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Abstract. We use many classical results known for the self-adjoint second-order linear
equation and extend them for a three-term even order linear equation with a delay ap-
plied to coefficients. We derive several conditions concerning the oscillation and the ex-
istence of positive solutions. Our equation for a choice of parameter is disconjugate,
and for a different choice can have positive and oscillatory solutions at the same time.
However, it is still, in a sense, disconjugate if we use a weaker definition of oscillation.
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1 Introduction

This paper is divided into two parts. In the first part, we analyse the linear second-order
homogeneous difference equation with a delay in a coefficient

an−kyn−1 + bnyn + anyn+1 = 0, n ∈ Z. (1.1)

Equations with a delay in term yn−1 are usually considered. Nevertheless, we did not find
a situation where the considered delay is in the coefficient an. This may be because Eq. (1.1)
for k = 1 is often discussed together with its self-adjoint form 4(pn4yn) + qnyn+1 = 0.

Properties of this special case were discussed many times. Some necessary and sufficient
conditions for the equation to be oscillatory were derived in [6, 8, 10, 19, 20, 22, 29] and for
a matrix case in [7]. Properties of eventually positive solutions were observed in [28]. Minimal
solutions of the special case were discussed in [14]. Recessive solutions and their connection
to oscillation were discussed in [27], for a matrix case in [3], and for nonoscillatory symplectic
systems in [33]. Notion of generalized zero was developed in [15] and the Sturm comparison
theorem on Z together with the existence of a recessive solutions was discussed in [2, 5].
Many classic results about this special case can be found in [21]. Boundedness and growth of
the special case were investigated in [30,31]. Generalization of the special case were considered
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for example in [24–26, 32]. If we consider a continuous case, criteria for oscillation can be
found, for example, in [11], and the existence of a principal solution of a 2n-order self-adjoint
equation was recently discussed in [34]. Some ideas about how to extend the results for
the fourth-order equation can be found in [9].

In Section 2, we would like to extend the results from [14], where the special case is also
considered. The results from [14] were already extended in [12, 13, 17] and for the time scales
in [18], but there was used the symmetrical case for k = 1. Arbitrary choice of k ∈ Z will lead
to the generalization of some already known results.

We derive equivalent conditions for which the equation has a positive solution, and later
through the deriving of a suitable version of the Sturm comparison theorem, we will get
criteria of disconjugacy for Eq. (1.1). These results will be used in Section 3 as a tool, as well.

In Section 3 we analyse the linear even order homogeneous difference equation with a de-
lay in a coefficient

an−kHyn + bn+Hyn+H + an+Hyn+2H = 0, n ∈ Z, (1.2)

which is a generalization of Eq. (1.1). For k = 0 we get a equation discussed in [16]. We can
assume that results obtained in Section 2 can be extended for Eq. (1.2) in the similar way as
in [16].

We derive conditions under which Eq. (1.2) can or cannot have positive or eventually
positive solutions. We also discuss a situation when Eq. (1.2) has recessive and dominant
solutions. Among others, we use a combination of ideas as were established in [19, 27]. We
find that Eq. (1.2) can have both positive and sign-changing solutions. A situation where
an equation has oscillatory and nonoscillatory solutions at the same time was discussed for
example in [1]. The same situation can appear in our equation, but we use a weaker version
of oscillation to avoid this situation.

2 Second-order linear coefficient delayed equation

Let real valued sequences an, bn satisfy an < 0, bn > 0, for every n ∈ Z. In the first part we
study the equation

an−kyn−1 + bnyn + anyn+1 = 0, k ∈ Z. (2.1)

If we consider a solution yn of Eq. (2.1), then we have a solution xn = (−1)nyn of the equa-
tion

an−kxn−1 + dnxn + anxn+1 = 0,

where sequence dn < 0 for every n. In a similar sense if we consider the equation

cn−pxn−1 + bnxn + cn+lxn+1 = 0,

where cn < 0 for every n. Then we can take an = cn+l and this will result in Eq. (2.1) for
k = −l − p.

There is a natural relation of Eq. (2.1) to the infinite matrix operator, whose truncations for
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n ≤ p, n, p ∈ Z, are the matrices

dn,p =



bn an 0 . . . 0

an−k+1 bn+1 an+1
. . .

...

0 an−k+2 bn+2
. . .

...
... 0

. . . . . . ap−1

0 . . . . . . ap−k bp


and we denote their determinants by Dn,p = det(dn,p). Note that for k = 1 is dn,p symmetrical.

For simplification of formulas, we take Di+1,i = 1 and Di+j,i = 0 for any i ∈ Z and j > 1,
as well as ∏i−1

i xi = 1. Moreover, we will use recurrence relations

Dn,p = bnDn+1,p − an−k+1anDn+2,p, (2.2)

Dn,p = bpDn,p−1 − ap−kap−1Dn,p−2, (2.3)

for n ≤ p.

Lemma 2.1. Let n < p and real vectors X = (xn, . . . , xp)T, B = (y, 0 . . . , 0, z)T, then the equation

dn,pX = B,

implies

xhDn,p = yDh+1,p

h

∏
j=n+1

(−aj−k) + zDn,h−1

p−1

∏
j=h

(−aj), (2.4)

where n ≤ h ≤ p.

Proof. The proof follows from the Cramer’s rule. Signs at −aj and −aj−k follow from compar-
ing the sign and number of terms in a given product.

Lemma 2.2. Let
Di,j > 0, for i ≤ j, (2.5)

and let x1
n, x2

n be two solutions of Eq. (2.1), which satisfy x1
m = x2

m for some m ∈ Z. If also x1
h > x2

h
(respectively x1

h = x2
h) for some h > m, then it holds that x1

j > x2
j (respectively x1

j = x2
j ) for all j > m.

Proof. Obviously, two solutions x1
n, x2

n of Eq. (2.1) have to also satisfy Lemma 2.1 where

y = −am−k+1x1
m = −am−k+1x2

m,

z1 = −ah−1x1
h > −ah−1x2

h = z2.

Where for i ∈ {1, 2} we have Xi =
(

xi
m+1, . . . , xi

h−1

)T and Bi = (y, 0 . . . , 0, zi)T. Together with
(2.5), we obtain from (2.4) that

x1
j Dm+1,h−1 = yDj+1,h−1

j

∏
i=m+2

(−ai−k) + z1Dm+1,j−1

h−2

∏
i=j

(−ai)

> yDj+1,h−1

j

∏
i=m+2

(−ai−k) + z2Dm+1,j−1

h−2

∏
i=j

(−ai) = x2
j Dm+1,h−1,

holds for all n < j < h and thus x1
j > x2

j . Taking x1
j < x2

j for some j > h leads to a contradiction
with x1

h > x2
h in the same manner. Therefore, x1

j > x2
j for all j > m. The case of x1

h = x2
h follows

analogously.
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Similarly, we get a version of Lemma 2.2 for some h < m and all j < m. It means that if
two solutions of Eq. (2.1) are equal at two points, then they are equal everywhere.

Lemma 2.3. Assume (2.5), then for any h < p it holds that

1
bh

<
Dh+1,p

Dh,p
<

bh−1

ah−kah−1
, (2.6)

and the sequence xp =
Dh+1,p

Dh,p
is increasing for any h where h < p.

Proof. Because of (2.2) we get

Dh,p = bhDh+1,p − ah−k+1ahDh+2,p < bhDh+1,p,

which implies the left inequality of (2.6). Further, we compute

0 < Dh−1,p = bh−1Dh,p − ah−kah−1Dh+1,p,

ah−kah−1Dh+1,p < bh−1Dh,p,
Dh+1,p

Dh,p
<

bh−1

ah−kah−1
,

which implies the right inequality in (2.6).
In the second part of the proof, we will proceed by induction. First, we assume p = h + 1

and we get

Dh+1,h+2

Dh,h+2
− Dh+1,h+1

Dh,h+1
=

Dh,h+1Dh+1,h+2 − Dh+1,h+1Dh,h+2

Dh,h+2Dh,h+1

=
ah−k+1ah−k+2ahah+1

Dh,h+2Dh,h+1
> 0.

Next, again by (2.2), we get

Dh,p

Dh+1,p
−

Dh,p+1

Dh+1,p+1
= ah−k+1ah

(
Dh+2,p+1

Dh+1,p+1
−

Dh+2,p

Dh+1,p

)
> 0,

by the induction assumption, which together with (2.5) results in

Dh,p

Dh+1,p
>

Dh,p+1

Dh+1,p+1
,

Dh+1,p

Dh,p
<

Dh+1,p+1

Dh,p+1
.

Therefore, the sequence is increasing and the proof is complete.

Similarly, using (2.3), we get for n < h that

1
bh

<
Dn,h−1

Dn,h
<

bh+1

ah−k+1ah
,

and the sequence xn =
Dn,h−1

Dn,h
is decreasing for any h which n < h.
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Now, thanks to Lemma 2.3, we can define the sequences

c+n = lim
p→∞

Dn+1,p

Dn,p
,

c−n = lim
p→−∞

Dp,n−1

Dp,n
,

and

u(j, n) =


1, j = n,

∏
j−1
h=n(−ah)c−h , n < j,

∏n−1
h=j (−ah−k+1)c+h+1, n > j.

Notice that by Lemma 2.3 together with ai < 0 for every i, we get that u(j, n) > 0 for any j, n.

Definition 2.4. We say that a solution un of Eq. (2.1) is minimal on [j+ 1, ∞)∩Z if any linearly
independent solution vn of Eq. (2.1) such that uj = vj satisfies uk < vk for every k ≥ j + 1.
The minimal solution on (−∞, j− 1] ∩Z is defined analogously.

Lemma 2.5. Assume (2.5), then αn = u(j, n) is a positive minimal solution of Eq. (2.1) on the interval
[j + 1, ∞) ∩Z and also on the interval (−∞, j− 1] ∩Z.

Proof. Using Lemma 2.1 with y = −aj−k+1 and z = 0 we obtain that

vn(j, p) =


1, n = j,

∏n−1
h=j (−ah−k+1)

Dn+1,p
Dj+1,p

, j + 1 ≤ n ≤ p,

0, n = p + 1,

is a solution on the interval [j + 1, p]∩Z. Moreover, it holds that u(j, n) = limp→∞ vn(j, p) and
so αn = u(j, n) is a solution on the interval [j + 1, ∞) ∩Z, where αj = u(j, j) = 1.

Next, we assume that there is a positive solution vn such that vj = αj and which is also
linearly independent on αn. Then we know that vp+1 > vp+1(j, p) = 0 and vj = vj(j, p) = 1,
for every p. Therefore, due to Lemma 2.2, we know that vn > vn(j, p) for all p. Because
αn = limp→∞ vn(j, p), we get that vn ≥ αn. But vn is linearly independent and, again by
Lemma 2.2, this inequality must hold strictly, i.e. vn > αn.

Similarly, we get that αn = u(j, n) is a solution on interval (−∞, j− 1] ∩Z using function

vn(j, m) =


1, n = j,

∏
j−1
h=n(−ah)

Dm,n−1
Dm,j−1

, m ≤ n ≤ j− 1,

0, n = m− 1.

Further, we will use the following notation. We define

u+
n =


1, n = 0,

u(0, n), n ∈N,

u(n, 0)−1, −n ∈N,

and u−n =


1, n = 0,

u(n, 0)−1, n ∈N,

u(0, n), −n ∈N.

Lemma 2.6. Assume (2.5), then u±n are positive solutions of Eq. (2.1) on Z.
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Proof. From Lemma 2.5 we know, that u+
n is a solution on N. Moreover, for arbitrary n, B ∈

N∪ {0}, n < B, it holds
u(−B, 0) = u(−B,−n)u(−n, 0),

and so

u+
−n =

1
u(−n, 0)

=
u(−B,−n)
u(−B, 0)

.

Using Lemma 2.5 we obtain that u+
n is a solution on interval [−B + 1, ∞) ∩Z. Because B

is arbitrary, we have that u+
n is a solution on Z. The second part involving u−n is done in

the similar way.

Theorem 2.7. Condition (2.5) holds if and only if there is a positive solution of Eq. (2.1).

Proof. The sufficiency of (2.5) comes directly from Lemma 2.6. For the second part, we assume
the existence of a positive solution un. Then, using Lemma 2.1 for arbitrary n, n < p, with
y = −an−kun−1, z = −apup+1, we get from (2.4) that

unDn,p = −an−kun−1Dn+1,p − apup+1

p−1

∏
j=n

(−aj).

If we put p = n + 1, then because Dn+1,n+1 = bn+1 > 0 we obtain that the right-hand side
is positive which implies the positivity of Dn,n+1 > 0. Next, by induction we obtain that if
Dn+1,p > 0, then also Dn,p > 0 through the same procedure. Therefore, the condition (2.5) is
satisfied.

We emphasize that for k = 1 is dn,p symmetrical, thus condition (2.5) gives the positive
definiteness of all dn,p. Now we recall the definitions of generalized zero and disconjugacy.

Definition 2.8. Solution yn has a generalized zero at n0 if yn0 = 0 or yn0−1yn0 < 0.

Definition 2.9. The given difference equation is disconjugate on an interval I if every nontriv-
ial solution has at most one generalized zero on I.

Lemma 2.10. Let Eq. (2.1) be disconjugate on interval [a, b] then the boundary value problem

an−kyn−1 + bnyn + anyn+1 = 0,

yn1 = A, yn2 = B,

where a ≤ n1 < n2 ≤ b and A, B ∈ R, has an unique solution.

Proof. General solution of Eq. (2.1) is

yn = Cz1
n + Dz2

n,

for some linearly independent z1
n and z2

n. The boundary conditions result in the system

Cz1
n1
+ Dz2

n1
= A,

Cz1
n2
+ Dz2

n2
= B.

We see that the boundary value problem has a solution whenever

det
(

z1
n1

z2
n1

z1
n2

z2
n2

)
6= 0.
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Now assume that this determinant is equal to zero. Then there would exist constants C, D ∈ R

such that

Cz1
n1
+ Dz2

n1
= 0,

Cz1
n2
+ Dz2

n2
= 0.

Thus, yn1 = yn2 = 0. This contradicts that Eq. (2.1) is disconjugate.

Theorem 2.11. Let Eq. (2.1) be disconjugate on Z, then (2.5) holds.

Proof. We will show that Di,i+k−1 > 0 by induction on k ∈ N for arbitrary i. Because bi > 0
we have that Di,i > 0.

Let yn be a solution of

an−kyn−1 + bnyn + anyn+1 = 0,

yi−1 = 0, yi+k+1 = 1,

and assume that Di,i+k−1 > 0. By Lemma 2.10, we know that such yn exists and it must satisfy
system

di,i+ky = b,

where y = (yi, . . . , yi+k)
T, b = (0, . . . , 0,−ai+k). Now, using Lemma 2.1 we get that

yi+kDi,i+k = −ai+kDi,i+k−1.

By disconjugacy we know that yi+k > 0 and together with the assumption Di,i+k−1 > 0 we see
that Di,i+k > 0, as well.

Corollary 2.12. Let Eq. (2.1) be disconjugate on Z, then there exists a positive solution of Eq. (2.1).

Proof. This is a direct consequence of Theorem 2.7.

The natural question is whether the converse statement is valid as well. We will solve this
problem by formulating an appropriate version of Sturm’s comparison theorem. Nevertheless,
it can be solved using Theorem 2.7 and Lemma 2.6 together with u±n being minimal solutions
as well. Note that we have two separate situations where u+

n = u−n and u+
n 6= u−n .

Lemma 2.13. If yn is a nontrivial solution of Eq. (2.1) such that yn0 = 0, then yn0−1yn0+1 < 0.

Proof. If yn is a nontrivial solution and yn0 = 0 for some n0 ∈ Z, then yn0−1 6= 0 6= yn0+1.
The rest follows from yn being a solution of Eq. (2.1).

Lemma 2.14. Assume (2.5). If a nontrivial solution yn of Eq. (2.1) has two generalized zeros at n1

and n2, then any other linearly independent solution has a generalized zero in [n1, n2].

Proof. Without loss of generality assume that there are not other generalized zeros of yn on
(n1, n2). Now by contradiction, we assume that yn > 0 on (n1, n2) and that there is a linearly
independent solution zn such that zn > 0 on [n1, n2] and zn1−1 ≥ 0, i.e. it does not have
a generalized zero on [n1, n2]. We consider some n0 from (n1, n2) and we can find K ∈ R

such that Kzn0 = yn0 . Because yn2 ≤ 0 and it has to hold that yn1 = 0 or yn1−1 < 0 we can
use Lemma 2.2 to get that Kzn > yn. Moreover, un = Kzn − yn is also a solution of Eq. (2.1)
and un0 = 0, un > 0 for n 6= n0. Finally, un0−1un0+1 > 0 gives us a contradiction with
Lemma 2.13.
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Theorem 2.15. Eq. (2.1) is disconjugate on Z if and only if it has a positive solution on Z.

Proof. We already have the first part from Corollary 2.12. Next, assume that Eq. (2.1) has
a positive solution. By Theorem 2.7 we know, that (2.5) holds and so does Lemma 2.14.
However, because we have a positive solution, then by Lemma 2.14, we know that there
cannot be a solution with more than one generalized zero.

3 Even order linear coefficient delayed equation

In this section we will focus on the equation

an−kHyn + bn+Hyn+H + an+Hyn+2H = 0, (3.1)

for n ∈ Z, with the parameters H ∈N, k ∈ Z.

Lemma 3.1. If ai < 0 for every i and there is a subsequence bnl such that bnl ≤ 0 for nl → ∞ then
Eq. (3.1) cannot have an eventually positive solution (i.e. a solution yn, where yn > 0 for all n ≥ N,
for some N ∈ Z).

Proof. Suppose that there exist an eventually positive solution yn. It implies

anl−k·Hynl + bnl+Hynl+H + anl+Hynl+2H < 0,

for nl → ∞. This is a contradiction with yn being a solution of Eq. (3.1).

Similar statement holds even if nl → −∞ and yn > 0 for all n ≤ N for some N ∈ Z.
Because of this, we will again assume that aj < 0, bj > 0 for every j.

Theorem 3.2. The following statements are true.

1. Let H be an even number, then Eq. (3.1) has a solution yn if and only if it has a solution (−1)nyn.

2. Let H be an odd number, then Eq. (3.1) cannot have a solution (−1)n pn where pn > 0 for all
|n| ≥ N and some N ∈N.

Proof. For the first part, it suffices to use zn = (−1)nyn in Eq. (3.1) and the rest follows from
H being even.

To prove the second part, we suppose that Eq. (3.1) has a solution (−1)n pn. Then we have
that

an−k·H pn + bn+H(−1)H pn+H + an+H pn+2H = 0.

For |n| sufficiently large, the terms are negative, hence the left-hand side cannot be equal zero
and such a solution cannot exist.

Corollary 3.3. Let H be an even number, then Eq. (3.1) has at least on solution, which is not eventually
positive.

Proof. Assume that all solutions of Eq. (3.1) are eventually positive. Then there is a solution
yn, which is positive for n greater than some N. However, because H is an even number,
then (−1)nyn is also a solution of Eq. (3.1) and is not eventually positive. Thus we arrive to
a contradiction.
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We obtain further generalization if we let pk
n be real sequences and consider a linear equa-

tion
m

∑
k=0

pk
nyn+2k = 0. (3.2)

Then Eq. (3.2) has a solution, which is not eventually positive.
We see that, in some cases, the studied equation cannot have a positive solution. Later

we show that there is an equation that has positive and sign-changing solutions at the same
time, which is a case that for k = 0 cannot occur. For this reason, it is more useful to focus on
the situation when the equation has a positive solution. Nevertheless, we start by reminding
us of the lemma, which can be found in [21].

Lemma 3.4. Let us consider the equation

m

∑
k=0

pk
nun+k = 0, (3.3)

where pk
n, k ∈ {0, . . . , m}, are real sequences, for some m ∈ N. If Eq. (3.3) has a solution un, then

Eq. (3.3) has another solution in the form vnun, where vn solves the equation

m−1

∑
k=0

(
k

∑
i=0

pi
nun+i

)
4vn+k = 0. (3.4)

Proof. We expand the sum ∑m
k=0 pk

nvn+kun+k by Abel’s summation formula and use the fact
that un is a solution of Eq. (3.3) to obtain Eq. (3.4).

Assume that we have a solution un of Eq. (3.1) and using Lemma 3.4 we obtain other
solution as vnun, where vn solves

an−k·Hun

H−1

∑
j=0
4vn+j + (an−k·Hun + bn+Hun+H)

H−1

∑
j=0
4vn+H+j = 0.

Using the substitution zn = vn+H − vn we get using un being a solution of Eq. (3.1) that

0 = an−kHunzn + (an−k·Hun + bn+Hun+H)zn+H = an−kHunzn − an+Hun+2Hzn+H. (3.5)

Whenever un 6= 0 for all n, then the solution of Eq. (3.5) is

zn =
D ∏−k−1

j=1 an+jH

unun+H ∏0
j=−k an+jH

,

for some D ∈ R. Finally, we can use the fact that zn = vn+H − vn. Hence,

vn = −
∞

∑
g=0

zn+gH, (3.6)

vn =
∞

∑
g=1

zn−gH.

Definition 3.5. We say that a solution un of Eq. (3.1) is minimal on [µ, ∞) ∩Z if any linearly
independent solution vn of Eq. (3.1) with uµ = vµ, . . . , uµ+H−1 = vµ+H−1 satisfies vn > un, for
every n ≥ µ + H.



10 J. Jekl

Theorem 3.6. Let Eq. (3.1) have a positive solution un on Z, which is minimal on an interval [l, ∞),
where l ∈ Z. Then for every µ ∈ Z it holds

∞

∑
g=0

∏
g−k−1
j=g+1 (−aµ+jH)

uµ+gHuµ+(g+1)H ∏
g
j=g−k(−aµ+jH)

= ∞. (3.7)

Proof. Assume that for some µ ∈ Z the sum in (3.7) is finite. Since un is a positive solution, by
(3.6) we know that also

wn =

un ∑∞
g=0

∏
g−k−1
j=g+1 (−an+jH)

un+gHun+(g+1)H ∏
g
j=g−k(−an+jH)

, n ≡ µ(mod H),

un, n 6≡ µ(mod H),

is a positive solution.
Next, we introduce

w∗n =
wn

wµ
uµ, when n ≡ µ(mod H).

Therefore, w∗n is also a solution where values of w∗n and un are equal for H consecutive indices
around µ. Because the sum in (3.7) is finite, we get

lim inf
n→∞

w∗n
un

=
uµ

wµ
lim
n→∞

∞

∑
g=0

∏
g−k−1
j=g+1 (−an+jH)

un+gHun+(g+1)H ∏
g
j=g−k(−an+jH)

= 0.

It means that from some N > l we have w∗N < uN which is a contradiction with un being
a minimal solution on [l, ∞).

Through similar means as were used in [27], we can deduce the following statements. But
first, we have to define a generalization of Casoratian as

ωn,µ = det
(

uµ+nH vµ+nH

uµ+(n+1)H vµ+(n+1)H

)
.

Lemma 3.7. Let un, vn be two solutions of Eq. (3.1), then ωn,µ satisfies for all µ ∈ Z the equation

ωn+1,µ =
−aµ+(n−k)H

−aµ+(n+1)H
ωn,µ.

Proof. Because un, vn are solutions of (3.1) we have

ωn,µ = det

(
− aµ+(n+1)H

aµ+(n−k)H
uµ+(n+2)H − aµ+(n+1)H

aµ+(n−k)H
vµ+(n+2)H

uµ+(n+1)H vµ+(n+1)H

)

= (−1)

(
−

aµ+(n+1)H

aµ+(n−k)H

)
ωn+1,µ =

−aµ+(n+1)H

−aµ+(n−k)H
ωn+1,µ.

Hence, we can compute for some D ∈ R that

ωn,µ =
D

∏n
j=n−k

(
−aµ+jH

) n−k

∏
j=n+2

(
−aµ+(j−1)H

)
.

Note that if for some ωn,µ is D < 0, we get by swapping values of un and vn on the set
{µ + jH|j ∈ Z} that un and vn are still solutions of Eq. (3.1) and D > 0.
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Theorem 3.8. If Eq. (3.1) has two independent eventually positive solutions, then there are two inde-
pendent eventually positive solutions un, vn for which limn→∞

un
vn

= 0. Moreover, for arbitrary µ ∈ Z

sufficiently large

∞

∑
n

∏n−k
j=n+2(−aµ+(j−1)H)

uµ+nHuµ+(n+1)H ∏n
j=n−k(−aµ+jH)

= ∞, (3.8)

∞

∑
n

∏n−k
j=n+2(−aµ+(j−1)H)

vµ+nHvµ+(n+1)H ∏n
j=n−k(−aµ+jH)

< ∞. (3.9)

Proof. We can expect that un, vn are linearly independent, eventually positive and also that in
ωn,µ is D < 0, for all µ. Considering µ sufficiently large we have

4
(

uµ+nH

vµ+nH

)
=

uµ+nHvµ+(n+1)H − uµ+(n+1)Hvµ+nH

vµ+nHvµ+(n+1)H

=
D

vµ+nHvµ+(n+1)H ∏n
j=n−k

(
−aµ+jH

) n−k

∏
j=n+2

(
−aµ+(j−1)H

)
. (3.10)

Hence, (3.10) is negative, therefore uµ+nH
vµ+nH

is strictly decreasing in n, but uµ+nH
vµ+nH

is also positive

and thus bounded from below. We have that limn→∞
uµ+nH
vµ+nH

= Lµ ≥ 0. In case that for some µ is
Lµ > 0, we replace un by un − Lµvn, for n ∈ {µ + jH|j ∈ Z}. Hence, un will still be a solution
and we get that limn→∞

un
vn

= 0.
Moreover, by summing equality (3.10) we obtain

D
n−1

∑
g=k

1
vµ+gHvµ+(g+1)H ∏

g
j=g−k

(
−aµ+jH

) g−k

∏
j=g+2

(
−aµ+(j−1)H

)
=

uµ+nH

vµ+nH
−

uµ+kH

vµ+kH
,

n→∞−−−→ D
∞

∑
g=k

1
vµ+gHvµ+(g+1)H ∏

g
j=g−k

(
−aµ+jH

) g−k

∏
j=g+2

(
−aµ+(j−1)H

)
= −

uµ+kH

vµ+kH
,

which confirms the validity of (3.9). Using the unboundedness of vµ+nH
uµ+nH

, we get (3.8).

Corollary 3.9. Let for some µ be

∞

∑
n

∏n−k
j=n+2(−aµ+(j−1)H)

∏n
j=n−k(−aµ+jH)

= ∞,

and every solution of Eq. (3.1) be eventually bounded, then Eq. (3.1) has at most one linearly indepen-
dent eventually positive solution.

Proof. Suppose that Eq. (3.1) has two such solutions. Then from Theorem 3.8 there has to be
a solution vn such that 0 < vn < M for n sufficiently large and some M. Moreover, for ν

sufficiently large and satisfying ν ≡ µ (mod H) we get from (3.9) that

∞ >
∞

∑
n

∏n−k
j=n+2(−aν+(j−1)H)

vν+nHvν+(n+1)H ∏n
j=n−k(−aν+jH)

>
1

M2

∞

∑
n

∏n−k
j=n+2(−aν+(j−1)H)

∏n
j=n−k(−aν+jH)

.

Which is a contradiction.
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As an example we consider the equation

− 1
2

yn + yn+2 −
1
2

yn+4 = 0. (3.11)

It has two solutions un = K, vn = Kn of eventually one sigh as well as two sign changing
ones (−1)nun, (−1)nvn. Moreover, it holds that

∞

∑
∏n−k

j=n+2(−aµ+2(j−1))

uµ+2nuµ+2(n+1) ∏n
j=n−k(−aµ+2j)

= ∞,

∞

∑
∏n−k

j=n+2(−aµ+2(j−1))

vµ+2nvµ+2(n+1) ∏n
j=n−k(−aµ+2j)

< ∞,

where ai ≡ −1/2 and we can choose k arbitrarily. According to [16] Eq. (3.11) has a minimal
solution on intervals [2, ∞) and (−∞,−2].

We define the Riccati transformation through the substitution

sn =
bn+Hyn+H

(−an−kH)yn
, and qn =

anan−kH

bnbn+H
, (3.12)

to obtain

an−k·Hyn + bn+Hyn+H + an+Hyn+2H = 0,
an−k·Hyn

bn+Hyn+H
+ 1 +

an+Hyn+2H

bn+Hyn+H
= 0,

− 1
sn

+ 1−
an+Han−(k−1)H

bn+Hbn+2H
sn+H = 0,

qn+Hsn+H +
1
sn

= 1. (3.13)

We emphasize that qn > 0 for all n.

Theorem 3.10. Eq. (3.13) has a positive solution if and only if Eq. (3.1) has also a positive solution.

Proof. First, if Eq. (3.1) has a positive solution yn then via the transformation sn = bn+Hyn+H
(−an−kH)yn

we can see that sn is also a positive solution of Eq. (3.13).
Second, if sn is a positive solution of Eq. (3.13) then we can consider the initial conditions

yN = 1, . . . , yN+H−1 = 1 for some N ∈ Z and the recurrence relation

yn+H =
(−an−kH)sn

bn+H
yn.

Then, for n ≥ N, yn is a positive solution of Eq. (3.1). The rest of yn is computed through
the relation

yn =
bn+Hyn+H

(−an−kH)sn
.

Note that the Theorem 3.10 holds even if we consider eventually positive solutions instead
of positive ones. Moreover, at this place, we can see a connection to Theorem 3.2. If H is an
even number, then solutions yn and (−1)nyn give the same positive solution sn of Eq. (3.13).
For H being an odd number, the existence of a solution (−1)nyn would give a solution sn of
Eq. (3.13) that is eventually negative. Nevertheless, such sn cannot exist.
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Lemma 3.11. Let qn ≥ pn > 0 and let sn be a positive solution of

qn+Hsn+H +
1
sn

= 1

on [N, ∞), where N ∈ Z. Then the equation

pn+Hun+H +
1

un
= 1,

has a solution un such that un ≥ sn > 1 on [N, ∞).

Proof. If sn is a positive solution, then also qn+Hsn+H > 0, and so 1
sn

= 1− qn+Hsn+H < 1
implies that sn > 1 on [N, ∞).

Now we consider initial conditions such that uN ≥ sN , . . . , uN+H−1 ≥ sN+H−1 and we get
that if un ≥ sn then

pn+Hun+H = 1− 1
un

= qn+Hsn+H +
1
sn
− 1

un
≥ qn+Hsn+H.

Therefore, un+H ≥ qn+Hsn+H
pn+H

≥ sn+H and the statement of the lemma holds by induction.

Theorem 3.12. If qn of (3.12) satisfy 1/(4− ε) ≤ qn for some ε > 0 and for all n sufficiently large,
then Eq. (3.1) cannot have an eventually positive solution.

Proof. If ε ≥ 4 it would mean that bnbn+H
anan−kH

≤ (4− ε) ≤ 0, however because ai < 0, bi > 0 this
cannot be true. Here the statement shadows Lemma 3.1.

Now we know that ε < 4 and assume that (3.1) has an eventually positive solution. Then
there is an eventually positive solution sn of Eq. (3.13). By Lemma 3.11 we have that the equa-
tion

un+H

4− ε
+

1
un

= 1, (3.14)

has a solution un ≥ sn > 1 on some [N, ∞), for a sufficiently large N. If we take a positive
sequence given by xN = 1, . . . , xN+H−1 = 1, and xn+H = unxn√

4−ε
, then also un =

√
4− ε xn+H

xn
and

by substituting into (3.14) we get that xn is a positive solution of

xn+2H −
√

4− εxn+H + xn = 0, (3.15)

for n ≥ N. This is a contradiction because Eq. (3.15) does not have an eventually positive
solution. In fact Eq. (3.15) has constant coeficients and we can find all its solutions through
the characteristic polynomial and de Moivre’s formula. They are cos nθk and sin nθk where
θk =

(
arctan ε

4−ε + 2kπ
)

/H, for k = 0, . . . , H − 1.

Remark 3.13. We discussed eventually positive solutions, which are positive as n → ∞. We
can discuss the same situation if n → −∞ by taking these results and rewriting Eq. (3.1) ap-
propriately. We emphasize that if an equation does not have and eventually positive solution,
hence it even does not have a positive solution. If an equation has a positive solution, it is also
an eventually positive solution.

Theorem 3.14. If qn of (3.12) satisfy qn ≤ 1/4, for all n, then Eq. (3.1) has a positive solution.
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Proof. First, let sn be a solution of Eq. (3.13). If sN ≥ 2 for some N then qN+HsN+H = 1− 1
sN
≥

1/2. Therefore, because 1/qn ≥ 4, we have sN+H ≥ 1
2qN+H

≥ 1/2 · 4 = 2. By induction, we
know that sn ≥ 2, for all n ∈ {N + lH|l ∈ [0, ∞) ∩Z}.

Second, let again sn be a solution of Eq. (3.13). If 0 < sN+H ≤ 2 for some N then 1
sN

=

1− qN+HsN+H ≥ 1− 1/4 · 2 = 1/2 and therefore sN ≤ 2. But also 1/sN > 0 implies that
sN > 0. By induction, we know that 0 < sn ≤ 2 for all n ∈ {N + lH|l ∈ (−∞, 1] ∩Z}.

Finally, let sn be a solution of Eq. (3.13) together with initial conditions sN = 2, . . . ,
sN+H−1 = 2, for some N ∈ Z. From previous two parts we have, that sn is a positive so-
lution of Eq. (3.13) on Z and by Theorem 3.10 we know that Eq. (3.1) has also a positive
solution.

Corollary 3.15. If bn ≥ max{−an−Hλ,−4an−kH/λ} for some λ > 0 then Eq. (3.1) has a positive
solution.

Proof. The assumption of the corollary implies that bn ≥ −4an−kH/λ and bn+H ≥ −anλ. It
follows that bnbn+H ≥ 4anan−kH and the rest is due to Theorem 3.14.

We can connect Eq. (2.1) with Eq. (3.1) for H = 1 by shifting it. In the first part, the equiv-
alence condition for Eq. (2.1) to have a positive solution was formulated. One could probably
obtain similar relation by extension of the results of [16] for Eq. (3.1).

Moreover, it remains a question how this connects to qn. By Theorem 3.12 we know that
if Eq. (3.1) has a positive solution, then surely qn ≤ 1/4 for n sufficiently large. But we can
ask whether Eq. (3.1) can have a positive solution even if qn > 1/4 for some n and how
Condition (2.5) connects to it.

Using again Eq. (3.11), we see that qn = 1/4 and so by Theorem 3.14, we know that this
equation has a positive solution.

Theorem 3.16. If Eq. (3.1) has a solution yn such that yµ+nH is a positive sequence for some µ ∈ Z,
then for every other solution ȳn of Eq. (3.1), the sequence ȳµ+nH must have at most one generalized
zero (from Definition 2.8) on Z.

Proof. Consider the substitution xp = yµ+(p+1)H in Eq. (3.1) and by taking n = µ+ pH, Eq. (3.1)
changes into

aµ+(p−k)Hyµ+pH + bµ+(p+1)Hyµ+(p+1)H + aµ+(p+1)Hyµ+(p+2)H = 0.

Now if we take ãp = aµ+(p+1)H, b̃p = bµ+(p+1)H, it transforms into

ãp−k−1xp−1 + b̃pxp + ãpxp+1 = 0,

which corresponds to Eq. (2.1) and so by Theorem 2.15 we know that this equation is discon-
jugate.

To further refine results obtained in Theorem 3.16, we formulate the definition of the sep-
arately nonoscillatory solution. However, let us first recall the following definition, which can
be found, for example, in [4].

Definition 3.17. A nontrivial solution yn of self-adjoint difference equation of order 2m has
a generalized zero of order m at n0 + 1 if yn0 6= 0, yn0+1 = · · · = yn0+m−1 = 0, and
(−1)myn0 yn0+m ≥ 0.
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This definition corresponds to Definition 2.8 if m = 1. Nevertheless, for our purposes
we need a combination of Definitions 2.8 and 3.17. We start by defining for some p ∈ N

equivalence relation x ∼ y on Z such that x ∼ y if and only if x = y+ jp for some j ∈ Z. From
this equivalence we obtain equivalence classes A1(p), . . . , Ap(p) ⊆ Z such that i ∈ Ai(p). Of
course A1(1) = Z.

Next, we define on a linearly ordered set S for x ∈ S function

ρ(x) = max{y ∈ S|y < x}.

Definition 3.18. Solution yn of a given difference equation has n0 a generalized zero on a lin-
early ordered set S if yn is nontrivial on S and for n0 ∈ S is yn0 = 0 or yρ(n0)yn0 < 0 provided
that ρ(n0) exists. Solution yn is nonoscillatory on Ai(p) ∩ I provided that yn has on Ai(p) ∩ I
only finitely many generalized zeros.

For example, recall again Eq. (3.11), which is of the fourth-order and has a solution

yn =

{
1, n even,

0, n odd.

Such solution has infinitely many generalized zeros with respect to both Definition 2.8 and
3.17. On the other hand, such solution does not have a generalized zero on Ai(2) for both
i = 1 (here yn is positive) and i = 2 (here yn is trivial). Another solution of Eq. (3.11) is zn = 1
which does not have a generalized zero under any Definition of 2.8, 3.17 and 3.18.

Definition 3.19. Solution yn of a given difference equation is separately i-nonoscillatory on
I(p) if there is a set J ⊆ {1, . . . , p}, |J| = i, such that yn is nonoscillatory on Aj(p) ∩ I for all
j ∈ J. If all solutions of the equation are separately i-nonoscillatory on I(p), then this equation
is called separately i-nonoscillatory on I(p).

In this paper, we consider for I only Z or [N, ∞) as well as p = H, because they make
the most sense to us. We assume that we could get some interesting or strange results for
a different choice of I and p. Moreover, with the choice of p = 1 and I = [N, ∞), we get
the usual definition of nonoscillatory solutions used for second-order linear equations through
generalized zeros of Definition 2.8. Such solutions are eventually positive or negative. Hence,
if a solution is separately nonoscillatory on I(1), then it is also separately nonoscillatory on
I(p).

Corollary 3.20. Assume there is a set J ⊆ {1, . . . , H}, |J| = i such that qn of (3.12) satisfies
qn ≤ 1/4, for all n ∈ Aj(H) and j ∈ J, then Eq. (3.1) is separately i-nonoscillatory on Z(H).

Proof. By the proof of Theorem 3.14 we know that Eq. (3.1) has a solution which is positive on
Aj(H), j ∈ J. Hence, by Theorem 3.16 we know that every solution is nonoscillatory on Aj,
where j ∈ J.

Theorem 3.21. If there is a subsequence qnl of qn such that qnl ≥ 1 for nl → ∞, nl ∈ Ai(H) and
some i ∈ {1, . . . , H}, then Eq. (3.1) cannot have yn a nonoscillatory solution on Ai(h) ∩ [N, ∞), for
some N ∈N.

Proof. Suppose that there is such a solution, then we can assume that it is positive on I =

Ai(H)∩ [N, ∞) for N sufficiently large. Therefore, Eq. (3.13) has a solution sn such that sn > 0



16 J. Jekl

on I. Moreover, by definition qn > 0 for all n and if n ∈ Ai(H), then also n + H ∈ Ai(H).
Hence,

qn+Hsn+H +
1
sn

= 1,

and we have that 1/sn < 1 on I, thus sn > 1 on I. Nevertheless, for the same reason
qn+Hsn+H < 1 on I and so qn < 1, for all n ≥ N + H, n ∈ I. That is a contradiction with
our assumption.

In such a case, equation cannot be separately H-nonoscillatory on I(H) where I = [N, ∞).

Corollary 3.22. If

lim sup
n→∞

1
n

n

∑
j=1

qi+jH > 1,

then Eq. (3.1) cannot have yn a nonoscillatory solution on Ai(H) ∩ [N, ∞) for some N ∈N.

Proof. Suppose there is such a solution. Then by Theorem 3.21, qn < 1 on Ai(H) ∩ [N, ∞), for
N sufficiently large and let m ∈ Ai(H) ∩ [N, ∞) be arbitrary. Then it holds ∑n

j=1 qm+jH < n
and also 1

n ∑n
j=1 qi+jH < 1 + C

n , for some C ∈ R. Therefore,

lim sup
n→∞

1
n

n

∑
j=1

qi+jH ≤ 1,

which is a contradiction.

Theorem 3.23. If Eq. (3.1) has a solution yn > 0 on Ai(H)∩ [N, ∞) and ∏n
j=1

bi+jH

(−ai+jH)
is a bounded

sequence, then yn is bounded on Ai(H) ∩ [N, ∞).

Proof. Taking zn = yn+H
yn

on I = Ai(H)∩ [N, ∞), for N sufficiently large, we can see that zn > 0
is a solution of the equation

(−an−kH)
1
zn

+ (−an+H)zn+H = bn+H,

on I. Because all the terms are positive, it holds that (−an+H)zn+H < bn+H on I. Let M ∈ I be
arbitrary and we have

yM+nH

yM+H
=

n−1

∏
j=1

yM+(j+1)H

yM+jH
=

n−1

∏
j=1

zM+jH <
n−1

∏
j=1

bM+jH

(−aM+jH)
.

Hence, yM+nH < yM+H ∏n−1
j=1

bM+jH
(−aM+jH)

for all n ∈N is giving us the result.

Corollary 3.24. If Eq. (3.1) has a positive solution yn and ∏n
j=1

bi+jH
(−ai+jH)

, ∏1
j=−n

bi+jH
(−ai+(j−k)H)

are

bounded sequences for every i ∈ {1, . . . , H}, then yn is bounded on Z.

Proof. By Theorem 3.23 we see that yn is bounded on all Ai(H) ∩ [N, ∞) for n → ∞. Via
the same way, we can see that

bn+H > (−an−kH)
1
zn

= (−an−kH)
yn

yn+H
,

for every n and similarly we see that yn is bounded even for n→ −∞.
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Corollary 3.25. If ∏n
j=1

bi+jH
(−ai+jH)

is a bounded sequence for every i ∈ {1, . . . , H} and for some µ ∈ Z

is
∞

∑
n

∏n−k
j=n+2(−aµ+(j−1)H)

∏n
j=n−k(−aµ+jH)

= ∞,

then Eq. (3.1) has at most one linearly independent eventually positive solution.

Proof. Suppose that there are two such solutions. Then by Theorem 3.23, they are bounded as
n→ ∞. Using the proof of Corollary 3.9, we get a contradiction.

It is posible to extend previous ideas to other equations. As an example, we consider
the equation

cn−1anyn + bn+1yn+1 + cn+1an+1yn+2 = 0.

It would result in similar but more complicated statements. However, our results can be
extended even more in a similar fashion, how [23] extends the results of [27]. It should also be
possible to find other criteria of separate oscillation shadowing the approach used for the case
of H = 1, k = 0.
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