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Abstract. In this paper we establish an invariant set bifurcation theory for the nonau-
tonomous dynamical system (ϕλ, θ)X,H generated by the evolution equation

ut + Au = λu + p(t, u), p ∈ H = H[ f (·, u)] (0.1)

on a Hilbert space X, where A is a sectorial operator, λ is the bifurcation parameter,
f (·, u) : R→ X is translation compact, f (t, 0) ≡ 0 andH[ f ] is the hull of f (·, u). Denote
by ϕλ := ϕλ(t, p)u the cocycle semiflow generated by the system. Under some other
assumptions on f , we show that as the parameter λ crosses an eigenvalue λ0 ∈ R of
A, the system bifurcates from 0 to a nonautonomous invariant set Bλ(·) on one-sided
neighborhood of λ0. Moreover,

lim
λ→λ0

HXα (Bλ(p), 0) = 0, p ∈ P,

where HXα(·, ·) denotes the Hausdorff semidistance in Xα (here Xα (α ≥ 0) defined
below is the fractional power spaces associated with A).

Our result is based on the pullback attractor bifurcation on the local central invariant
manifoldsMλ

loc(·).
Keywords: stability of pullback attractors, local invariant manifolds, nonautonomous
invariant set bifurcations.
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1 Introduction

Invariant set bifurcation theory of autonomous dynamical systems has been extremely well
developed [1, 6, 16, 17, 19, 23–27, 30–32]. A relatively simpler but important case is that of
bifurcations from equilibria, including bifurcation to multiple equilibria (static bifurcation)
and to periodic solutions (Hopf bifurcation) (see among others, [6, 27]). Ma and Wang [23]
and Sanjurjio [31] developed a local attractor bifurcation theory. Roughly speaking, if the
trivial equilibrium e of an autonomous system changes from an attractor to a repeller on the
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local center manifold of the equilibrium when the bifurcation parameter λ crosses a critical
value λ0, then the system bifurcates a compact invariant set K which is an attractor of the
system restricted to the center manifold. Chow and Hale [6] started to discuss stability and
bifurcation phenomena associated with more general invariant sets, e.g. periodic orbits. Using
Conley index theory, Rybakowski [30] and Li and Wang [19] developed global bifurcation
theorems to discuss bifurcation phenomena of nonlinear autonomous evolution equations.

The study of invariant set bifurcation for nonautonomous dynamical system has also re-
ceived a lot of attention. Langa et al. [18] presented a collection of examples to illustrate
bifurcation phenomena in nonautonomous ordinary differential equations. Carvalho et al. [4]
studied the structure of the pullback attractor for a nonautonomous version of the Chafee–
Infante equation, and investigated the bifurcations that this attractor undergoes as bifurcation
parameter varies. In [28], Rasmussen introduced various concepts of bifurcation and tran-
sition for nonautonomous systems, corresponding to different time domains. And several
examples were presented to illustrate these definitions.

The main aim of the paper is to develop a counterpart for the classical autonomous invari-
ant set bifurcation patterns of Ma and Wang [23] and Sanjurjio [31] in the context of nonau-
tonomous invariant set bifurcation. Unlike autonomous dynamical systems for which forward
dynamics is studied, pullback dynamics is much more natural than the more familiar forward
dynamics for nonautonomous dynamical systems. But this makes it very difficult to extend
the invariant set bifurcation theory of autonomous systems to nonautonomous systems when
pullback dynamics is considered. Our approach in the paper is to treat a nonautonomous
system as a cocycle semiflow over a suitable base space. One of the advantage of a cocycle
semiflow approach is that the synchronizing solutions or the other synchronizing behaviors
with the nonautonomous driving force can be studied [12,14,15]. Moreover, in the framework
of a cocycle semiflow, the base spaces are compact in many important cases. For example, if
the nonlinearity f of (0.1) is periodic (resp. quasiperiodic, almost periodic, local almost pe-
riodic) in the time variable t, then the base space H is compact. Based on the compactness
of the base spaces, we can establish the equivalence between pullback attraction of cocycle
semiflow and forward attraction of the associated autonomous semiflow. This device makes
the dynamics of such a nonautonomous system appear like those of an autonomous system.

Without the compactness assumption on the base spaces, the upper semicontinuity of
global pullback attractors for nonautonomous systems was obtained in Caraballo and Langa
[2]. However, compact forward invariant sets of the perturbed systems are required to guar-
antee the existence of perturbed pullback attractors. In the paper, we suppose that the base
spaces of cocycle semiflows considered are compact. As a result, after introducing the no-
tion of (local) pullback attractors (see Definition 2.6), we can establish a general result on the
stability of local pullback attractors as the perturbation parameter is varied. Based on this
result, a local pullback attractor bifurcation theory can be developed. This can be regarded as
a generalization of autonomous attractor bifurcation theory in [23] for nonautonomous cases.
Finally, we study the bifurcation of invariant sets for the cocycle semiflow ϕλ generated by the
nonautonomous nonlinear evolution equation (0.1). We first construct a local central invariant
manifold Mλ

loc(·) for ϕλ as λ near λ0. Under further assumptions on f to ensure that 0 is a
pullback attractor for ϕλ0 , we then restrict ϕλ toMλ

loc(·) and obtain a pullback attractor bifur-
cation on Mλ

loc(·) as λ crosses λ0. It leads to an invariant set bifurcation for ϕλ. It is worth
mentioning that if 0 is not an attractor but a repeller for ϕλ0 , our result still holds. Denote by
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Bλ(·) the bifurcated invariant set. We further know that

lim
λ→λ0

HXα(Bλ(p), 0) = 0, p ∈ P.

This paper is organized as follows. In Section 2, we present respectively some basic facts
in autonomous and nonautonomous dynamical systems which will be required in the rest of
the work. Section 3 deals with the stability of pullback attractors as bifurcation parameter
varies. In Section 4, we establish an invariant set bifurcation theory for (0.1). We illustrate
the main results with an example in Section 5. Finally, Section 6 contains the proofs of two
propositions presented earlier in the paper.

2 Preliminaries

In this section we introduce some basic definitions and notions [7, 8].
Let X be a complete metric space with metric d(·, ·). Given M ⊂ X, we denote M and

int M the closure and interior of any subset M of X, respectively. A set U ⊂ X is called a
neighborhood of M ⊂ X, if M ⊂ int U. For any ρ > 0, denote by

BX(M, ρ) := {x ∈ X : d(x, M) < ρ}

the ρ-neighborhood of M in X, where d(x, M) = infy∈M d(x, y).
The Hausdorff semidistance in X is defined as

HX(M, N) = sup
x∈M

d(x, N), ∀M, N ⊂ X.

2.1 Semiflows and attractors

Let R+ = [0, ∞). A continuous mapping S : R+ × X → X is called a semiflow on X, if it
satisfies

i) S(0, x) = x for all x ∈ X; and

ii) S(t + s, x) = S(t, S(s, x)) for all x ∈ X and t, s ∈ R+.

Let S be a given semiflow on X. As usual, we will rewrite S(t, x) as S(t)x.
A set B ⊂ X is called invariant (resp. positively invariant) under S if S(t)B = B (resp.

S(t)B ⊂ B) for all t ≥ 0.
Let B and C be subsets of X. We say that B attracts C under S, if

lim
t→∞

HX(S(t)C, B) = 0.

Definition 2.1. A compact subset A ⊂ X is called an attractor for S, if it is invariant under S
and attracts one of neighborhood of itself.

It is well known that if U is a compact positively invariant set of S, then the omega-limit
set ω(U) :=

⋂
T≥0

⋃
t≥T S(t)U is an attractor of S. The definition of the attraction basin of the

attractor and other properties can be found in [10, 22, 30].
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2.2 Cocycle semiflows and pullback attractors

A nonautonomous system consists of a “base flow” and a “cocycle semiflow” that is in some
sense driven by the base flow.

A base flow {θt}t∈R := {θ(t)}t∈R is a flow on a metric space P such that θtP = P for all
t ∈ R.

Definition 2.2. A cocycle semiflow ϕ on the phase space X over θ is a continuous mapping
ϕ : R+ × P× X → X satisfying

• ϕ(0, p, x) = x,

• ϕ(t + s, p, x) = ϕ(t, θs p, ϕ(s, p, x)) (cocycle property).

Remark 2.3. If we replace R+ by R in the above definition, then ϕ is called a cocycle flow
on X.

We usually denote ϕ(t, p)x := ϕ(t, p, x). Then {ϕ(t, p)}t≥0, p∈P can be viewed as a family
of continuous mappings on X.

For convenience in statement, a family of subsets {Bp}p∈P of X is called a nonautonomous
set in X. Let B(·) = {Bp}p∈P be a nonautonomous set. For convenience, we will rewrite Bp as
B(p), called the p-section of B(·). We also denote B the union of the sets B(p)× {p} (p ∈ P),
i.e.,

B =
⋃
p∈P

B(p)× {p}.

Note that B is a subset of X× P.
A nonautonomous set B(·) is said to be closed (resp. open, compact), if each section B(p)

is closed (resp. open, compact) in X. A nonautonomous set U(·) is called a neighborhood of
B(·), if B(p) ⊂ int U(p) for each p ∈ P.

A nonautonomous set B(·) is said to be invariant (resp. forward invariant) under ϕ if for
t ≥ 0,

ϕ(t, p)B(p) = B(θt p), p ∈ P.

(resp. ϕ(t, p)B(p) ⊂ B(θt p), p ∈ P.)

Let B(·) and C(·) be two nonautonomous subsets of X. We say that B(·) pullback attracts
C(·) under ϕ if for any p ∈ P,

lim
t→∞

HX(ϕ(t, θ−t p)C(θ−t p), B(p)) = 0.

Let ϕ be a given cocycle semiflow on X with driving system θ on base space P. The
(autonomous) semiflow Φ := {Φ(t)}t≥0 on Y := P× X, given by

Φ(t)(p, x) = (θt p, φ(t, p)x), t ≥ 0,

is called the skew product semiflow associated to ϕ.
The following fundamental result studies the relationship between the pullback attraction

of ϕ and attraction of Φ. The proof is given in the Appendixes.

Proposition 2.4. Let (ϕ, θ)X,P be a nonautonomous system, and let Φ be the skew-product flow asso-
ciated to ϕ. Let K(·) and B(·) be two nonautonomous sets. Suppose P and KP :=

⋃
p∈P K(p) ⊂ X

are both compact. Then K(·) pullback attracts B(·) through ϕ if and only if K :=
⋃

p∈P K(p)× {p}
attracts B :=

⋃
p∈P B(p)× {p} through Φ.
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Remark 2.5. The special case that K(·) is a global pullback attractor was considered in Theo-
rem 15.7 and Theorem 15.8 of [5].

Definition 2.6. Let (ϕ, θ)X,P be a nonautonomous system. A nonautonomous set A(·) is called
a (local) pullback attractor for ϕ if it is compact, invariant and pullback attracts a neighbor-
hood U(·) of itself.

The local pullback attractor defined here, very similar to the notion of a past attractor
in Rasmussen [29], can be seen as a nature generalization of the local attractor from the
autonomous theory. Similar to the case of autonomous systems, if U(·) is a compact forward
invariant set of ϕ, then the omega-limit set ω(U)(·) defined as

ω(U)(ω) =
⋂

T≥0

⋃
t≥T

ϕ(t, θ−tω)U(θ−tω), ω ∈ Ω

is a pullback attractor of ϕ. For instance, consider the following simple system on X = R:

x′(t) = −3x + p(t)x3, p ∈ H[h], (2.1)

where h(t) = 2 + sin t and H[h] is its hull which is the closure for the uniform convergence
topology of the set of t-translates of h. The translation map θt : H → H given by θt p(s) =

p(t + s) defines a flow on H. Then the unique solution of (2.1) define a cocycle flow on X
given by ϕ(t, p)x0 = x(t, 0; p; x0). Since

1
2

d
dt

x2 = −3x2 + p(t)x4 ≤ −3(x2 − x4) < 0

provided that |x| ≤ 1/2. Therefore [−1/2, 1/2] is a forward invariant set of ϕ and it is
pullback attracted by the pullback attractor 0. It is worth noting that 0 is only a local pullback
attractor. Indeed,

1
2

d
dt

x2 = −3x2 + p(t)x4 ≥ −3x2 + x4 > 0

provided that |x| ≥ 2. Thus 0 is only a local pullback attractor of ϕ.
In general, it is difficult to define the attraction basin of a pullback attractor. Fortunately,

under the assumptions of Proposition 2.4, we can define the pullback attraction basin of a
pullback attractor A(·). Specifically, we have

Definition 2.7. Let (ϕ, θ)X,P be a nonautonomous system, and let Φ be the skew-product
flow associated to ϕ. Suppose P is compact. Let A(·) be a pullback attractor of ϕ such that
AP :=

⋃
p∈P A(p) is compact. Then the pullback attraction basin of A(·) can be given by

B(A)(·) = {x(·) : A attracts x under Φ},

where x(·) is any singleton nonautonomous set in X and x =
⋃

p∈P{p} × x(p).

3 Stability of pullback attractors

We now establish a result on the stability of pullback attractors under a small perturbation. In
fact, we prove a continuity result with respect to the Hausdorff semi-distance.

Let X be a Banach space with norm ‖ · ‖, and let A be a sectorial operator on X. Pick a
number a > 0 such that

Re σ(A + aI) > 0.
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Denote Λ = A + aI. For each α ≥ 0, define the fractional power space as Xα = D(Λα), which
is equipped with the norm ‖ · ‖α defined by

‖x‖α = ‖Λαx‖, x ∈ Xα.

Note that the definition of Xα is independent of the choice of the number a. If A has compact
resolvent, the inclusion Xα′ ↪→ Xα is compact for α′ > α ≥ 0.

Let ϕλ0 (λ0 ∈ R) be a given cocycle semiflow on X with driving system θ on base space P.
For δ > 0, denote Iλ0(δ) := (λ0− δ, λ0 + δ). Assume that ϕλ, λ ∈ Iλ0(δ) is a small perturbation
of the given flow ϕλ0 based on P. Let us make the following assumptions:

(H1): The base space P is compact.

(H2): For every T > 0 and compact subset B of X, we have

lim
λ→λ0

‖ϕλ(t, p)x− ϕλ0(t, p)x‖α = 0, (3.1)

uniformly with respect to (t, x) ∈ [0, T]× B and p ∈ P.

Under the assumptions (H1), (H2), we can get a result on the stability of pullback attractors.

Theorem 3.1. Let Aλ0(·) := {Aλ0(p)}p∈P be an attractor of the cocycle semiflow ϕλ0 which pullback
attracts a neighborhood U(·) of itself. Let

U :=
⋃
p∈P

U(p)× {p} and Aλ0 :=
⋃
p∈P

Aλ0(p)× {p}.

Assume U is a compact neighborhood of Aλ0 in Y = X × P, then under the assumptions (H1), (H2),
the following statements hold.

(a) There exists a small δ > 0 such that for each λ ∈ Iλ0(δ), ϕλ has a pullback attractor Aλ(·) such
that

lim
λ→λ0

HX(Aλ(p),
⋃

p∈H
Aλ0(p)) = 0. (3.2)

(b) In addition, if U(·) is forward invariant, then

lim
λ→λ0

HX(Aλ(p), Aλ0(p)) = 0. (3.3)

Proof. (a) By the compactness of U, we know that Aλ0 P :=
⋃

p∈P Aλ0(p) is compact. Since
Aλ0(·) pullback attracts U(·) and P is compact, by Proposition 2.4, Aλ0 attracts U through
Φλ0 . Since U is a neighborhood of Aλ0 , one knows that Aλ0 is an attractor of Φλ0 . By the
assumption (H2), for any compact set B ⊂ X, we have that

lim
λ→λ0

HY(Φλ(t)(x, p), Φλ0(t)(x, p)) = lim
λ→λ0

‖ϕλ(t, p)x− ϕλ0(t, p)x‖α = 0 (3.4)

uniformly with respect to t ∈ [0, T] and (x, p) ∈ B× P. Then by the stability of the autonomous
attractors [21, Theorem 4.1], there exists a δ > 0 (independent of p ∈ P) such that for each
λ ∈ Iλ0(δ) := (λ0 − δ, λ0 + δ), Φλ has an attractor Aλ contained in U. Moreover,

lim
λ→λ0

HY(Aλ, Aλ0) = 0. (3.5)
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Write Aλ as
⋃

p∈P Aλ(p)× {p}, λ ∈ Iλ0(δ). Using Proposition 2.4 again, we have that Aλ(·)
pullback attracts U(·) through ϕλ, i.e., Aλ(·) is a pullback attractor of ϕλ. (3.2) is a direct
consequence of (3.5).

To complete the proof of (b), we shall prove (3.3) by contradiction. Thus, let us assume
that there exist σ > 0 and a sequence λj → λ0, as j→ ∞, xj ∈ Aλj(p) such that

dX(xj, x) > σ, for all x ∈ Aλ0(p). (3.6)

Note that
xj = ϕλj(n, θ−n p)xn

j , for some xn
j ∈ Aλj(θ−n p).

Similar to the argument in (a), we can assume that Aλj(p) ⊂ U(p), thus xj ∈ U(p). By the
compactness of U(p), there exists a subsequence of xj (still denoted by xj) which converges
to some x0 ∈ U(p). Now, for each fixed n we have xn

j ∈ U(θ−n p) so that there is a further
subsequence of xn

j (still denoted by xn
j ) which converges to some xn

0 ∈ U(θ−n p). On the other
hand, for any given ν > 0, we can use the assumption (H2) and the continuity of ϕ(n, θ−n p)
to show that for j large enough,

3d(ϕλj(n, θ−t p)xn
j , ϕλ0(n, θ−t p)xn

0 )

≤ d(ϕλj(n, θ−t p)xn
j , ϕλ0(n, θ−t p)xn

j ) + d(ϕλ0(n, θ−t p)xn
j , ϕλ0(n, θ−t p)xn

0 )

≤ ν + ν.

Then, for each fixed n ∈N,

x0 = lim
j→∞

xj = lim
j→∞

ϕλj(n, θ−n p)xn
j = ϕλ0(n, θ−n p)xn

0 .

Since U(p) is forward invariant, we have

x0 ∈
⋂

n∈N

ϕλ0(n, θ−n p)U(θ−n p) = Aλ0(p),

which contradicts (3.6). The proof is complete.

The main contribution of Theorem 3.1 is the existence of pullback attractor Aλ(·) for ϕλ

as λ near λ0, while the argument of the upper semicontinuity of pullback attractors is an
adaptation of that of [2].

The conditions of the following results may be easier to be verified in applications.

Corollary 3.2. Let Aλ0(·) := {Aλ0(p)}p∈P be an attractor of the cocycle semiflow ϕλ0 and U ⊂ X
be a compact forward invariant neighborhood of Aλ0(·). Then under the assumptions (H1), (H2), there
exists a small δ > 0 such that for each λ ∈ Iλ0(δ), ϕλ has a pullback attractor Aλ(·) satisfying

lim
λ→λ0

HX(Aλ(p), Aλ0(p)) = 0.

4 Invariant set bifurcation for nonautonomous nonlinear evolution
equations

Based on the general result of the stability of pullback attractors, in the section we can establish
some results on invariant set bifurcation for nonautonomous dynamical systems.
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4.1 Problem and mathematical setting

From now on, we assume X is a Hilbert space with inner product (·, ·). We will consider and
study invariant set bifurcation of the evolution equation

ut + Au = λu + f (t, u) (4.1)

on X, where λ ∈ R is a bifurcation parameter, the nonlinearity f : R× Xα → X is bounded
continuous mapping satisfying

(F1)
f (t, u) = o(‖u‖α), as ‖u‖α → 0 (4.2)

uniformly on t ∈ R. Moreover, there is β > 0 such that

(( f (t, u), u) ≤ −β · κ(u) (4.3)

for t ∈ R and u ∈ Xα, where κ : X → R+ is a nonnegative function satisfying that
κ(u) = 0 if and only if u = 0.

Denote k(ρ) the Lipschitz constant of f (t, ·) in BXα(ρ). Then by (4.2),

lim
ρ→0

k(ρ) = 0

and
‖ f (t, u1)− f (t, u2)‖ ≤ k(ρ)‖u1 − u2‖α, ∀ u1, u2 ∈ BXα(ρ). (4.4)

Denote Cb(R, X) the set of bounded continuous functions from R to X. Equip Cb(R, X)

with either the uniform convergence topology generated by the metric

r(h1, h2) = sup
t∈R

‖h1(t)− h2(t)‖,

or the compact-open topology generated by the metric

r(h1, h2) =
∞

∑
n=1

1
2n ·

maxt∈[−n,n] ‖h1(t)− h2(t)‖
1 + maxt∈[−n,n] ‖h1(t)− h2(t)‖

.

Let f (·, u) ∈ Cb(R, X) be the function in (4.1). Define the hull of f (·, u) as follows

H := H[ f (·, u)] = { f (τ + ·, u) : τ ∈ R} Cb(R,X).

In application, f (·, u) is often taken as a periodic function, quasiperiodic function, almost peri-
odic function, local almost periodic function [7,20] or uniformly almost automorphic function
[33]. In this case, the hull H is a compact metric space. Accordingly, the translation group θ

on H is given by
θτ p(·, u) = p(τ + ·, u), t ∈ R, p ∈ H.

Instead of (3.2), we will consider the more general cocycle system in Xα (where α ∈ [0, 1)):

ut + Au = λu + p(t, u), p ∈ H. (4.5)
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Proposition 4.1 ([11]). Let A and p be given as above. Assume that p is locally Hölder continuous
in t. Then for each u0 ∈ Xα, there is a T > t0 such that (4.5) has a unique solution u(t) =

uλ(t, t0; u0, p) on [t0, T) satisfying

u(t) = e−A(t−t0)x0 +
∫ t

t0

e−A(t−s)[λu(s) + p(s, u(s))]ds, t ∈ [t0, T). (4.6)

For convenience, from now on we always assume that the unique solution (4.6) is globally
defined. Define

ϕλ(t, p)u := uλ(t, 0; u, p), u ∈ Xα, p ∈ H.

Then ϕλ is a cocycle semiflow on Xα driven by the base flow θ on H.

Remark 4.2. Note that for each p ∈ H, u(t) is a p-solution of ϕλ on an interval J if and only if
it solves the equation (4.5) on J.

4.2 Local invariant manifolds

Let λ0 ∈ R be an isolated eigenvalue of A. Suppose that

(F2) there is a η > 0 such that the spectrum

σ(A) ∩ {z ∈ C : λ0 − η < Re z < λ0 + η} = λ0.

Denote Aλ := A− λ. Then for λ ∈ Iλ0(η/4) := (λ0 − η/4, λ0 + η/4), the spectrum σ(Aλ)

has a decomposition σ(Aλ) = σc ∪ σ+ ∪ σ−, where

σc = {λ0 − λ}, σ+ = σ(Aλ) ∩ {Re λ > 0} and σ− = σ(Aλ) ∩ {Re λ < 0}.

Accordingly, the space X has a direct sum decomposition: X = Xc ⊕ X+ ⊕ X−. Denote
X± = X+ ⊕ X− and

Xα
i := Xi ∩ Xα, i = c,+,−,±.

Note that Xα
c is finite dimensional.

Under the assumptions on A and f , we can construct a local invariant manifold for ϕλ,
λ ∈ Iλ0(η/8).

Proposition 4.3. Suppose the assumptions (F1), (F2) hold. Then there exists $ > 0 such that the
cocycle semiflow ϕλ, λ ∈ Iλ0(η/8) has a local invariant manifoldMλ

loc(·) := {Mλ
loc(p)}p∈H in Xα

which is represented as
Mλ

loc(p) = {y + ξλ
p(y) : y ∈ BXα

c
($)},

where ξ ·p(·) : Iλ0(η/8)× BXα
c
($)→ Xα

± is a Lipschitz continuous mapping satisfying that

ξλ
p(0) = 0 and ‖ξλ

p(y)− ξλ
p(z)‖α ≤ L1‖y− z‖α (4.7)

and
‖ξλ1

p (y)− ξλ2
p (y)‖α ≤ L2|λ1 − λ2|, (4.8)

where L1 > 0 is independent of p ∈ P and λ ∈ Iλ0(η/8), and L2 > 0 is independent of p ∈ P and
y ∈ BXα

c
($).

The proof of the above proposition is given in the Appendixes.
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4.3 Invariant set bifurcation

Firstly, let us restrict the equation (4.5) on the invariant manifold Mλ
loc(·), λ ∈ Iλ0(η/8).

Specifically, we study the finite dimensional equation

yt + (λ0 − λ)y = p(t, y + ξλ
θt p(y)), y ∈ BXα

c
($), p ∈ H. (4.9)

Denote φλ, λ ∈ Iλ0(η/8) the cocycle flow on BXα
c
($) with driving system θ on the base space

H generated by (4.9).
We first say that the condition (H2) (in Section 3) holds for the cocycle flow φλ, λ ∈

Iλ0(η/8). Specifically, we have the following result.

Lemma 4.4. For every T > 0, we have

lim
λ→λ0

‖φλ(t, p)y− φλ0(t, p)y‖α = 0, (4.10)

uniformly with respect to (t, y) ∈ [0, T]× BXα
c
($) and p ∈ P.

Proof. For λ ∈ Iλ0(η/8), denote yλ(t) := φλ(t, p)y and v(t) = yλ(t)− yλ0(t), then v satisfies

vt + (λ0 − λ)yλ = p(t, yλ + ξλ
θt p(yλ))− p(t, yλ0 + ξλ0

θt p(yλ0)). (4.11)

Note that ‖yλ‖ ≤ ρ and

‖p(t, yλ + ξλ
θt p(yλ))− p(t, yλ0 + ξλ0

θt p(yλ0))‖

≤ k(ρ)
(
(L1 + 1)‖v‖α + L2|λ− λ0|

)
≤ C′

(
‖v‖2 + (λ− λ0)

2) for some constant C′,

(4.12)

where ρ > 0 is the bound of u ∈ Mλ
loc(·), which is independent of λ by (4.6). Taking the inner

product of the equation (4.11) with v and using (4.12) to obtain that there is a constant C > 0
being independent of λ such that

d
dt
‖v‖2 ≤ C

(
‖v‖2 + (λ− λ0)

2) .

Applying the classical Gronwall lemma to get that

‖v(t)‖2 ≤
(

eCt − 1
)
(λ− λ0)

2,

Lemma 4.5. Under the assumptions (F1), (F2), y = 0 is locally asymptotically stable for φλ0 . Therefore
0 is a pullback attractor of φλ0 .

Proof. Since Xα
c is finite dimensional, all the norms on Xα

c are equivalent. Hence for conve-
nience, we equip Xα

c the norm ‖ · ‖ of X in the following argument.
Note that φλ0 is generated by the equation

yt = p(t, y + ξλ0
θt p(y)), y ∈ BXα

c
($), p ∈ H. (4.13)

Taking the inner product of the equation (4.13) with y + ξλ0
θt p(y) in X, using the fact that

(y, ξλ0
θt p(y)) = 0 and the assumption (F1), it yields

1
2

d
dt
‖y‖2 =

(
p
(

t, y + ξλ0
θt p(y)

)
, y + ξλ0

θt p(y)
)

≤ −β · κ
(

y + ξλ0
θt p(y)

)
.

(4.14)
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It is clear that κ
(

y + ξλ0
θt p(y)

)
= 0 if and only if y = 0. Therefore limt→∞ ‖y‖ = 0. The proof is

complete.

Henceforth we will suppose that

(F3) The hull H is a compact metric space.

We then obtain a pullback attractor bifurcation theory for φλ as λ crosses λ0.

Theorem 4.6. Under the assumptions (F1), (F2) and (F3), the cocycle semiflow φλ bifurcates from
(0, λ0) a pullback attractor Aλ(·) for λ > λ0, and

lim
λ→λ+

0

HXα
c
(Aλ(p), {0}) = 0. (4.15)

Proof. Recall from Lemma 4.5 that 0 is a pullback attractor for φλ0 and it pullback attracts
BXα

c
($) for sufficiently small $ > 0. The bounded set BXα

c
($) ⊂ Xα

c is compact due to Xα
c being

finite dimensional. Moreover, BXα
c
($) is forward invariant under φλ0 . Then by Theorem 3.1,

there is a η′ ∈ (0, η/8) such that for each λ ∈ Iλ0(η
′), the cocycle semiflow φλ has a pullback

attractor Aλ(·) and (4.15) holds.
In the following, we prove that 0 /∈ Aλ(·) for λ ∈ I+λ0

(η′) := (λ0, λ0 + η′), which completes
the proof.

Let λ ∈ I+λ0
(η′) be fixed, and let w(t) = y(−t). Then w(t) satisfies

wt − (λ0 − λ)w = −p(−t, w + ξλ
θ−t p(w)). (4.16)

Taking the inner product of the equation (4.16) with w in Xα, we have

1
2

d
dt
‖w‖2 − (λ0 − λ)‖w‖2 = −(p(t, w + ξλ

θ−t p(w)), w). (4.17)

Since
‖p(t, u)‖ ≤ k(‖u‖α)‖u‖α and ‖ξλ

θ−t p(w)‖α ≤ L1‖w‖α,

we have

‖p(−t, w + ξλ
θ−t p(w))‖ ≤ k(‖w + ξλ

θ−t p(w)‖α)‖w + ξλ
θ−t p(w)‖α

≤ k(‖w + ξλ
θ−t p(w)‖α) (‖w‖α + L1‖w‖α)

≤ k(‖w + ξλ
θ−t p(w)‖α) · (1 + L1)‖w‖α

≤ [(1 + L1)ck(‖w + ξλ
θ−t p(w)‖α)] · ‖w‖

≤ 1
2
(λ− λ0)‖w‖, for sufficiently small ‖w‖α.

(4.18)

We get from (4.17) and (4.18) that

d
dt
‖w‖2 ≤ −(λ− λ0)‖w‖2

for sufficiently small ‖w‖α, which shows for fixed λ ∈ I+λ0
(η′), 0 locally asymptotically stable

for the cocycle flow generated by the equation (4.16). In other words, 0 is a repeller of φλ when
λ ∈ I+λ0

(η′) and repels a neighborhood of 0 in Xα
c . This implies that 0 /∈ Aλ(·), λ ∈ I+λ0

(η′).
The proof is complete.
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We are now in position to give and prove the main result of this paper.

Theorem 4.7. Under the assumptions (F1), (F2) and (F3), the cocycle semiflow ϕλ bifurcates from
(0, λ0) an invariant compact set Bλ(·) for λ > λ0, and for each p ∈ P,

lim
λ→λ+

0

HX(Bλ(p), {0}) = 0. (4.19)

Proof. Let Aλ(·) be the bifurcated attractor obtained in Theorem 4.6. Define Bλ(·) by

Bλ(p) = {y + ξλ
p(y) : y ∈ Aλ(p)}, p ∈ H. (4.20)

We know from Theorem 4.6 that 0 /∈ Bλ(·) and Bλ(·) ⊂Mλ
loc(·). Based on the compactness

of Aλ(p) and the continuity of ξλ
p(y) in y, we can directly derive the compactness of Bλ(p). So

Bλ(·) is compact.
We claim that Bλ(·) is invariant under ϕλ. Indeed, let p ∈ P and y + ξλ

p(y) ∈ Bλ(p). Since
φλ(t, p)y ∈ Aλ(θt p), t ≥ 0, by the invariance ofMλ

loc(·), we have

ϕλ(t, p)(y + ξλ
p(y)) = φλ(t, p)y + ξλ

θt p(φλ(t, p)y) ∈ Bλ(θt p),

which shows
ϕλ(t, p)Bλ(p) ⊂ Bλ(θt p), t ≥ 0.

On the other hand, for any y + ξλ
θt p(y) ∈ Bλ(θt p), t ≥ 0. Using the invariance of Aλ(·), there

is a y′ ∈ Aλ(p) such that y = φλ(t, p)y′. Then

y + ξλ
θt p(y) = φλ(t, p)y′ + ξλ

θt p(φλ(t, p)y′)

= ϕλ(t, p)(y′ + ξλ
θt p(y

′)) ∈ ϕ(t, p)Bλ(p),

which shows
Bλ(θt p) ⊂ ϕλ(t, p)Bλ(p), t ≥ 0.

Therefore Bλ(·) is invariant under ϕλ.
Finally, (4.19) is an immediately consequence of (4.15) and (4.7).

We now give a result which parallels Theorem 4.7.

Corollary 4.8. Let the assumptions (F1), (F2), (F3) hold, but replace (4.3) by the assumption that

( f (t, u), u) ≥ β · κ(u).

Then the cocycle semiflow ϕλ bifurcates from (0, λ0) an invariant compact set Bλ(·) for λ < λ0, and
for each p ∈ P,

lim
λ→λ−0

HX(Bλ(p), {0}) = 0. (4.21)

Proof. Let λ ∈ Iλ0(η/8). Consider the following equation

zt − (λ0 − λ)z = −p(−t, z + ξλ
θ−t p(z)), z ∈ BXα

c
($), p ∈ H. (4.22)

Denote by φ−λ be the cocycle flow generated by (4.22). Then φ−λ be the inverse flow of φλ.
Repeating the argument of Lemma 4.4, Lemma 4.5 and Theorem 4.6 (replacing φλ by φ−λ )

to show φ−λ bifurcates from (0, λ0) a pullback attractor Rλ(·) for λ < λ0, and

lim
λ→λ−0

HXα
c
(Rλ(p), {0}) = 0.

It is clear that Rλ(·) is also an invariant set of φλ. Define a set Bλ(·) by

Bλ(p) = {y + ξλ
p(y) : y ∈ Rλ(p)}, p ∈ H.

Similar to Theorem 4.7, we can show Bλ(·) is an invariant set of ϕλ and (4.21) holds.
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5 An example

Consider the nonautonomous system

{
ut − ∆u = λu± h(t)u3, t > 0, x ∈ Ω;

u = 0, t > 0, x ∈ ∂Ω,
(5.1)

where Ω is a bounded domain in R3 with smooth boundary, h is a function such that h(t) ≥
δ > 0 for some δ > 0.

Denote by A the operator −∆ associated with the homogeneous Dirichlet boundary con-
dition. Then A is a sectorial operator on X = L2(Ω) with compact resolvent, and D(A) =

H2(Ω)
⋂

H1
0(Ω). Note that A has eigenvalues 0 < µ1 < µ2 < · · · < µk < · · · . Denote

V = H1
0(Ω). By (·, ·) and | · | we denote the usual inner product and norm on H, respectively.

The inner product and norm on V, denoted by ((·, ·)) and ‖ · ‖, respectively, are defined as

((u, v)) =
∫

Ω
∇u · ∇vdx, ‖u‖ =

(∫
Ω
|∇u|2dx

)1/2

for u, v ∈ V.
The system (5.1) can be written into an abstract equation on X:

ut + Au = λu± h(t)u3.

Define the hull H := H[h(·)u3]. By the assumption on h, it is clear that

(p(t, u), u) ≥ δ
∫

Ω
u4dx, p ∈ H.

Consider the cocycle system:

ut + Au = λu± p(t, u), p ∈ H. (5.2)

Denote ϕ±λ := ϕ±λ (t, p)u the cocycle semiflow on H1
0(Ω) driven by the base flow (translation

group) θ on H.
Since all the hypotheses in the main theorem above are fulfilled, we obtain some interesting

results concerning the dynamics of the perturbed system. In particular,

Theorem 5.1. SupposeH is compact. Then the cocycle semiflow ϕ−λ (resp. ϕ+
λ ) bifurcates from (0, µk),

k = 1, 2, · · · an invariant compact set B−λ (·) for λ > λ0 (resp. B+
λ (·) for λ < λ0) and for each p ∈ P,

lim
λ→λ+

0

HX(B−λ (p), {0}) = 0.(
resp. lim

λ→λ−0

HX(B+
λ (p), {0}) = 0.

)
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6 Appendixes

6.1 Relationship between the pullback attraction of ϕ and the attraction of Φ

Proof of Proposition 2.4. Necessity: By the compactness of P, one finds that

lim
t→∞

HY (Φ(t)B, P× KP) = lim
t→∞

HX (ϕ(t, p)B(p), KP)

≤ lim
t→∞

sup
p∈P

HX (ϕ(t, p)B(p), KP)

= lim
t→∞

sup
p∈P

HX (ϕ(t, θ−t p)B(θ−t p), KP)

= 0.

This means the compact set P× KP attracts B through Φ. Therefore the omega-limit set ω(B)

of B exists and attracts B.
In the following, we prove ω(B) ⊂ K, which completes the necessity. For this purpose,

define a nonautonomous set B̃(·) as follows

B̃(p) :=
⋃
s≥0

ϕ(s, θ−s p)B(θ−s p), p ∈ P.

It is clear that B(·) ⊂ B̃(·). We first say B̃(·) is forward invariant. Indeed, for any t ≥ 0 and
p ∈ P,

ϕ(t, p)B̃(p) = ϕ(t, p)
⋃
s≥0

ϕ(s, θ−s p)B(θ−s p)

⊂
⋃
s≥0

ϕ(t, p) ◦ ϕ(s, θ−s p)B(θ−s p)

=
⋃
s≥0

ϕ(t + s, θ−(t+s) ◦ θt p)B(θ−(t+s) ◦ θt p)

⊂
⋃
s≥0

ϕ(s, θ−s ◦ θt p)B(θ−s ◦ θt p) = B̃(θt p).

(6.1)

So B̃(·) is forward invariant, which implies the omega-limit set ω(B̃)(·) of B̃(·) is the maximal
invariant set in B̃(·). Furthermore, for any p ∈ P,

ω(B̃)(p) =
⋂

τ≥0

⋃
t≥τ

ϕ(t, θ−t p)B̃(θ−t p)

=
⋂

τ≥0

⋃
t≥τ

ϕ(t, θ−t p)
⋃
s≥0

ϕ(s, θ−(s+t)p)B(θ−(s+t)p)

=
⋂

τ≥0

⋃
t≥τ

ϕ(t, θ−t p)
⋃
s≥0

ϕ(s, θ−(s+t)p)B(θ−(s+t)p)

=
⋂

τ≥0

⋃
t≥τ

⋃
s≥0

ϕ(t, θ−t p) ◦ ϕ(s, θ−(s+t)p)B(θ−(s+t)p)

=
⋂

τ≥0

⋃
t≥τ

⋃
s≥0

ϕ(t + s, θ−(s+t)p)B(θ−(s+t)p)

=
⋂

τ≥0

⋃
t≥τ

ϕ(t, θ−t p)B(θ−t p)

= ω(B)(p),
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where the third “=” holds since for each fixed t ≥ 0 and p ∈ P, ϕ(t, θ−t p) is a continuous
map on X. It follows that ω(B)(·) is the maximal forward invariant set in B̃(·). Therefore
C :=

⋃
p∈P

(
{p} × ω(B)(p)

)
is the maximal invariant set in B̃ :=

⋃
p∈P

(
{p} × B̃(p)

)
. By the

forward invariance of B̃(·),

ϕ(t)B̃ = ϕ(t)
⋃
p∈P

(
{p} × B̃(p)

)
⊂
⋃
p∈P

ϕ(t)
(
{p} × B̃(p)

)
=
⋃
p∈P

(
{θt p} × ϕ(t, p)B̃(p)

)
⊂ (by (6.1)) ⊂

⋃
p∈P

(
{θt p} × B̃(θt p)

)
= B̃, t ≥ 0,

i.e. B̃ is positively invariant under ϕ. Then ω(B̃) is the maximal invariant set in B̃. Recall that
C is also the maximal invariant set in B̃, we have

ω(B) ⊂ ω(B̃) = C.

Finally, by the assumption that K(·) attracts B(·), one knows that ω(B)(·) ⊂ K(·), and thus
C ⊂ K, which shows

ω(B) ⊂ K.

Sufficiency: In a very similar way as above, we can prove the sufficiency.
By the compactness of P,

lim
t→∞

HX (ϕ(t, θ−t p)B(θ−t p), KP)] ≤ lim
t→∞

sup
p∈P

HX (ϕ(t, p)B(p), KP)

= lim
t→∞

sup
p∈P

HY (Φ(t)B, P× KP)

= lim
t→∞

HY (Φ(t)B, P× KP)

= 0,

which implies ω(B)(·) exists and pullback attracts B(·).
To complete the proof, it suffices to show ω(B)(·) ⊂ K(·). We first define a set

B̂ =
⋃
s≥0

Φ(s)B.

Then B̂ is positively invariant and
ω(B̂) = ω(B).

This implies that Ω(B) is the maximal invariant set in B̂. Write ω(B) :=
⋃

p∈P{p}×C(p), then
C(·) is the maximal invariant set in B̂(·), where B̂(·) is the set defined by B̂ :=

⋃
p∈P{p}× B̂(p).

By the positive invariance of B̂, one also knows that B̂(·) is forward invariant. This implies
ΩB̂(·) is the maximal invariant set in B̂(·). We then have that ω(B)(·) ⊂ ω(B̂)(·) = C(·). We
learn from the condition ω(B) ⊂ K that C(·) ⊂ K(·). In summary, ω(B)(·) ⊂ K(·), which
completes the sufficiency. �
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6.2 Construction of local invariant manifold

Let M > 0. For µ ≥ 0, define a Banach space as

Xµ =

{
u ∈ C(R; Xα) : sup

t∈R

e−µ|t|‖x(t)‖α < M

}
,

which is equipped with the norm ‖ · ‖Xµ
,

‖x‖Xµ
= sup

t∈R

e−µ|t|‖x(t)‖α, ∀ x ∈ Xµ.

Let Aλ = A− λ. Write σ(Aλ) = σ− ∪ σc ∪ σ+, where

σc = {λ0 − λ},

σ− = σ(Aλ) ∩ {Re λ < 0}, σ+ = σ(Aλ) ∩ {Re λ > 0}.

According to the spectral decomposition, the space X has a direct sum decomposition: X =

X− ⊕ Xc ⊕ X+. Denote X± := X−
⋃

X+. Note that each Xi, i = −,+,±, c is independent of λ.
Let

Πi : X → Xi, i = −,+,±, c

be the projection from X to Xi. Denote Aλ
i = Aλ|Xi . By the assumption (F2), we deduce that

if λ ∈ (λ0 − η/4, λ0 + η/4) then for α ∈ [0, 1),

‖Aαe−Aλ
−t‖ ≤ e

3η
4 t, ‖e−Aλ

−t‖ ≤ e−
3η
4 t, t ≤ 0, (6.2)

‖Aαe−Aλ
+tΠ+A−α‖ ≤ e−

3η
4 t, ‖Aαe−Aλ

+t‖ ≤ t−αe−
3η
4 t, t > 0, (6.3)

‖Aαe−Aλ
c t‖ ≤ e

η
4 |t|, ‖e−Aλ

c t‖ ≤ e
η
4 |t|, t ∈ R. (6.4)

Proof of Proposition 4.3. The proof of the existence result for a local invariant manifold is an
adaptation of the corresponding result in Chicone and Latushkin [9]. Here we give the details
for completeness and the reader’s convenience. The main aim of the proof is to show the
Lipschitz continuity of ξλ

p(y) in λ and y, respectively.
Let χ : R→ R be a smooth function such that

χ(z) =

1, |z| ≤ 1/2;

0, |z| ≥ 1.

For ρ > 0, one can then define a smooth function such that

pρ(t, u) = χ

(
‖u‖α

ρ

)
p(t, u).

Select suitable χ such that

‖pρ(t, u)− pρ(t, v)‖ ≤ k(ρ)‖u− v‖, (6.5)

where k(ρ) is the local Lipschitz constant of f given in (4.4). Instead of (4.5), we consider the
truncated system

ut + Au = λu + pρ(t, u), p ∈ H. (6.6)
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Suppose that ρ is so small that

Mρ := k(ρ)
∫ ∞

0

(
2 + τ−α

)
e−

η
4 τdτ < 1. (6.7)

Let u ∈ Xη/2. By simple computations, we know that u is the solution of (6.6) if and only
if it solves the integral equation

u(t) = e−Aλ
c tΠcu(0) +

∫ t

0
e−Aλ

c (t−τ)Πc pρ(τ, u(τ))dτ

+
∫ t

−∞
e−Aλ

+(t−τ)Π+pρ(τ, u(τ))dτ

−
∫ ∞

t
e−Aλ

−(t−τ)Π−pρ(τ, u(τ))dτ.

(6.8)

Take a $̃ > 0 small enough so that

$̃ <
(
1−Mρ

)
M. (6.9)

Let p ∈ H and λ ∈ Iλ0(η/8) be fixed. For each y ∈ BXα
c
($̃), one can use the righthand side of

equation (6.8) to define a contraction mapping T := Ty on Xη/2 as follows:

T u(t) = e−Aλ
c ty +

∫ t

0
e−Aλ

c (t−τ)Πc pρ(τ, u(τ))dτ

+
∫ t

−∞
e−Aλ

+(t−τ)Π+pρ(τ, u(τ))dτ

−
∫ ∞

t
e−Aλ

−(t−τ)Π−pρ(τ, u(τ))dτ.

We first verify that T maps Xη/2 into itself.
For notational convenience, we write

0∧ t = min{0, t}, 0∨ t = max{0, t}, for t ∈ R.

Let u ∈ Xη/2. By (6.2)–(6.4) and (6.5) we have

‖T u(t)‖α ≤ e
η
4 |t|‖y‖α +

∫ 0∨t

0∧t
e

η
4 |t−τ|k(ρ)‖u(τ)‖αdτ

+
∫ t

−∞
(t− τ)−αe−

3η
4 (t−τ)k(ρ)‖u(τ)‖αdτ

+
∫ ∞

t
e

3η
4 (t−τ)k(ρ)‖u(τ)‖αdτ.

(6.10)

It is trivial to verify that

e−
η
2 |t|
∫ 0∨t

0∧t
e

η
4 |t−τ|k(ρ)‖u(τ)‖αdτ =

∫ 0∨t

0∧t
e−

η
4 |t−τ|[e− η

2 |τ|k(ρ)‖u(τ)‖α

]
dτ. (6.11)

Observing that

e−
η
2 |t| = e−

η
2 |(t−τ)+τ| ≤ e

η
2 |t−τ|e−

η
2 |τ|,
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by (6.9), (6.10) and (6.11) we find that

e−
η
2 |t|‖T x(t)‖α ≤ e−

η
4 |t|‖y‖α +

∫ 0∨t

0∧t
e−

η
4 |t−τ|[e− η

2 |τ|k(ρ)‖u(τ)‖α

]
dτ

+
∫ t

−∞
(t− τ)−αe

η
2 |t−τ|e−

3η
4 (t−τ)

[
e−

η
2 |τ|k(ρ)‖u(τ)‖α

]
dτ

+
∫ ∞

t
e

η
2 |t−τ|e

3η
4 (t−τ)

[
e−

η
2 |τ|k(ρ)‖u(τ)‖α

]
dτ

= e−
η
4 |t|‖y‖α +

∫ 0∨t

0∧t
e−

η
4 |t−τ|[e− η

2 |τ|k(ρ)‖u(τ)‖α

]
dτ

+
∫ t

−∞
(t− τ)−αe−

η
4 (t−τ)

[
e−

η
2 |τ|k(ρ)‖u(τ)‖α

]
dτ

+
∫ ∞

t
e

η
4 (t−τ)

[
e−

η
2 |τ|k(ρ)‖u(τ)‖α

]
dτ

≤ ‖y‖α + Mρ‖u‖Xη/2 < M, ∀ t ∈ R.

(6.12)

Hence T u ∈ Xη/2.
Next, we check that T is contractive. Indeed, in a quite similar fashion as above, it can be

shown that for any u, u′ ∈ Xη/2,

e−
η
2 |t|‖T u(t)− T u′(t)‖α ≤ k(ρ)

∫ 0∨t

0∧t
e−

η
4 |t−τ|

(
e−

η
2 |τ|‖u(τ)− u′(τ)‖α

)
dτ

+ k(ρ)
∫ t

−∞
(t− τ)−αe−

η
4 (t−τ)

(
e−

η
2 |τ|‖u(τ)− u′(τ)‖α

)
dτ

+ k(ρ)
∫ ∞

t
e

η
4 (t−τ)

(
e−

η
2 |τ|‖u(τ)− u′(τ)‖α

)
dτ

≤
(

k(ρ)
∫ ∞

0

(
2 + τ−α

)
e−

η
4 τdτ

)
‖u− u′‖Uη/2

:= Mρ‖u− u′‖Xη/2 , ∀ t ∈ R.

(6.13)

Thus

‖T u− T u′‖Xη/2 ≤ Mρ‖u− u′‖Xη/2 .

The conditon (6.7) then asserts that T is contractive.
Thanks to the Banach fixed-point theorem, T has a unique fixed point γ

y
p,λ ∈ Xη/2 which

is precisely a full solution of (4.5) with Πcγ
y
p,λ(0) = y and solves the integral equation

γ
y
p,λ(t) = e−Aλ

c ty +
∫ t

0
e−Aλ

c (t−τ)Πc pρ(τ, γ
y
p,λ(τ))dτ

+
∫ t

−∞
e−Aλ

+(t−τ)Π+pρ(τ, γ
y
p,λ(τ))dτ

−
∫ ∞

t
e−Aλ

−(t−τ)Π−pρ(τ, γ
y
p,λ(τ))dτ.

(6.14)
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For y, z ∈ BXα
c
($̃) and t ∈ R, similarly to (6.13), by (6.14) we have

e−
η
2 |t|‖γy

p,λ(t)− γz
p,λ(t)‖α

≤ e−
η
4 |t|‖y− z‖α + k(ρ)

∫ 0∨t

0∧t
e−

η
4 |t−τ|(e− η

2 |τ|‖γy
p,λ(τ)− γz

p,λ(τ)‖α

)
dτ

+ k(ρ)
∫ t

−∞
(t− τ)−αe−

η
4 (t−τ)

(
e−

η
2 |τ|‖γy

p,λ(τ)− γz
p,λ(τ)‖α

)
dτ

+ k(ρ)
∫ ∞

t
e

η
4 (t−τ)

(
e−

η
2 |τ|‖γy

p,λ(τ)− γz
p,λ(τ)‖α

)
dτ

≤‖y− z‖α + Mρ‖γy
p,λ − γz

p,λ‖Xη/2 .

Hence
‖γy

p,λ − γz
p,λ‖Xη/2 ≤

M
1−Mρ

‖y− z‖α,

which implies that

‖γy
p,λ(0)− γz

p,λ(0)‖α ≤
M

1−Mρ
‖y− z‖α. (6.15)

For each p ∈ H and λ ∈ Iλ0(η/8), define a mapping from Xα
c to Xα

us as

ξλ
p(y) :=

∫ 0

−∞
eAλ

+τΠ+pρ(τ, γ
y
p,λ(τ))dτ

−
∫ ∞

0
eAλ
−τΠ−pρ(τ, γ

y
p,λ(τ))dτ, y ∈ BXα

c
($̃).

(6.16)

Setting t = 0 in (6.14) leads to

γ
y
p,λ(0) = y + ξλ

p(y), y ∈ BXα
c
($̃). (6.17)

We conclude from (6.15), (6.16) and (6.17) that ξλ
p(·) : BXα

c
($̃) → Xα

us is a Lipschitz continuous
mapping uniformly on p and λ. More specifically, let

L1 :=
M

1−Mρ
+ 1.

Then for each y, z ∈ BXα
c
($̃),

‖ξλ
p(y)− ξλ

p(z)‖α ≤ ‖γy
p,λ(0)− γz

p,λ(0)‖α + ‖y− z‖α

≤ L1‖y− z‖α.

Since γ
y
p,λ ≡ 0 is a full solution of (6.6), we have ξλ

p(0) ≡ 0, and thus

lim
‖y‖α→0

‖ξλ
p(y)‖α = 0

uniformly on p ∈ H and λ ∈ Iλ0(η/8).
Take a sufficiently small $ > 0 such that

‖y + ξλ
p(y)‖ ≤

ρ

2
, y ∈ BXα

c
($).

Define for each p ∈ H the p-section as

Mλ
loc(p) = {y + ξλ

p(y) : y ∈ BXα
c
($)}.
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By the definition of pρ, Mλ
loc(·) := {Mλ

loc(p)}p∈H is a local invariant manifold of the cocycle
semiflow ϕλ, λ ∈ Iλ0(η/8) generated by (4.5). And for each p ∈ H, the section Mλ

loc(p) is
homeomorphic to BXα

c
($).

In the last part, we show ξ ·p(y) : Iλ0(η/8)→ Xα
us is Lipschitz uniformly on y ∈ BXα

c
($) and

p ∈ P. Indeed, for λ1, λ2 ∈ Iλ0(η/8) with λ1 ≤ λ2, we have for t ∈ R that

‖e−Aλ1
c t − e−Aλ2

c t‖ ≤ ‖e−Aλ1
c t‖ ·

∣∣1− e−(λ2−λ1)t
∣∣

≤ e
η
4 |t| ·

∣∣1− e−(λ2−λ1)t
∣∣.

Then for t ∈ R,

e−
η
2 |t|
∫ t

0
‖e−Aλ1

c (t−τ)p(τ, γ
y
p,λ1

(τ))− e−Aλ2
c (t−τ)pρ(τ, γ

y
p,λ2

(τ))‖dτ

≤
∫ t

0
e−

η
4 |t−τ|k1(ρ)

(
e−

η
2 |τ|‖γy

p,λ1
(τ)− γ

y
p,λ2

(τ)‖α

)
dτ

+
∫ t

0
e−

η
4 |t−τ| · k1(ρ)

∣∣1− e−(λ2−λ1)(t−τ)
∣∣ · (e−

η
2 |τ|‖γy

p,λ2
(τ)‖α

)
dτ

≤ k(ρ)
∫ t

0
e−

η
4 |t−τ|

(
e−

η
2 |τ|‖γy

p,λ1
(τ)− γ

y
p,λ2

(τ)‖α

)
dτ

+ k(ρ)M
∫ t

0
e−

η
4 |t−τ|∣∣1− e−(λ2−λ1)(t−τ)

∣∣dτ.

(6.18)

We can apply very similar arguments to get that

e−
η
2 |t|
∫ t

−∞
‖e−Aλ1

s (t−τ)pρ(τ, γ
y
p,λ1

(τ))− e−Aλ2
s (t−τ)pρ(τ, γ

y
p,λ2

(τ))‖dτ

≤ k(ρ)
∫ t

−∞
(t− τ)αe−

η
4 (t−τ)

(
e−

η
2 |τ|‖γy

p,λ1
(τ)− γ

y
p,λ2

(τ)‖α

)
dτ

+ k(ρ)M
∫ t

−∞
(t− τ)αe−

η
4 (t−τ)

∣∣1− e−(λ2−λ1)(t−τ)
∣∣dτ

(6.19)

and

e−
η
2 |t|
∫ ∞

t
‖e−Aλ1

u (t−τ)p(τ, γ
y
p,λ1

(τ))− e−Aλ2
u (t−τ)p(τ, γ

y
p,λ2

(τ))‖dτ

≤ k(ρ)
∫ ∞

t
e

η
4 (t−τ)

(
e−

η
2 |τ|‖γy

p,λ1
(τ)− γ

y
p,λ2

(τ)‖α

)
dτ

+ k(ρ)M
∫ ∞

t
e

η
4 (t−τ)

∣∣1− e−(λ2−λ1)(t−τ)
∣∣dτ.

(6.20)

By (6.18), (6.19) and (6.20), we derive that

e−
η
2 |t|‖γy

p,λ1
(t)− γ

y
p,λ2

(t)‖α

≤ e−
η
2 |t|
∫ t

0
‖e−Aλ1

c (t−τ)p(τ, γ
y
p,λ1

(τ))− e−Aλ2
c (t−τ)p(τ, γ

y
p,λ2

(τ))‖dτ

+ e−
η
2 |t|
∫ t

−∞
‖e−Aλ1

s (t−τ)p(τ, γ
y
p,λ1

(τ))− e−Aλ2
s (t−τ)p(τ, γ

y
p,λ2

(τ))‖dτ

+ e−
η
2 |t|
∫ ∞

t
‖e−Aλ1

u (t−τ)p(τ, γ
y
p,λ1

(τ))− e−Aλ2
u (t−τ)p(τ, γ

y
p,λ2

(τ))‖dτ

≤ k(ρ)
∫ ∞

0
(2 + t−α)e−

η
4 tdt · sup

t∈R

e−
η
2 |t|‖γy

p,λ1
(t)− γ

y
p,λ2

(t)‖α

+ k(ρ)M
∫ ∞

0
(2 + t−α)e−

η
4 t
(

e(λ2−λ1)t − 1
)

dt.

(6.21)
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It follows that

‖ξλ1
p (y)− ξλ2

p (y)‖α = ‖uλ1(0)− uλ2(0)‖α

≤ sup
t∈R

e−
η
2 |t|‖γy

p,λ1
(t)− γ

y
p,λ2

(t)‖α

≤ k1(ρ)M
1−Mρ

∫ ∞

0
(2 + t−α)e−

η
4 t
(

e(λ2−λ1)t − 1
)

dt

≤ k1(ρ)M
1−Mρ

∫ ∞

0
(2 + t−α)t e−[

η
4−(λ2−λ1)]tdt · |λ1 − λ2|,

where the differential mean value is applied to e(λ2−λ1)t − 1 to get the last term. It is clear that
the integral ∫ ∞

0
(2 + t−α)t e−[

η
4−(λ2−λ1)]tdt =

∫ ∞

0
(2t + t1−α) e−[

η
4−(λ2−λ1)]tdt

converges. Therefore
ξλ1

p (y)− ξλ2
p (y)‖ ≤ L2|λ1 − λ2|,

where

L2 :=
k1(ρ)M
1−Mρ

∫ ∞

0
(2t + t1−α) e−[

η
4−(λ2−λ1)]tdt,

and thus ξ ·p(y) is Lipschitz continuous on Iλ0(η/8) uniformly on p ∈ P and y ∈ BXα
c
($).
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