩ H2

loc(Ω1)

and
−α
(
|∇u1|22,Ω1

)
∆u1 = f̃ (u1) + λφ̃(u1), a.e. x ∈ Ω1.

Similarly, we can prove that v1 ∈ H1
Γ(Ω2) ∩ H2

loc(Ω1) such that

−β
(
|∇v1|22,Ω2

)
∆v1 = h̃(v1) + λψ̃(v1), a.e. x ∈ Ω2,

where h̃(s) = h(G−1(s))
g(G−1(s)) and ψ̃(s) = ψ(G−1(s))

g(G−1(s)) for s ∈ R. So the problem (1.11) holds in the sense

of almost everywhere and (u1, v1) ∈
(

H1(Ω1) ∩ H2
loc(Ω1)

)
×
(

H1
Γ(Ω2) ∩ H2

loc(Ω2)
)

is a strong
solution to the equation. Here, let (u, v) = (G−1(u1), G−1(v1)). Then (u, v) is a strong solution
to the transmission problem (1.1). For the convenience, removing the subscripts of u1, v1 , we
rewrite (1.11) as the following transmission problem

−α

(∫
Ω1

|∇u|2
)

∆u =
f (G−1(u))
g(G−1(u))

+ λ
φ(G−1(u))
g(G−1(u))

, in Ω1,

−β

(∫
Ω2

|∇v|2
)

∆v =
h(G−1(v))
g(G−1(v))

+ λ
ψ(G−1(v))
g(G−1(v))

, in Ω2,

v = 0, on Γ,

u = v, on Σ,

α

(∫
Ω1

|∇u|2
)

∂u
∂ν

= β

(∫
Ω2

|∇v|2
)

∂v
∂ν

, on Σ.

(1.12)

In the following, we make our efforts to find the weak solution to the transmission problem
(1.12). To this end, we define the energy functional I : E→ R associated with the transmission
problem (1.12)

Iλ(u, v) =
1
2

A
(
|∇u|22,Ω1

)
+

1
2

B
(
|∇v|22,Ω2

)
−
∫

Ω1

F(G−1(u))−
∫

Ω2

H(G−1(v))

− λ
∫

Ω1

Φ(G−1(u))− λ
∫

Ω2

Ψ(G−1(v)), (u, v) ∈ E,

where A(s) =
∫ s

0 α(t)dt, B(s) =
∫ s

0 β(t)dt for s ∈ R+, and H(s) =
∫ s

0 h(t)dt, Φ(s) =
∫ s

0 φ(t)dt,
Ψ(s) =

∫ s
0 ψ(t)dt for s ∈ R. It can be verified that Iλ is of class C1. And for all (u, v), (w, z) ∈ E,

〈I′λ(u, v), (w, z)〉 = α(|∇u|22,Ω1
)
∫

Ω1

∇u · ∇w + β(|∇v|22,Ω2
)
∫

Ω2

∇v · ∇z−
∫

Ω1

f (G−1(u))
g(G−1(u))

w

−
∫

Ω2

h(G−1(v))
g(G−1(v))

z− λ
∫

Ω1

φ(G−1(u))
g(G−1(u))

w− λ
∫

Ω2

ψ(G−1(v))
g(G−1(v))

z.

Let F̃(s) = F(G−1(s)), H̃(s) = H(G−1(s)), Φ̃(s) = Φ(G−1(s)), and Ψ̃(s) = Ψ(G−1(s)) for
s ∈ R. Then, for all (u, v), (w, z) ∈ E, we have that

Iλ(u, v) =
1
2

A
(
|∇u|22,Ω1

)
+

1
2

B
(
|∇v|22,Ω2

)
−
∫

Ω1

F̃(u)−
∫

Ω2

H̃(v)− λ
∫

Ω1

Φ̃(u)− λ
∫

Ω2

Ψ̃(v),
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and

〈I′λ(u, v), (w, z)〉 = α
(
|∇u|22,Ω1

) ∫
Ω1

∇u · ∇w + β
(
|∇v|22,Ω2

) ∫
Ω2

∇v · ∇z

−
∫

Ω1

f̃ (u)w−
∫

Ω2

h̃(v)z− λ
∫

Ω1

φ̃(u)w− λ
∫

Ω2

ψ̃(v)z. (1.13)

Then we say that (u, v) ∈ E is a weak solution to the transmission problem (1.12) if and only
if (u, v) is a critical point of the functional Iλ in E, i.e., I′λ(u, v) = 0. To sum up, it suffices to
seek a critical point of the functional Iλ in E to achieve a strong solution to the transmission
problem (1.1).

Now, we state our main results through the following theorems.

Theorem 1.7. Assume that (α, g, f ), (β, g, h) ∈ A with l f = lh = 0, (α, g, φ), (β, g, ψ) ∈ A with
lφ, lψ 6= 0, and φ(s)s > 0, ψ(s)s > 0 for s 6= 0. Then there exists λ0 > 0 such that both the problem
(1.12) and (1.1) have a ground-state solution (uλ, vλ) for all λ ∈ [0, λ0). Furthermore, it holds that
(uλ, vλ)→ (u0, v0) in E as λ→ 0, where (u0, v0) is a ground-state solution to the problem (1.1) with
λ = 0.

Corollary 1.8. Let Ω2 = ∅, α(s) = 1, g(s) =
√

1 + 2s2, f (s) = |s|q−2, and φ(s) = |s|10s for s ∈ R.
Then the following equation has a ground-state solution uλ for all λ ∈ [0, λ0),{

−∆u− ∆(u2)u = |u|q−2u + λ|u|10u, in Ω,

u = 0, on ∂Ω,
(1.14)

where q ∈ (4, 12). Furthermore, it holds that uλ → u0 in H1
0(Ω) as λ→ 0, where u0 is a ground-state

solution to the above problem with λ = 0.

Remark 1.9. According to [8], for a single quasilinear Schrödinger equation (1.14) in a bounded
domain in R3, there exists a suitable energy level c∗ such that if c(λ) < c∗, then the associated
energy functional satisfies the (PS)c(λ) condition, where c∗ = S3/6 and S is the best Sobolev
constant for D1,2(R3) ↪→ L6(R3). However, a large amount of calculations is required to prove
that c(λ) < c∗ by verifying

sup
t∈R+

Iλ(tuε) < c∗,

where uε is a modification of U and U attains the best Sobolev constant S. In this paper to
avoid this difficulty, we adopt the perturbation method from [12, 32].

Remark 1.10. Let g(s) = 1 and φ(s) = ψ(s) = s5 for s ∈ R. Then by Theorem 1.7, we have
that the transmission problem (1.1) also has a ground-state solution, which has been achieved
in [16]. Thus, Theorem 1.7 could be regarded as a generalization of Theorem 1.1 in [16].

This paper is organized as follows. We give some preliminaries in Section 2. Theorem 1.7 is
proved in Section 3. Throughout this paper we denote Ci for i ∈ N := {1, 2, . . . } as constants
which can be different from line to line.

2 Preliminaries

In this section we first give some properties of the functions α, g, f̃ , and A, G, G−1, F̃ via the
following lemmas.
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Lemma 2.1.

(i) Assume that α satisfies the condition (A0). Then A(s) > α(0)s for s ∈ R+.

(ii) Assume that α satisfies the conditions (A0) and (A1). Then [A(s) − α(0)s]/sγ+1, α(s)s −
(γ + 1)A(s) + γα(0)s, and A(s)/sγ+1 are decreasing on (0, ∞). Furthermore, we have that

(γ + 1)A(s)− α(s)s > γα(0)s, s ∈ R+, (2.1)

and
α′(s)s 6 γ[α(s)− α(0)] < γα(s), s ∈ R+. (2.2)

Lemma 2.2. The functions g, G, and G−1 have the following properties under the assumption of (G):

(i) G and G−1 are both odd, and

t 6 G(t) 6 g(t)t, t ∈ R+, s/g(G−1(s)) 6 G−1(s) 6 s, s ∈ R+;

(ii) lims→0 G−1(s)/s = 1 and lims→∞ G−1(s)/s = 1/g(∞), where g(∞) = lims→∞ g(s);

(iii) G−1(s)/
[
|s|2γsg(G−1(s))

]
is nonincreasing on (0, ∞) and nondecreasing on (−∞, 0);

(iv) [G−1(s)]2 − G−1(s)s/g(G−1(s)) is nondecreasing on (0, ∞) and nonincreasing on (−∞, 0);

(v) if f is a continuous function and (F2) holds, then f (G−1(s))s/[(2γ+ 2)g(G−1(s))]− F(G−1(s))
is increasing on (0, ∞) and decreasing on (−∞, 0).

Proof. (i), (ii), and (iv) can be derived from [17, (1), (2), and (4) of Lemma 2.2]. As for (iii),
because g is even, we need only to prove that the conclusion holds on (0, ∞). In fact, since
[G(t)/t]2γ+1g(t) is nondecreasing on (0, ∞), [G(t)]2γ+1g(t)/t is also nondecreasing on (0, ∞),
and then G−1(s)/[s2γ+1g(G−1(s))] is nonincreasing on (0, ∞).

Finally, we prove that (v) holds. Indeed, since f (t)/[g(t)|G(t)|2γG(t)] is nondecreasing on
(0, ∞) and nonincreasing on (−∞, 0), according to [17, Lemma A.1], f (t)G(t)/[(2γ+ 2)g(t)]−
F(t) is nondecreasing on (0, ∞) and nonincreasing on (−∞, 0), and then f (G−1(s))s/[(2γ +

2)g(G−1(s))]− F(G−1(s)) is nondecreasing on (0, ∞) and nonincreasing on (−∞, 0), that is,
(v) holds. The proof is complete.

Remark 2.3. Let (u, v) ∈ E. Then it follows from g(t) > 1 for t ∈ R+, and (i) of Lemma 2.2
that (G−1(u), G−1(v)) ∈ E.

Lemma 2.4. Assume that g satisfies (G) and f satisfies (F0), (F1), and (F2). Let f̃ (s) = f (G−1(s))
g(G−1(s)) for

s ∈ R. Then f̃ has the following properties:

(F′0) f̃ ∈ C1(R) and lims→0 f̃ (s)/s = 0;

(F′1)

lim
|s|→∞

f̃ (s)
s5 = l f ;

(F′2) f̃ (s)/(|s|2γs) is nondecreasing on (0, ∞) and nonincreasing on (−∞, 0), and

lim
|s|→∞

F̃(s)/|s|2γ+2 = ∞.
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From [16], the function f̃ possesses some other properties as mentioned in the following
Remark 2.5. With those properties, we know that Lemmas 2.6–2.8 hold.

Remark 2.5. It follows from (F′2) and [17, Lemma A.1] that f̃ (s)s− 2(γ+ 1)F̃(s) is nondecreas-
ing on R+ and nonincreasing (−∞, 0], and then

f̃ (s)s− 2(γ + 1)F̃(s) > 0, s ∈ R, (2.3)

and
f̃ ′(s)s− (2γ + 1) f̃ (s) > 0, s ∈ R+. (2.4)

Lemma 2.6. Suppose that f satisfies the conditions (F0) and (F1) and g satisfies the conditions (G).
Then for each u ∈ H1(Ω), one has that

lim
t→0

∫
Ω1

f̃ (tu)u
t

= 0.

Lemma 2.7. Suppose that f satisfies the conditions (F0) and (F1) and g satisfies the conditions (G). If
un ⇀ u 6= 0 in H1(Ω) and |tn| → ∞, then

lim
n→∞

∫
Ω

f̃ (tnun)un

|tn|2γtn
= ∞.

Lemma 2.8. Suppose that f satisfies the conditions (F0) and (F1) and g satisfies the conditions (G).
Then for each u ∈ H1(Ω) and u 6= 0, it holds that

lim
|t|→∞

∫
Ω1

f̃ (tu)u
|t|2γt

= ∞.

3 Existence and convergence of ground-state solutions

In this section, assuming that the all conditions of Theorem 1.7 hold, we will establish the
existence of ground-state solutions to the problems (1.12) and complete the proof of Theo-
rem 1.7. First, we verify that the functional Iλ has a mountain pass geometric structure and
the functional I0 satisfies the Palais–Smale (PS for short) condition.

For each λ ∈ R+, let

Γλ = {γ ∈ C([0, 1], E) : γ(0) = 0, Iλ(γ(1)) < 0}

and define
c(λ) = inf

γ∈Γ
max
t∈[0,1]

Iλ(γ(t)).

Lemma 3.1. Γλ 6= ∅ and c(λ) > 0 for λ ∈ R+.

Proof. For any given ε ∈
(
0,
[
2(1 + λ)ν2

2
]−1 min{α(0), β(0)}

)
and p ∈ (2γ + 2, 6], we obtain

from (F′0) and (F′1) that there exists Cε,p, Cε > 0 such that

| f̃ (s)|, |h̃(s)| 6 ε
[
|s|+ |s|5

]
+ Cε,p|s|p−1, s ∈ R, (3.1)

|F̃(s)|, |H̃(s)| 6 ε
(
s2 + s6)+ Cε,p|s|p, s ∈ R,

|φ̃(s)|, |ψ̃(s)| 6 ε|s|+ Cε|s|5, s ∈ R, (3.2)

|Φ̃(s)|, |Ψ̃(s)| 6 εs2 + Cεs6, s ∈ R,
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where F̃(s) =
∫ s

0 f̃ (t)dt, H̃(s) =
∫ s

0 h̃(t)dt, Φ̃(s) =
∫ s

0 φ̃(t)dt, and Ψ̃(s) =
∫ s

0 ψ̃(t)dt for s ∈ R.
Then it follows from the Sobolev inequality (1.11) that for (u, v) ∈ E,∣∣∣∣∫Ω1

F̃(u) +
∫

Ω2

H̃(v)
∣∣∣∣ 6 εν2

2‖(u, v)‖2
E + εν6

6‖(u, v)‖6
E + ν

p
p Cε,p‖(u, v)‖p

E,

and ∣∣∣∣∫Ω1

Φ̃(u) +
∫

Ω2

Ψ̃(v)
∣∣∣∣ 6 εν2

2‖(u, v)‖2
E + ν6

6Cε‖(u, v)‖6
E.

Thus, combining this and (i) of Lemma 2.1, we have that for (u, v) ∈ E,

Iλ(u, v)

=
1
2

A
(
|∇u|22,Ω1

)
+

1
2

B
(
|∇v|22,Ω2

)
−
∫

Ω1

F̃(u)−
∫

Ω2

H̃(v)− λ

[∫
Ω1

Φ̃(u) +
∫

Ω2

Ψ̃(v)
]

>
1
2
[
α(0)|∇u|22,Ω1

+ β(0)|∇v|22,Ω2

]
− (1 + λ)εν2

2‖(u, v)‖2
E

− ν
p
p Cε,p‖(u, v)‖p

E − (ε + λCε)ν
6
6‖(u, v)‖6

E

>
(

1
2

min{α(0), β(0)} − (1 + λ)εν2
2

)
‖(u, v)‖2

E − ν
p
p Cε,p‖(u, v)‖p

E − (ε + λCε)ν
6
6‖(u, v)‖6

E.

Hence, letting ρ > 0 small enough, it is easy to see that inf{Iλ(u, v) : ‖(u, v)‖E = ρ} > 0.
Next, for each (u, v) ∈ E \ {0}, according to (ii) of Lemma 2.1, the following limits exist

a∞ := lim
t→∞

A
(

t2|∇u|22,Ω1

)
2t2γ+2 ∈ R+, b∞ := lim

t→∞

B
(

t2|∇v|22,Ω2

)
2t2γ+2 ∈ R+.

For any given M > (a∞ + b∞)
[
(1 + λ)

(
|u|2γ+2

2γ+2,Ω1
+ |v|2γ+2

2γ+2,Ω2

)]−1
, it follows from (F′2) and

(F′0) that there exists C > 0 such that

F̃(s), H̃(s), Φ̃(s), Ψ̃(s) > M|s|2γ+2 − C, s ∈ R.

Thus, we have that

Iλ(t(u, v)) 6
1
2

A
(
t2|∇u|22,Ω1

)
+

1
2

B
(
t2|∇v|22,Ω2

)
−M(1 + λ)t2γ+2

[
|u|2γ+2

2γ+2,Ω1
+ |v|2γ+2

2γ+2,Ω2

]
+ C(1 + λ)[|Ω1|+ |Ω2|]

= t2γ+2

A
(

t2|∇u|22,Ω1

)
2t2γ+2 +

B
(

t2|∇v|22,Ω2

)
2t2γ+2 −M(1 + λ)

[
|u|2γ+2

2γ+2,Ω1
+ |v|2γ+2

2γ+2,Ω2

]

+
C(1 + λ)

t2γ+2 [|Ω1|+ |Ω2|]


→ −∞, t→ ∞.

The proof is complete.

Lemma 3.2. For each λ ∈ R+, any PS sequence of the functional Iλ is always bounded. Particularly,
for λ = 0, the functional I0 satisfies the PS condition.
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Proof. As for the boundedness of PS sequence, one only needs to observe that (2.1) and (2.3)
imply the AR condition. Here for the completeness, we sketch out the proof. Assume that
λ ∈ R+, c ∈ R, and {(un, vn)} is a (PS)c sequence of Iλ. Then according to (2.1) and (2.3), for
sufficiently large n we have that

c + 1 + ‖(un, vn)‖E > Iλ(un, vn)−
1

2γ + 2
〈I′λ(un, vn), (un, vn)〉

=
1
2

A(|∇un|22,Ω1
)− 1

2γ + 2
α(|∇un|22,Ω1

)|∇un|22,Ω1

+
1
2

B(|∇vn|22,Ω2
)− 1

2γ + 2
β(|∇vn|22,Ω2

)|∇vn|22,Ω2

+
∫

Ω1

[
1

2γ + 2
f̃ (un)un − F̃(un)

]
+
∫

Ω2

[
1

2γ + 2
h̃(vn)vn − H̃(vn)

]
+ λ

∫
Ω1

[
1

2γ + 2
φ̃(un)un − Φ̃(un)

]
+ λ

∫
Ω2

[
1

2γ + 2
ψ̃(vn)vn − Ψ̃(vn)

]
>

γα(0)
2γ + 2

|∇un|22,Ω1
+

γβ(0)
2γ + 2

|∇vn|22,Ω2

>
γ

2γ + 2
min{α(0), β(0)}‖(un, vn)‖2

E. (3.3)

It follows that {(un, vn)} is bounded in E.
Now, we illustrate that the functional I0 satisfies the PS condition. In fact, let {(un, vn)} be

a PS sequence of I0. First, from the above conclusion we can get the boundedness of {(un, vn)}
in E . Without loss of generality, there exists (u, v) ∈ E such that (un, vn) ⇀ (u, v) as n → ∞.
Owing to (3.1) and the compact embedding E ↪→ Lp(Ω1) × Lp(Ω2) for p ∈ [1, 6), we can
derive that

lim
n→∞

∫
Ω1

f̃ (un)(un − u) = 0, lim
n→∞

∫
Ω2

h̃(vn)(vn − v) = 0. (3.4)

Thus, similarly to Lemma 3.2 in [16], we can prove that ‖(un − u, vn − v)‖2
E → 0. The proof is

complete.

It follows from the mountain pass theorem that the following corollary holds.

Corollary 3.3.
Kc(0) := {(u, v) ∈ E : I′0(u, v) = 0, I0(u, v) = c(0)} 6= ∅. (3.5)

Define

Nλ =
{
(u, v) ∈ E \ {0} : 〈I′λ(u, v), (u, v)〉 = 0

}
, d(λ) = inf

Nλ

Iλ. (3.6)

We now prove that Nλ 6= ∅ and provide some properties of the mapping d(·).

Lemma 3.4. Let (u, v) ∈ E\{0}.

(i) For each λ ∈ R+, there exists a unique t(λ) > 0 such that t(λ)(u, v) ∈ Nλ, 〈I′λ(t(u, v)), t(u, v)〉
> 0 for t ∈ (0, t(λ)), 〈I′λ(t(u, v)), t(u, v)〉 < 0 for t ∈ (t(λ), ∞), and Iλ(t(λ)(u, v)) =

maxt∈R+ Iλ(t(u, v)).

(ii) The function t(·) : R+ → (0, ∞) is continuously differentiable and

t′(λ) =

∫
Ω1

φ̃(t(λ)u)t(λ)u +
∫

Ω2
ψ̃(t(λ)v)t(λ)v

W1(t(λ), (u, v))
, (3.7)
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where W1 is defined by

W1(t, (u, v)) = − 2γt
[
α
(
t2|∇u|22,Ω1

)
|∇u|22,Ω1

+ β(t2|∇v|22,Ω2
)|∇v|22,Ω2

]
+ 2t3

[
α′(t2|∇u|22,Ω1

)|∇u|42,Ω1
+ β′(t2|∇v|22,Ω2

)|∇v|42,Ω2

]
+ (2γ + 1)

[∫
Ω1

f̃ (tu)u +
∫

Ω2

h̃(tv)v
]
−
∫

Ω1

f̃ ′(tu)tu2 −
∫

Ω2

h̃′(tv)tv2

+ (2γ + 1)λ
[∫

Ω1

φ̃(tu)u +
∫

Ω2

ψ̃(tv)v
]
− λ

∫
Ω1

φ̃′(tu)tu2 − λ
∫

Ω2

ψ̃′(tv)tv2.

Particularly, t(·) is decreasing on R+.

Proof. (i) Let (u, v) ∈ E\{0} and λ ∈ R+ be fixed, and let w(t) = Iλ(t(u, v)) for t ∈ R+. Then
w ∈ C1(R+) and we have that for t > 0,

w′(t) = 〈I′λ(t(u, v)), (u, v)〉

= tα
(
t2|∇u|22,Ω1

)
|∇u|22,Ω1

+ tβ
(
t2|∇v|22,Ω2

)
|∇v|22,Ω2

−
∫

Ω1

f̃ (tu)u−
∫

Ω2

h̃(tv)v

− λ

[∫
Ω1

φ̃(tu)u +
∫

Ω2

ψ̃(tv)v
]

. (3.8)

By applying (A0) and Lemma 2.6, we obtain that w′(t) > 0 for small t > 0. And by applying
(ii) of Lemma 2.1 and Lemma 2.8, we obtain that w′(t) < 0 for t large. Thus, there must be
some t(λ) > 0 such that w′(t(λ)) = 0. Therefore, t(λ)(u, v) ∈ Nλ.

Furthermore, we can also derive the uniqueness of t(λ). In fact, suppose by contradiction
there are t1, t2 ∈ (0, ∞) with t1 < t2 such that w′(t1) = w′(t2) = 0. Then we have thatα

(
t2
1|∇u|22,Ω1

)
t2γ
1

−
α
(

t2
2|∇u|22,Ω1

)
t2γ
2

 |∇u|22,Ω1
+

β
(

t2
1|∇v|22,Ω2

)
t2γ
1

−
β
(

t2
2|∇v|22,Ω2

)
t2γ
2

 |∇v|22,Ω2

=
∫

Ω1

[
f̃ (t1u)

t2γ+1
1

− f̃ (t2u)

t2γ+1
2

]
u +

∫
Ω2

[
h̃(t1v)

t2γ+1
1

− h̃(t2v)

t2γ+1
2

]
v

+ λ
∫

Ω1

[
φ̃(t1u)

t2γ+1
1

− φ̃(t2u)

t2γ+1
2

]
u + λ

∫
Ω2

[
ψ̃(t1v)

t2γ+1
1

− ψ̃(t2v)

t2γ+1
2

]
v,

which is absurd in view of (A1), (F′2), and t1 < t2.
(ii) Let us define a function W(t, λ) = 〈I′λ(t(u, v)), (u, v)〉 for (t, λ) ∈ (−1, ∞)2. Then

W(t(λ), λ) = 0 for λ ∈ R+ and by calculation we know that for (t, λ) ∈ (−1, ∞)2,

∂W
∂t

(t, λ) = α
(
t2|∇u|22,Ω1

)
|∇u|22,Ω1

+ β
(
t2|∇v|22,Ω2

)
|∇v|22,Ω2

+ 2t2
[
α′
(
t2|∇u|22,Ω1

)
|∇u|42,Ω1

+ β′
(
t2|∇v|22,Ω2

)
|∇v|42,Ω2

]
−
∫

Ω1

f̃ ′(tu)u2 −
∫

Ω2

h̃′(tv)v2 − λ

[∫
Ω1

φ̃′(tu)u2 +
∫

Ω2

ψ̃′(tv)v2
]

(3.9)

and
∂W
∂λ

(t, λ) = −
∫

Ω1

φ̃(tu)u−
∫

Ω2

ψ̃(tv)v.
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Moreover, it follows from (3.9), (3.8), (2.2), and (2.4) that for λ ∈ R+,

∂W
∂t

(t(λ), λ) =
∂W
∂t

(t(λ), λ)− 2γ + 1
t(λ)

W(t(λ), λ)

= − 2γ
[
α
(
t2(λ)|∇u|22,Ω1

)
|∇u|22,Ω1

+ β
(
t2(λ)|∇v|22,Ω2

)
|∇v|22,Ω2

]
+ 2t2

[
α′
(
t2|∇u|22,Ω1

)
|∇u|42,Ω1

+ β′
(
t2|∇v|22,Ω2

)
|∇v|42,Ω2

]
+

1
t(λ)

∫
Ω1

[
(2γ + 1) f̃ (t(λ)u)− f̃ ′(t(λ)u)t(λ)u

]
u

+
1

t(λ)

∫
Ω2

[
(2γ + 1)h̃(t(λ)v)− h̃′(t(λ)u)t(λ)v

]
v

+
λ

t(λ)

∫
Ω1

[
(2γ + 1)φ̃(t(λ)u)− φ̃′(t(λ)u)t(λ)u

]
u

+
λ

t(λ)

∫
Ω2

[
(2γ + 1)ψ̃(t(λ)v)− ψ̃′(t(λ)u)t(λ)v

]
v

< 0.

Hence, the implicit function theorem and (i) imply that t(·) : R+ → (0, ∞) is continuously
differentiable and (3.7) holds. Particularly, recall that φ(s)s > 0 and ψ(s)s > 0 for s 6= 0, so
t′(λ) < 0 for λ ∈ R+. Thus, t(·) is decreasing on R+.

Lemma 3.5. For each µ > 0, it holds that ρµ := infλ∈[0,µ] dist(0, Nλ) > 0.

Proof. Let λ ∈ [0, µ] and (u, v) ∈ Nλ. Then for each ε ∈
(
0,
[
(1 + µ)ν2

2
]−1 min{α(0), β(0)}

)
, it

follows from (3.6), (3.1), and (3.2) with p = 5, and the Sobolev embedding theorem that

min{α(0), β(0)}‖(u, v)‖2
E

6 α(0)|∇u|22,Ω1
+ β(0)|∇v|22,Ω2

6 α
(
|∇u|22,Ω1

)
|∇u|22,Ω1

+ β
(
|∇v|22,Ω2

)
|∇v|22,Ω2

=
∫

Ω1

f̃ (u)u +
∫

Ω2

h̃(v)v + λ

[∫
Ω1

φ̃(u)u +
∫

Ω2

ψ̃(v)v
]

6 (1 + λ)ε
[
|u|22,Ω1

+ |v|22,Ω2

]
+ (ε + λCε)

[
|u|66,Ω1

+ |v|66,Ω2

]
+ Cε,p

[
|u|pp,Ω1

+ |v|pp,Ω2

]
6 (1 + µ)εν2

2‖(u, v)‖2
E + (ε + λCε + Cε,6)ν

6
6‖(u, v)‖6

E.

Thus, there exists a positive number σ independent of λ such that ‖(u, v)‖E > σ for (u, v) ∈
Nλ. Hence, ρµ > σ.

Subsequently, we will obtain a minimax characterization of d(·) given by the following
lemma.

Lemma 3.6. d(λ) = c(λ) = inf(u,v)∈E\{0}maxt∈R+ Iλ(t(u, v)) for λ ∈ R+.

This lemma can be achieved from (i) of Lemma 3.4 and Lemma 3.1. Here we omit the
proof, and for the concrete process readers can refer Lemma 3.6 in [16].

According to the above lemma, since c(·) is nonincreasing on R+, we know that d(·) is
nonincreasing on R+ and d(λ) 6 d(0) for λ ∈ R+. Similarly, to establish the right continuity
of c(·) at λ = 0, it suffices to prove that d(·) is continuous at λ = 0 from the right.

Lemma 3.7. limλ→0 d(λ) = d(0).
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Proof. Let {λn} ⊂ (0, µ] satisfy λn → 0 as n → ∞. Then for any given ε ∈ (0, d(0)) it follows
from the definition of d(λn) that there exists (un, vn) ∈ Nλn such that for all n,

Iλn(un, vn) 6 d(λn) + ε. (3.10)

We note that as in (3.3), for fixed λ ∈ [0, µ],

γ

2γ + 2
min{α(0), β(0)}‖(u, v)‖2

E 6 Iλ(u, v), (u, v) ∈ Nλ.

Then it follows from (3.10) that for all n,

‖(un, vn)‖2
E 6

2γ + 2
γ min{α(0), β(0)} (d(λn) + ε) <

4(γ + 1)d(0)
γ min{α(0), β(0)} .

Hence, there exist (u, v) ∈ E and a subsequence of {(un, vn)}, still denoted by {(un, vn)},
satisfying that (un, vn) ⇀ (u, v). Particularly, it holds that (u, v) 6= 0. Otherwise, by (1.13),
(3.4), and the fact that λn → 0, one can conclude that

min{α(0), β(0)}‖(un, vn)‖2
E

6 α
(
|∇un|22,Ω1

)
|∇un|22,Ω1

+ β
(
|∇vn|22,Ω2

)
|∇vn|22,Ω2

=
∫

Ω1

f̃ (un)un +
∫

Ω2

h̃(vn)vn + λn

[∫
Ω1

φ̃(un)un +
∫

Ω2

ψ̃(vn)vn

]
→ 0.

This contradicts the fact that {‖(un, vn)‖E} has a positive lower bound which can be derived
from Lemma 3.5.

For (un, vn) ∈ Nλn chosen above, by 〈I′0(un, vn), (un, vn)〉 > 〈I′λn
(un, vn), (un, vn)〉 = 0 and

(i) of Lemma 3.4, there exists a unique tn(0) > 1 such that tn(0)(un, vn) ∈ N0. Therefore,

0 6 d(0)− d(λn) 6 I0(tn(0)(un, vn))− Iλn(un, vn) + ε. (3.11)

It follows from Lemma 3.4 that there exists tn(λ) > 0 such that tn(λ)(un, vn) ∈ Nλ. Let us
define gn(λ) = Iλ(tn(λ)(un, vn)) for λ ∈ R+. Then the fact tn(λ)(un, vn) ∈ Nλ implies that

g′n(λ) = 〈I′λ(tn(λ)(un, vn)), (un, vn)〉t′n(λ)−
[∫

Ω1

Φ̃(tn(λ)un) +
∫

Ω2

Ψ̃(tn(λ)vn)

]
= −

[∫
Ω1

Φ̃(tn(λ)un) +
∫

Ω2

Ψ̃(tn(λ)vn)

]
, λ ∈ R+.

Thus, it follows from (ii) of Lemma 3.4 that

I0(tn(0)(un, vn))− Iλn(un, vn)

= gn(0)− gn(λn)

= −
∫ λn

0
g′n(s)ds

=
∫ λn

0

[∫
Ω1

Φ̃(tn(s)un) +
∫

Ω2

Ψ̃(tn(s)vn)

]
ds

6 λn
(
t2
n(0)

[
|un|22,Ω1

+ |vn|22,Ω2

]
+ Cεt6

n(0)
[
|un|66,Ω1

+ |vn|66,Ω2

])
. (3.12)

By (3.11), (3.12), and the Sobolev embedding theorem, to establish that d(λ) → d(0) as
λ → 0, it suffices to prove that {tn(0)} is bounded. We assume toward a contradiction that
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there exists a subsequence {ni} of {n} such that si := tni(0) → ∞ as i → ∞. Then by the fact
that tni(0)(uni , vni) ∈ N0 for all i and (1.13), we have that

α
(

s2
i |∇uni |22,Ω1

|
)

s2γ
i

|∇uni |22,Ω1
+

β
(

s2
i |∇vni |22,Ω2

|
)

s2γ
i

|∇vni |22,Ω2

=
∫

Ω1

f̃ (siuni)

s2γ+1
i

uni +
∫

Ω2

h̃(sivni)

s2γ+1
i

vni . (3.13)

Moreover, it follows from (uni , vni) ⇀ (u, v) 6= 0 and Lemma 2.7 that the right-hand side of
(3.13) converges to infinity. This contradicts the fact that the limit superior of the left-hand
side is finite by (A1). Hence, {tn(0)} is bounded. The proof is complete.

We now establish the existence of ground-state solutions to the problem (1.1). Motivated
by [16,32], we first study the distance between any (PS)c(λ) sequence of Iλ and a compact set
Kc(0) defined in (3.5). Here, the existence of a (PS)c(λ) sequence can be derived from Lemma
3.1 and a general minimax principle [28, Theorem 2.8, p. 41]. The compactness of Kc(0) follows
directly from the fact that I0 satisfies the PS condition.

Lemma 3.8. For each λ ∈ R+, let {(uλ
n , vλ

n)} be any (PS)c(λ) sequence of Iλ. Then

lim
λ→0

lim sup
n→∞

dist
(
(uλ

n , vλ
n), Kc(0)

)
= 0.

Proof. It just needs to repeat the proof of Lemma 3.8 in [16].

Finally, we prove Theorem 1.7.

Proof of Theorem 1.7. For each λ ∈ R+, let {(uλ
n , vλ

n)} be a (PS)c(λ) sequence of Iλ. We note
that {(uλ

n , vλ
n)} is bounded by Lemma 3.2. Then there exist a subsequence of {(uλ

n , vλ
n)}, still

denoted by {(uλ
n , vλ

n)}, and (uλ, vλ) ∈ E such that (uλ
n , vλ

n) ⇀ (uλ, vλ) as n → ∞. We will try
to find a λ0 > 0 such that (uλ, vλ) 6= 0 for λ ∈ [0, λ0). In fact, since c(0) 6= 0 and Kc(0) is
compact, it holds that

δ0 := dist(0, Kc(0)) = min
(u,v)∈Kc(0)

‖(u, v)‖E > 0.

Moreover, according to Lemma 3.8, for any given ε0 ∈ [0, δ0), there exists a λ0 = λ(ε0)

such that when λ ∈ (0, λ0), there is some nλ := n(λ) such that dist((uλ
n , vλ

n), Kc(0)) 6 ε0

for all n > nλ. Fixing λ ∈ (0, λ0) and by the compactness of Kc(0), there exists a sequence
{(wλ

n , zλ
n)} ⊂ Kc(0) such that ‖(uλ

n , vλ
n) − (wλ

n , zλ
n)‖E 6 ε0 for all n > nλ. Furthermore, for a

subsequence of {(wλ
n , zλ

n)}, still denoted by {(wλ
n , zλ

n)}, and some (wλ, zλ) ∈ Kc(0), it holds that
(wλ

n , zλ
n)→ (wλ, zλ) as n→ ∞. Hence, we have that (uλ

n , vλ
n) ∈ Bε0(wλ, zλ) for sufficiently large

n. Thus, (uλ, vλ) ∈ Bε0(wλ, zλ) because Bε0(wλ, zλ) is weakly closed. Therefore, ‖(uλ, vλ)‖E >
‖(wλ, zλ)‖E − ε0 > δ0 − ε0 > 0, that is, (uλ, vλ) 6= 0.

We now prove that I′λ(uλ, vλ) = 0 and Iλ(uλ, vλ) = d(λ), that is, (uλ, vλ) is a ground-state
solution to the problem (1.1). Without loss of generality, we may assume that the sequence
{(uλ

n , vλ
n)} satisfies that

(
|∇uλ

n |22,Ω1
, |∇vλ

n |22,Ω2

)
→ (a, b) as n → ∞ for some (a, b) ∈ R2

+ \ {0}.
For all (u, v) ∈ E, let

Iλ,(a,b)(u, v)

=
1
2
[
α(a)|∇u|22,Ω1

+ β(b)|∇v|22,Ω2

]
−
∫

Ω1

F̃(u)−
∫

Ω2

H̃(v)− λ

[∫
Ω1

Φ̃(u) +
∫

Ω1

Ψ̃(v)
]

.
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Then I′λ,(a,b)(u
λ
n , vλ

n) → 0. Hence, I′λ,(a,b)(uλ, vλ) = 0. We claim that
(
|∇uλ|22,Ω1

, |∇vλ|22,Ω2

)
=

(a, b). In fact, it would follow from (uλ
n , vλ

n) ⇀ (uλ, vλ) that |∇uλ|22,Ω1
6 a and |∇vλ|22,Ω2

6 b,
and then

〈I′λ(uλ, vλ), (uλ, vλ)〉 6 〈I′λ,(a,b)(uλ, vλ), (uλ, vλ)〉 = 0.

Since (uλ, vλ) 6= 0, which is obtained on the above paragraph, by (i) of Lemma 3.4 there exists
a unique t(λ) ∈ (0, 1] such that t(λ)(uλ, vλ) ∈ Nλ. Furthermore, the monotonicity obtained
in Lemma 2.1 and Remark 2.5, the weak lower continuity of norm, Fatou’s lemma, and the
choice of {(uλ

n , vλ
n)} imply that

d(λ) 6 Iλ(t(λ)(uλ, vλ))−
1

2γ + 2
〈I′λ(t(λ)(uλ, vλ)), t(λ)(uλ, vλ)〉

=
1
2

A
(
|t(λ)∇uλ|22,Ω1

)
− 1

2γ + 2
α
(
|t(λ)∇uλ|22,Ω1

)
|t(λ)∇uλ|22,Ω1

+
1
2

B
(
|t(λ)∇vλ|22,Ω2

)
− 1

2γ + 2
β
(
|t(λ)∇vλ|22,Ω2

)
|t(λ)∇vλ|22,Ω2

+
∫

Ω1

[
1

2γ + 2
f̃ (t(λ)uλ)t(λ)uλ − F̃(t(λ)uλ)

]
+
∫

Ω2

[
1

2γ + 2
h̃(t(λ)vλ)t(λ)vλ − H̃(t(λ)vλ)

]
+ λ

∫
Ω1

[
1

2γ + 2
φ̃(t(λ)uλ)t(λ)uλ − Φ̃(t(λ)uλ)

]
+ λ

∫
Ω2

[
1

2γ + 2
ψ̃(t(λ)vλ)t(λ)vλ − Ψ̃(t(λ)vλ)

]
6

1
2

A
(
|∇uλ|22,Ω1

)
− 1

2γ + 2
α
(
|∇uλ|22,Ω1

)
|∇uλ|22,Ω1

+
1
2

B
(
|∇vλ|22,Ω2

)
− 1

2γ + 2
β
(
|∇vλ|22,Ω2

)
|∇vλ|22,Ω2

+
∫

Ω1

[
1

2γ + 2
f̃ (uλ)uλ − F̃(uλ)

]
+
∫

Ω2

[
1

2γ + 2
h̃(vλ)vλ − H̃(vλ)

]
+ λ

∫
Ω1

[
1

2γ + 2
φ̃(uλ)uλ − Φ̃(uλ)

]
+ λ

∫
Ω2

[
1

2γ + 2
ψ̃(vλ)vλ − Ψ̃(vλ)

]
6 lim inf

n→∞

[
1
2

A
(
|∇uλ

n |22,Ω1

)
− 1

2γ + 2
α
(
|∇uλ

n |22,Ω1

)
|∇uλ

n |22,Ω1

]
+ lim inf

n→∞

[
1
2

B
(
|∇vλ

n |22,Ω2

)
− 1

2γ + 2
β
(
|∇vλ

n |22,Ω2

)
|∇vλ

n |22,Ω2

]
+ lim inf

n→∞

∫
Ω1

[
1

2γ + 2
f̃ (uλ

n)u
λ
n − F̃(uλ

n)

]
+ lim inf

n→∞

∫
Ω2

[
1

2γ + 2
h̃(vλ

n)v
λ
n − H̃(vλ

n)

]
+ λ lim inf

n→∞

∫
Ω1

[
1

2γ + 2
φ̃(uλ

n)u
λ
n − Φ̃(uλ

n)

]
+ λ lim inf

n→∞

∫
Ω2

[
1

2γ + 2
ψ̃(vλ

n)v
λ
n − Ψ̃(vλ

n)

]
6 lim

n→∞

[
Iλ(uλ

n , vλ
n)−

1
2γ + 2

〈I′λ(uλ
n , vλ

n), (u
λ
n , vλ

n)〉
]

= c(λ) = d(λ).
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Thus, there exists a subsequence {(uλ
ni

, vλ
ni
)} of {(uλ

n , vλ
n)} such that

1
2

A
(
|∇uλ|22,Ω1

)
− 1

2γ + 2
α
(
|∇uλ|22,Ω1

)
|∇uλ|22,Ω1

= lim
i→∞

[
1
2

A
(
|∇uλ

ni
|22,Ω1

)
− 1

2γ + 2
α
(
|∇uλ

ni
|22,Ω1

)
|∇uλ

ni
|22,Ω1

]
=

1
2

A(a)− 1
2γ + 2

α(a)a

and

1
2

B
(
|∇vλ|22,Ω2

)
− 1

2γ + 2
β
(
|∇vλ|22,Ω2

)
|∇vλ|22,Ω2

= lim
i→∞

[
1
2

B
(
|∇vλ

ni
|22,Ω2

)
− 1

2γ + 2
β
(
|∇vλ

ni
|22,Ω2

)
|∇vλ

ni
|22,Ω2

]
=

1
2

B(b)− 1
2γ + 2

B(b)b.

It follows from the monotonicity of (γ+ 1)A(s)− α(s)s and (γ+ 1)B(s)+ β(s)s that (|∇uλ|22,Ω1
,

|∇vλ|22,Ω2
) = (a, b) holds, and then (uλ

n , vλ
n)→ (uλ, vλ) in E. Moreover, since Iλ is continuously

differentiability, one can also conclude that I′λ(uλ, vλ) = 0 and Iλ(uλ, vλ) = c(λ) = d(λ). Thus,
(uλ, vλ) is a ground-state solution to the problem (1.1).

Finally, we will end the proof of Theorem 1.7 by proving that (uλ, vλ)→ (u0, v0) as λ→ 0,
where (u0, v0) is a ground-state solution to (1.1) with λ = 0. Actually, let {λn} ⊂ [0, λ0) such
that λn → 0 as n → ∞. Then as a consequence of the fact that (uλn , vλn) is a ground-station
solution to (1.1) with λ = λn, it hold that I′λn

(uλn , vλn) = 0 and Iλn(uλn , vλn) = c(λn). By
Lemma 3.7, similar to (3.3), we have that as n→ ∞,

c(0) + o(1) = c(λn)

= Iλn(uλn , vλn)−
1

2γ + 2
〈I′λn

(uλn , vλn), (uλn , vλn)〉

>
γ

2γ + 2
min{α(0), β(0)}‖(uλn , vλn)‖2

E.

This yields that {(uλn , vλn)} is bounded in E. Hence, it follows from the Sobolev embedding
theorem that as n→ ∞,

I0(uλn , vλn) = Iλn(uλn , vλn) + λn

[∫
Ω1

Φ̃(uλn) +
∫

Ω1

Ψ̃(vλn)

]
→ c(0),

and 〈
I′0(uλn , vλn), (w, z)

〉
=
〈

I′λn
(uλn , vλn), (w, z)

〉
+ λn

[∫
Ω1

φ̃(uλn)w +
∫

Ω1

ψ̃(vλn)z
]

= λn

[∫
Ω1

φ̃(uλn)w +
∫

Ω1

ψ̃(vλn)z
]

= o(1)‖(w, z)‖E, (w, z) ∈ E.

Thus, {(uλn , vλn)} is a (PS)c(0) sequence of I0 in E, and then by Lemma 3.2, there exists a sub-
sequence of {(uλn , vλn)}, still denoted by {(uλn , vλn)}, and (u0, v0) ∈ E such that (uλn , vλn)→
(u0, v0) and I0(u0, v0) = c(0), that is, (u0, v0) is a ground-state solution to (1.1) with λ = 0.
The proof is complete.
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4 Appendix

In this section, some regular properties of compound functions will be proved.

Lemma 4.1. Assume that f ∈ C2(R) and f ′, f ′′ ∈ L∞(R). If u ∈ W2,p(Ω) and 2(N − p) < N,
then f (u) ∈W2,p(Ω) and

Dα( f (u)) =


f ′(u)Dαu, |α| 6 1,

f ′′(u)(D1u)2 + f ′(u)Dαu, α = (2, 0, 0, . . . ),

. . .

Proof. According to [27, Theorem 2.5.1, p. 70], we have that f (u) ∈ W1,p(Ω) and D( f (u)) =

f ′(u)Du. When |α| 6 1, we have that Dα( f (u)) ∈ Lp(Ω). Assume that |α| = 2, without loss
of generality, let α = (2, 0, . . . , 0). Then we could calculate D1( f (u)) as follows. Actually, for
any given φ ∈ C∞

0 (Ω), because f (u) ∈W1,p(Ω) and D1φ ∈ C∞
0 (Ω), we have that∫

Ω
f (u)Dαφ = −

∫
Ω

D1( f (u))D1φ = −
∫

Ω
f ′(u)D1uD1φ. (4.1)

Let g(s) = f ′(s) for s ∈ R. Since f ∈ C2(R) and f ′′ ∈ L∞(R), then g ∈ C1(R) and
g′ ∈ L∞(R). Thus, g(u) ∈ W1,p(Ω). It follows from the weak derivative product formula
that g(u)D1u ∈ W1,p(Ω) and D1(g(u)D1u) = D1(g(u))D1u + g(u)Dαu = g′(u)(D1u)2 +

g(u)Dαu = f ′′(u)(D1u)2 + f ′(u)Dαu. Moreover, (4.1) can be written∫
Ω

f (u)Dαφ = −
∫

Ω
(g(u)D1u)D1φ =

∫
Ω

D1(g(u)D1u)φ =
∫

Ω

[
f ′′(u)(D1u)2 + f ′(u)Dαu

]
φ.

Thus, Dα( f (u)) = f ′′(u)(D1u)2 + f ′(u)Dαu.
Next, we prove Dα( f (u)) ∈ Lp(Ω). In fact, because f ′, f ′′ ∈ L∞(RN) and Dαu ∈ Lp(Ω), we

need only illustrate (D1u)2 ∈ Lp(Ω), that is, D1u ∈ L2p(Ω). In fact, since D1u ∈ W1,p(Ω) and
2p < Np/(N − p), it follows from the Sobolev embedding theorem that W1,p(Ω) ↪→ L2p(Ω),
and then D1u ∈ L2p(Ω). The proof is complete.

Lemma 4.2. Assume that there exists M > 0 such that |g′(s)/g3(s)| 6 M for s ∈ R. If u ∈ H2(D),
then G−1(u) ∈ H2(D), where D ⊂ R3 is an open domain with ∂D ∈ C1.

Proof. Let f (s) = G−1(s) for s ∈ R. Then the conclusion holds by Lemma 4.1.
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