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Abstract. In the paper, new single-condition criteria for the oscillation of all solu-
tions to a second-order half-linear delay differential equation in noncanonical form are
obtained, relaxing a traditionally posed assumption that the delay function is nonde-
creasing. The oscillation constant is best possible in the sense that the strict inequality
cannot be replaced by the nonstrict one without affecting the validity of the theorem.
This sharp result is new even in the linear case and, to the best of our knowledge, im-
proves all the existing results reporting in the literature so far. The advantage of our
approach is the simplicity of the proof, only based on sequentially improved mono-
tonicities of a positive solution.
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1 Introduction

Consider the second-order half-linear delay differential equation of the form(
r(t)

(
y′(t)

)α
)′

+ q(t)yα(τ(t)) = 0, t ≥ t0 > 0, (1.1)

where we assume that α > 0 is a quotient of odd positive integers; functions r, q, and τ are
continuous positive functions, τ(t) ≤ t and limt→∞ τ(t) = ∞. Without further mentioning, we
will assume that (1.1) is in so-called noncanonical form, i.e.,

π(t0) :=
∫ ∞

t0

dt
r1/α(t)

< ∞.

By a solution of Eq. (1.1) we mean any differentiable function y which does not vanishes
eventually such that r(y′)α is differentiable, satisfying (1.1) for sufficiently large t. As is cus-
tomary, a solution y(t) of (1.1) is said to be oscillatory if it is neither eventually positive nor

BCorresponding author. Email: jozef.dzurina@tuke.sk

https://doi.org/10.14232/ejqtde.2020.1.46
https://www.math.u-szeged.hu/ejqtde/


2 J. Džurina and I. Jadlovská

eventually negative. Otherwise, it is said to be nonoscillatory. The equation itself is termed
oscillatory if all its solutions oscillate.

The oscillation theory of second-order functional differential equations has attracted a
great portion of attention, which is evidenced by extensive research in the area. For a compact
summary of the most recent results and appearing open problems, the reader is referred to
the recent monographs the monographs by Agarwal et al. [2–5], Došlý and Řehák [12] Győri
and Ladas [16], and Saker [22].

In the paper, we obtain new single-condition criteria for the oscillation of all solutions to
(1.1) with unimprovable constants. This sharp result is new even in the linear case and, to the
best of our knowledge, improves all the existing results reported in the literature so far. In the
linear case, we also formulate analogous results for canonical equations.

The structure of the paper is the following. In Section 2, we revise the oscillatory properties
of various useful equations serving as models for comparison of the obtained results. In
Section 3, main results of the paper are stated, and their proofs are given in Section 4.

2 Comparison equations in the oscillation theory

Euler-type differential equations have been of utmost importance in the oscillation theory
since Sturm’s pioneering work in 1863. Till now, they are commonly used to examine the
sharpness of general criteria derived by different methods. The optimal scenario is when the
obtained criterion gives a sharp result for the Euler-type equation; or at least it is closer to it
for a given set of parameters, compared to another one. Perhaps the most familiar one is the
second-order linear Euler equation

y′′(t) +
q0

t2 y(t) = 0 (2.1)

which is oscillatory if and only if

q0 >
1
4

. (2.2)

In 1893, A. Kneser [17] firstly used Sturmian methods and (2.1) to show that the linear equation

y′′(t) + q(t)y(t) = 0

is oscillatory if

lim inf
t→∞

t2q(t) >
1
4

and nonoscillatory if

lim sup
t→∞

t2q(t) <
1
4

.

For our purposes, we consider, as a particular case of (1.1), the generalized Euler-type
half-linear ordinary differential equation(

r(t)
(
y′(t)

)α
)′

+
q0

r1/α(t)πα+1(t)
yα(t) = 0, q0 > 0. (2.3)

It is well-known that (2.3) is oscillatory if and only if its characteristic equation

c1(m) := αmα(1−m) = q0
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has no real roots what happens if

q0 > max{c1(m) : 0 < m < 1} = c1

(
α

α + 1

)
=

(
α

α + 1

)α+1

, (2.4)

cf. [2, Remark 3.7.1] or [12]. If condition (2.4) fails, then (2.3) has a nonoscillatory solution
y(t) = πm(t). As an immediate consequence of the Sturmian comparison theorem and the
above result concerning (2.3), we get the following version of the classical Kneser oscillation
and nonoscillation criterion for the noncanonical equation(

r(t)
(
y′(t)

)α
)′

+ q(t)yα(t) = 0. (2.5)

Proposition 2.1. Suppose that

lim inf
t→∞

r1/α(t)πα+1(t)q(t) >
(

α

α + 1

)α+1

. (2.6)

Then (2.5) is oscillatory. If

lim sup
t→∞

r1/α(t)πα+1(t)q(t) <
(

α

α + 1

)α+1

,

then (2.5) is nonoscillatory.

As another important particular case of (1.1), we consider the linear Euler-type equation
with proportional delay, namely,(

r(t)y′(t)
)′
+

q0

r(t)π2(t)
y(kt) = 0, 0 < k ≤ 1, (2.7)

where r(t) = tp+1, p > 0. By a simple change of variables

s =
1

π(t)
and y(t) =

u(s)
s

, (2.8)

(2.7) can be rewritten as
u′′(s) +

q0

kps2 u(kps) = 0. (2.9)

By transforming (2.9) into a constant-coefficient-constant-delay equation, Kulenović [18]
showed that (2.9) is oscillatory if and only if the associated characteristic equation

c2(m) := m(1−m)kmp = q0

has no real root what happens if

q0 > max{c2(m) : 0 < m < 1} = c2(mmax), (2.10)

where

mmax =
−
√

r2 + 4 + r + 2
2r

, r = −p ln k.

It is well-known that the Sturmian comparison theorem fails to extend to the more general
equation (

r(t)y′(t)
)′
+ q(t)y(τ(t)) = 0 (2.11)
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due to the delayed argument. For delay differential equations, Kusano and Naito established
an alternative comparison principle [19] in the sense that oscillation of the studied differential
equation can be deduced from the oscillation of a simpler one. Using their result [19, Theo-
rem 3] for (2.7), one can conclude that the equation(

tp+1y′(t)
)′

+ q(t)y(kt) = 0, p > 0, 0 < k ≤ 1, (2.12)

is oscillatory if

lim inf
t→∞

t1−pq(t)
p2 > max{c2(m) : 0 < m < 1}.

As a generalized version of (2.7), we consider(
r(t)y′(t)

)′
+

q0

r(t)π2(t)
y(τ(t)) = 0, (2.13)

with the constant ratio π(τ(t))/π(t) = λ. It can be verified by a direct substitution that (2.13)
has a nonoscillatory solution y(t) = πm(t) if

q0 ≤ max{c3(m) : 0 < m < 1},

where
c3(m) := m(1−m)λ−m.

The “only if” part here is difficult to prove because the transformation to a constant-coefficient-
constant-delay form is obviously impossible. To the best of the authors’ knowledge, there is
no oscillation criterion for (2.11) which would be sharp for (2.13).

Finally, we consider the most general Euler-type half-linear delay differential equation(
r(t)

(
y′(t)

)α
)′

+
q0

r1/α(t)πα+1(t)
yα(τ(t)) = 0, q0 > 0, t ≥ t0, (2.14)

where the functions r and τ are general and such that π(τ(t))/π(t) = λ. Note that (2.14)
includes both (2.3) and (2.13) as particular cases. As previously, we find that (2.14) has a
nonoscillatory solution y(t) = πm(t) if there is a positive root of the equation

c4(m) := αmα(1−m)λ−αm = q0, (2.15)

what happens if
q0 ≤ max{c4(m) : 0 < m < 1}. (2.16)

In the paper, we will show that (2.16) is not only sufficient but necessary for the existence of
nonoscillatory solution of (2.14). Before that, we conclude the introductory section by revising
briefly different approaches and oscillation results available for the equation (1.1). Here, it is
important to stress that all below-mentioned results require that τ is a nondecreasing function.

Because of its simpler structure of nonoscillatory solutions, (1.1) has been mostly studied in
canonical form and much less efforts have been undertaken for noncanonical equations. Since
Trench canonical theory [24] fails to extend to half-linear equations, a common approach
in the literature for investigation of such equations consists in extending known results for
canonical ones, see [1, 11, 13–15, 20, 21, 23, 25]. In 2017, Džurina and Jadlovská [9] revised a
variety of existing results by removing a traditionally imposed condition and obtained several
one-condition oscillation criteria for (1.1).

In general, there are two main factors contributing to the oscillatory behavior of (1.1): the
second-order nature of the equation and the presence of the delay; mostly treated indepen-
dently by an application of one of the following methods:
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1. using comparison with a second-order half-linear ordinary differential equation, directly
or indirectly via generalized Riccati generalized inequality

u′(t) + q(t) + αr−1/α(t)u(α+1)/α(t) ≤ 0, (2.17)

2. using comparison with a second-order linear differential equation; by employing lin-
earization techniques,

3. using comparison with a first-order linear delay differential equation; where the delay
is essential, but the information about the second-order nature of the equation is lost.

Another method based on the weighted Hardy inequality was presented in [8]. Any of works
[1, 8, 11, 13–15, 20, 21, 23, 25], employing the methods (1) or (2) gives at best

q0 >

(
α

α + 1

)α+1

for the Euler equation (2.14) with r(t) = tα+1 and τ(t) = kt, k ∈ (0, 1], which is sharp only
in the ordinary case (2.3). Here, it is easy to see that the influence of the delay is completely
lost. Some improvement was recently made by present authors [10] under assumption that
π(τ(t))/π(t) ≥ λ > 1, which yields

λq0 q0 >

(
α

α + 1

)α+1

.

On the other hand, the method (3) employed in [7] requires

q1/α
0 ln

1
k
>

1
e

.

for (2.14) with r(t) = tα+1 to be oscillatory.
The purpose of the paper is to obtain the best-possible single-condition oscillation criterion

for (1.1), where both the above-mentioned factors jointly contribute. The ideas partly exploit
the very recent ones from [6] for the linear equation(

r(t)y′(t)
)′
+ q(t)y(τ(t)) = 0. (2.18)

Theorem A (See [6, Theorem 3.4]). Assume that τ(t) is nondecreasing, τ(t) < t,∫ ∞

t0

q(s)π(s)ds = ∞, (2.19)

and there exists a constant β0 > 0 such that

q(t)π2(t)r(t) ≥ β0

eventually. If there exists n ∈N, such that βn < 1 for n = 0, 1, 2, . . . , n− 1, and

lim inf
t→∞

∫ t

τ(t)
q(s)τ(s) >

1− βn

e
,

where

βn :=
β0λβn−1

1− βn−1

for n ∈N and λ satisfying
π(τ(t))

π(t)
≥ λ

eventually, then (2.18) is oscillatory.
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Our newly obtained results (Theorems 3.1 and 3.4) can be regarded as a natural extension
of the oscillation part of Proposition 2.1 to a half-linear delay differential equation. Their
advantage over the known results is threefold: first of all, Theorem 3.1 involves the oscillation
constant which is optimal for the most general Euler-type comparison equation (2.14), and
hence unimprovable. Secondly, in contrast with related works [1,7,8,10,11,13–15,20,21,23,25],
we relaxed the assumption that τ is nondecreasing. Thirdly, our results in a special case α = 1
improve Theorem A in several ways:

1. we use the limit inferior of quantities q(t)π2(t)r(t) and π(τ(t))/π(t) in definitions of
corresponding constants, which is less-restrictive to apply;

2. we show that the iteration process can be omitted in final criteria;

3. our results do not require τ(t) < t nor the monotonicity of τ, as we have already men-
tioned.

3 Main results

In this section, we state the main results of the paper.

Theorem 3.1. Let

λ∗ := lim inf
t→∞

π(τ(t))
π(t)

< ∞. (3.1)

If
lim inf

t→∞
r1/α(t)πα+1(t)q(t) > max{c(m) := αmα(1−m)λ−αm

∗ : 0 < m < 1}, (3.2)

then (1.1) is oscillatory.

Corollary 3.2. By some computations, one has

max{c(m) : 0 < m < 1} = c(mmax),

where

mmax =


α

α + 1
, for λ∗ = 1

−
√
(αr + α + 1)2 − 4α2r + αr + α + 1

2αr
, for λ∗ 6= 1 and r = ln λ∗,

and c(m) is defined by (3.2).

Remark 3.3. It is easy to verify that for τ(t) = t, condition (3.2) reduces to (2.6). In view of
(2.16), it is clear that condition (3.2) is sharp in the sense that the strict inequality cannot be re-
placed by the nonstrict one without affecting the validity of the theorem. Hence, Theorem 3.1
can be viewed as a sharp extension of Kneser oscillation criterion (2.6) to a delay half-linear
equation.

For the remaining case when (3.1) is violated, we have the following result.

Theorem 3.4. Let

lim
t→∞

π(τ(t))
π(t)

= ∞. (3.3)

If
lim inf

t→∞
r1/α(t)πα+1(t)q(t) > 0,

then (1.1) is oscillatory.
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In the linear case α = 1, it is possible to transfer the oscillation property from (1.1) to the
canonical equation (

r̃(t)x′(t)
)′
+ q̃(t)x(τ(t)) = 0, t ≥ t0 > 0, (3.4)

where r̃ and q̃ are continuous positive functions, and

R(t) =
∫ t

t0

ds
r̃(s)
→ ∞ as t→ ∞.

Theorem 3.5. Let

δ∗ := lim inf
t→∞

R(t)
R(τ(t))

< ∞.

If
lim inf

t→∞
r̃(t)q̃(t)R(t)R(τ(t)) > max{m(1−m)δ−m

∗ : 0 < m < 1},

then (3.4) is oscillatory.

Theorem 3.6. Let

lim
t→∞

R(t)
R(τ(t))

= ∞.

If
lim inf

t→∞
r̃(t)q̃(t)R(t)R(τ(t)) > 0,

then (3.4) is oscillatory.

4 Auxiliary lemmas and proofs of main results

Let us define

β∗ := lim inf
t→∞

1
α

r1/α(t)πα+1(t)q(t). (4.1)

The arguments in the proofs are based on the existence of positive β∗, which is also necessary
for the validity of Theorems 3.1 and 3.4. Then, for arbitrary fixed β ∈ (0, β∗) and λ ∈ [1, λ∗),
there is a t1 ≥ t0, such that

1
α

q(t)r1/α(t)πα+1(t) ≥ β and
π(τ(t))

π(t)
≥ λ on [t1, ∞). (4.2)

In the sequel, we assume that all functional inequalities hold eventually, that is, they are
satisfied for all t large enough.

Lemma 4.1. Let β∗ > 0. If (1.1) has an eventually positive solution y, then

(i) y is eventually decreasing with limt→∞ y(t) = 0;

(ii) y/π is eventually nondecreasing.

Proof. (i). By [9, Theorem 1], the conclusion applies if

∫ ∞

t0

1
r1/α(t)

(∫ t

t0

q(s)ds
)1/α

dt = ∞. (4.3)
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Indeed, by simple computations, we see that

∫ t

t1

1
r1/α(u)

(∫ u

t1

q(s)ds
)1/α

du ≥ α
√

β
∫ t

t1

1
r1/α(u)

(∫ u

t1

α

r1/α(s)πα+1(s)
ds
)1/α

du

= α
√

β
∫ t

t1

1
r1/α(u)

(
1

πα(u)
− 1

πα(t1)

)1/α

du

with β defined by (4.2). Since π−α(t)→ ∞ as t→ ∞, for any ` ∈ (0, 1) and t large enough, we
have π−α(t)− π−α(t1) ≥ `απ−α(t) and hence

∫ t

t1

1
r1/α(u)

(∫ u

t1

q(s)ds
)1/α

du ≥ ` α
√

β
∫ t

t1

1
r1/α(u)π(u)

du = ` α
√

β ln
π(t1)

π(t)
→ ∞ as t→ ∞.

(ii). Using the fact that r1/αy′ is nondecreasing, we obtain

y(t) ≥ −
∫ ∞

t

1
r1/α(s)

r1/α(s)y′(s)ds ≥ −r1/α(t)y′(t)π(t),

i.e. ( y
π

)′
=

r1/αy′π + y
r1/απ2 ≥ 0.

The proof is complete.

Remark 4.2. Compared to the original Lemma statement used in [9, Theorem 1], we replaced
the integral condition (4.3) by the requirement of positive β∗. In Theorem A, condition (2.19)
was used to arrive at the same conclusion.

To improve the (i)-part of Lemma 4.1, we define a sequence {βn} by

β0 = α
√

β∗

βn =
β0λ

βn−1
∗

α
√

1− βn−1
, n ∈N.

(4.4)

By induction, it is easy to show that if for any n ∈N, βi < 1, i = 0, 1, 2, . . . , n, then βn+1 exists
and

βn+1 = `nβn > βn, (4.5)

where `n is defined by

`0 =
λ

β0
∗

α
√

1− β0

`n+1 = λ
β0(`n−1)
∗

α

√
1− βn

1− `nβn
, n ∈N0.

Lemma 4.3. Let β∗ > 0 and λ∗ < ∞. If (1.1) has an eventually positive solution y, then for any
n ∈N0 y/πβn is eventually decreasing.

Proof. Let y be a positive solution of (1.1) on [t1, ∞) where t1 ≥ t0 is such that y(τ(t)) > 0 and
(4.2) holds for t ≥ t1. Integrating (1.1) from t1 to t, we have

− r(t)
(
y′(t)

)α
= −r(t1)

(
y′(t1)

)α
+
∫ t

t1

q(s)yα(τ(s))ds. (4.6)



Oscillation of second-order delay differential equations 9

By (i) of Lemma 4.1, y is decreasing and so y(τ(t)) ≥ y(t) for t ≥ t1. Therefore,

−r(t)
(
y′(t)

)α ≥ −r(t1)
(
y′(t1)

)α
+
∫ t

t1

q(s)yα(s)ds ≥ −r(t1)
(
y′(t1)

)α
+ yα(t)

∫ t

t1

q(s)ds.

Using (4.2) in the above inequality, we get

−r(t)
(
y′(t)

)α ≥ −r(t1)
(
y′(t1)

)α
+ βyα(t)

∫ t

t1

α

r1/α(s)πα+1(s)
ds

≥ −r(t1)
(
y′(t1)

)α
+ β

yα(t)
πα(t)

− β
yα(t)

πα(t1)
.

(4.7)

From (i)-part of Lemma 4.1, we have that limt→∞ y(t) = 0. Hence, there is a t2 ∈ [t1, ∞) such
that

−r(t1)
(
y′(t1)

)α − β
yα(t)

πα(t1)
> 0, t ≥ t2.

Thus,

− r(t)
(
y′(t)

)α
> β

yα(t)
πα(t)

(4.8)

or
−r1/α(t)y′(t)π(t) > α

√
βy(t) = ε0β0y(t),

where ε0 = α
√

β/β0 is an arbitrary constant from (0, 1). Therefore,(
y

π
α
√

β

)′
=

r1/αy′π
α
√

β + α
√

βπ
α
√

β−1y

r1/απ2 α
√

β
=

π
α
√

β−1 ( α
√

βy + πr1/αy′
)

r1/απ2 α
√

β
≤ 0, t ≥ t2. (4.9)

Integrating (1.1) from t2 to t and using that y/π
α
√

β is decreasing, we have

−r(t)
(
y′(t)

)α ≥ −r(t2)
(
y′(t2)

)α
+

(
y(τ(t))

π
α
√

β(τ(t))

)α ∫ t

t2

q(s)πα α
√

β(τ(s))ds

≥ −r(t2)
(
y′(t2)

)α
+

(
y(t)

π
α
√

β(t)

)α ∫ t

t2

q(s)
(

π(τ(s))
π(s)

)α α
√

β

πα α
√

β(s)ds.

By virtue of (4.2), we see that

−r(t)
(
y′(t)

)α ≥ − r(t2)
(
y′(t2)

)α
+ β

(
y(t)

π
α
√

β(t)

)α ∫ t

t2

α
(

π(τ(s))
π(s)

)α α
√

β

r1/α(s)πα+1−α α
√

β(s)
ds

≥ − r(t2)
(
y′(t2)

)α

+
β

1− α
√

β
λα α
√

β

(
y(t)

π
α
√

β(t)

)α ∫ t

t2

α(1− α
√

β)

r1/α(s)πα+1−α α
√

β(s)
ds

= − r(t2)
(
y′(t2)

)α

+
β

1− α
√

β
λα α
√

β

(
y(t)

π
α
√

β(t)

)α(
1

πα(1− α
√

β)(t)
− 1

πα(1− α
√

β)(t2)

)
.

(4.10)



10 J. Džurina and I. Jadlovská

Now, we claim that limt→∞ y(t)/π
α
√

β(t) = 0. It suffices to show that there is ε > 0 such that

y/π
α
√

β+ε is eventually decreasing. Since π(t) tends to zero, there is a constant

` ∈

 α

√
1− α

√
β

λ
α
√

β
, 1


and a t3 ≥ t2 such that

1

πα(1− α
√

β)(t)
− 1

πα(1− α
√

β)(t2)
> `α 1

πα(1− α
√

β)(t)
, t ≥ t3.

Using the above inequality in (4.10) yields

−r(t)
(
y′(t)

)α ≥ `αβ

1− α
√

β
λα α
√

β

(
y(t)
π(t)

)α

,

i.e.,

− r1/αy′(t) ≥
(

α
√

β + ε
) y(t)

π(t)
, (4.11)

where

ε = α
√

β

 `λ
α
√

β

α

√
1− α

√
β
− 1

 > 0.

Thus, from (4.11), (
y

π
α
√

β+ε

)′
≤ 0, t ≥ t3,

and hence the claim holds. Therefore, for t4 ∈ [t3, ∞),

−r(t2)
(
y′(t2)

)α − β

1− α
√

β
λα α
√

β

(
y(t)

π
α
√

β(t)

)α
1

πα−α α
√

β(t2)
> 0, t ≥ t4.

Turning back to (4.10) and using the above inequality,

−r(t)
(
y′(t)

)α ≥ − r(t2)
(
y′(t2)

)α
+

β

1− α
√

β
λα α
√

β

(
y(t)
π(t)

)α

− β

1− α
√

β
λα α
√

β

(
y(t)

π
α
√

β(t)

)α
1

πα−α α
√

β(t2)

>
β

1− α
√

β
λα α
√

βyα,

or

−r1/αy′π >
α
√

β

α

√
1− α

√
β

λ
α
√

βy = ε1β1y, t ≥ t4,

where

ε1 = α

√
β(1− α

√
β∗)

β∗(1− α
√

β)

λ
α
√

β

λ
α
√

β∗
∗
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is arbitrary constant from (0, 1) approaching 1 if β→ β∗ and λ→ λ∗. Hence,( y
πε1β1

)′
< 0, t ≥ t4.

By induction, one can show that for any n ∈N0 and t large enough,( y
πεnβn

)′
< 0,

where εn given by

ε0 = α

√
β

β∗

εn+1 = ε0
α

√
1− βn

1− εnβn

λεnβn

λ
βn
∗

, n ∈N0

is arbitrary constant from (0, 1) approaching 1 if β → β∗ and λ → λ∗. Finally, we claim that
from any n ∈ N0, y/πεn+1βn+1 decreasing implies that that y/πβn is decreasing as well. To see
this, we use that from (4.5) and the fact that εn+1 is arbitrarily close to 1,

εn+1βn+1 > βn.

Hence, for t large enough,
−r1/αy′π > εn+1βn+1y > βny

and so for any n ∈N0 and t large enough,( y
πβn

)′
< 0.

The proof is complete.

Now, we are prepared to give straightforward proofs of the main results.

Proof of Theorem 3.1. Assume that y is an eventually positive solution of (1.1). Lemmas 4.1
and 4.3 ensure that (y/π)′ ≥ 0 and (y/πβn)′ < 0 for any n ∈ N0 and t large enough. This is
the case when

βn < 1 for any n ∈N0.

Hence the sequence {βn} defined by (4.4) is increasing and bounded from above, and so there
exists a finite limit

lim
n→∞

βn = m,

where m is the smaller positive root of the equation

c(m) = lim inf
t→∞

r1/α(t)πα+1(t)q(t). (4.12)

However, by (3.2), equation (4.12) cannot have positive solutions. This contradiction concludes
the proof. �



12 J. Džurina and I. Jadlovská

Proof of Theorem 3.4. Let y be a positive solution of (1.1) on [t1, ∞) where t1 ≥ t0 is such that
y(τ(t)) > 0 for t ≥ t1. In view of (3.3), for any M > 0 there is sufficiently large t such that

π(τ(t))
π(t)

≥ M1/ α
√

β. (4.13)

Proceeding as in the proof of Lemma 4.3, we show that y/π
α
√

β is decreasing eventually, say
for t ≥ t2 ≥ t1. Using this monotonicity in (4.6), we have

−r(t)
(
y′(t)

)α
= −r(t2)

(
y′(t2)

)α
+
∫ t

t2

q(s)yα(τ(s))ds

≥ −r(t2)
(
y′(t2)

)α
+ Mαβyα(t)

∫ t

t2

α

r1/α(s)πα+1(s)
ds > Mα

(
y(t)
π(t)

)α

,

from which we deduce that y/πM is decreasing. Since M is arbitrary, we get a contradiction
with (ii)-part of Lemma 4.1 upon which y/π is nondecreasing. The proof is complete. �

Proof of Theorem 3.5. It can be directly verified that the canonical equation (3.4) is equivalent
to a noncanonical equation (1.1) with α = 1,

r(t) = r̃(t)R2(t)

q(t) = q̃(t)R(t)R(τ(t))

and

y(t) =
x(t)
R(t)

.

Here,

π(t) =
∫ ∞

t

ds
r̃(s)R2(s)

=
1

R(t)
.

Then the conclusion immediately follows from Theorem 3.1. �

Proof of Theorem 3.6. Using the equivalent noncanonical representation of (3.4) as in the
proof of Theorem 3.5, the conclusion follows from Theorem 3.4. �
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