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1 Introduction

We consider the following p-biharmomic equations with clamped Dirichlet boundary condi-
tions {

42
pu = µ|u|r−2u

|x|s + f (x, u) in Ω,

u = ∂u
∂n = 0 on ∂Ω

(PD)

and p-biharmomic equations with hinged Navier boundary conditions{
42

pu = µ|u|r−2u
|x|s + f (x, u) in Ω,

u = 4u = 0 on ∂Ω
(PNa)

where Ω ⊂ RN(N ≥ 3) is a smooth bounded domain, 0 ∈ Ω, 2 < 2p < N, p ≤ r < p∗(s) =
(N−s)p
N−2p ≤ p∗(0) := p∗, µ ≥ 0.

Since Lazer and McKenna [11] provided a model for discussing the traveling waves in sus-
pension bridges, existence and multiple of solutions for nonlinear biharmonic equations and
p-biharmonic equations have been studied under the framework of nonlinear functional anal-
ysis. Bhakta [4] studied existence, multiplicity and qualitative properties of entire solutions
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of the p-biharmonic equations with Hardy term. Huang and Liu [16] obtained sign-changing
solutions for p-biharmonic equations with Hardy potential. Bueno et al. [5] get multiplicity
of solutions for p-biharmonic problems with with concave-convex nonlinearities. Wang and
Zhao [25] studied the existence and multiplicity of solutions of p-biharmonic type equations
with critical growth. On this topic, we also refer to [3, 6, 22, 26] and references therein.

Ghoussoub and Yuan [14] obtained multiple solutions for −4pu = µ |u|
r−2u
|x|s + λ|u|q−2u

with homogeneous Dirichlet boundary conditions in W1,p
0 (Ω). Perera and Zou [23] studied

the multiplicity, and bifurcation results for p-Laplacian problems involving critical Hardy–
Sobolev exponents in W1,p

0 (Ω). One of the starting points of this paper is to generalize the
part results in [14, 23] to the fourth-order elliptic equation.

Definition 1.1. The function u in W2,p
0 (Ω) is called a weak solution of Problem (PD), if∫

Ω

[
|4u|p−24u4φ− µ|u|r−2uφ

|x|s − f (x, u)φ
]

dx = 0 for any φ ∈W2,p
0 (Ω);

u in W1,p
0 (Ω) ∩W2,p(Ω) is said to be a weak solution of Problem (PNa), in case∫
Ω

[
|4u|p−24u4φ− µ|u|r−2uφ

|x|s − f (x, u)φ
]

dx = 0, ∀φ ∈W1,p
0 (Ω) ∩W2,p(Ω).

Since Problem (PNa) is handled similarly to Problem (PD), we discuss the problem (PD)
and only give a simple explanation for Problem (PNa).

The starting point for the variational methods of the questions (PD) and (PNa) is the
following Sobolev–Hardy inequality (we refer to Lemma 2.2 in Section 2). Let 2 < 2p < N,
r ≤ p∗(s), then (∫

Ω

|u|r
|x|s dx

) 1
r

.
(∫

Ω
|4u|pdx

) 1
p

, ∀u ∈ C∞
0 (Ω \ {0})

Therefore, we may define

µs,r(Ω) = inf
u∈W2,p

0 (Ω)

u 6=0

∫
Ω |4u|pdx

(
∫

Ω
|u|r
|x|s dx)

p
r

and

µ̃s,r(Ω) = inf
u∈W1,p

0 (Ω)∩W2,p(Ω)

u 6=0

∫
Ω |4u|pdx

(
∫

Ω
|u|r
|x|s dx)

p
r

.

We replace |u|q−2u in [14,23] by a more general nonlinear perturbation f (x, t), and we im-
pose naturally some structural conditions on the nonlinear term f (x, t), so that the associated
Euler-Lagrange functional is expected to have some mountain pass geometry and compact-
ness results. Specifically, we consider the following assumptions:

f 1) f : Ω×R→ R is continuous and f (x, 0) = 0 for all x ∈ Ω;

f 2) lim|t|→+∞
F(x,t)

tp = +∞ uniformly on x ∈ Ω, where F(x, t) =
∫ t

0 f (x, τ)dτ;

f 3) lim sup|t|→0
pF(x,t)
|t|p < λ1(or λ̃1) uniformly on x ∈ Ω, where λ1 > 0 is the first eigen-

value of the operator 42
p in Ω with homogeneous Dirichlet boundary conditions (or

homogeneous Navier boundary conditions);
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(SCPI) f (x, t) has subcritical polynomial growth, i.e.

lim
|t|→+∞|

f (x, t)
|t|p∗−1 = 0.

The critical point theory is based on the existence of some linking structure and defor-
mation lemmas. To obtain such deformation results, some compactness condition of the
functional is necessary. In order to get compactness, the standard approach is to apply the
Ambrosetti–Rabinowitz conditions ((A–R) for short) to f (x, t) and F(x, t) due to Ambrosetti–
Rabinowitz [1]:

(A–R) ∃ R0 > 0, θ > p such that 0 < θF(x, s) ≤ s f (x, s) for any (|s|, x) in [R0,+∞)×Ω.

The main role of (A–R) condition is to ensure the boundedness of Palais–Smale or Cerami
sequence of Euler–Lagrange functional associated to Eq. (PD) and (PNa). But (A–R) condition
is a relatively restrictive eliminating many nonlinearities, for example, f (x, t) = t log t2. The
absence of (A–R) condition in the second order elliptic equation goes back to Costa, Magalhães
[7], Miyagaki, Souto [24], Li, Yang [19] and Liu [20], and was improved by Mugnai and
Papageorgiou [21]. On this topic, we also refer to [2, 8, 13, 17] and references therein. Inspired
by [19, 21], we assume the following conditions (without the (A–R) condition):

f 4) There exist C∗ ≥ 0, θ ≥ 1 such that

H(x, t) ≤ θH(x, τ) + C∗ ∀t, τ ∈ R, 0 < |t| < |τ|, ∀x ∈ Ω,

where H(x, t) = 1
p t f (x, t)− F(x, t).

Theorem 1.2. Assume that f (x, t) satisfies (f1)–(f3) and (SCPI) condition. Then

• Problem (PD) admits at least a nontrivial weak solution u ∈W2,p
0 (Ω);

• Problem (PNa) admits at least a nontrivial weak solution u ∈W1,p
0 (Ω) ∩W2,p(Ω).

For convenience, we first define the Euler–Lagrange functional Iµ as follows:

Iµ(u) =
1
p

∫
Ω
|4u|pdx− µ

r

∫
Ω

|u|r
|x|s dx−

∫
Ω

F(x, u)dx,

where F(x, t) =
∫ t

0 f (x, τ)dτ.
Additionally if we assume that f (x, t) is an odd function in t, then we can prove the

existence of infinitely many weak solutions to Problem (PD) and (PNa). Specifically, we can
get the following results:

Theorem 1.3. Suppose that (f1)–(f3) hold and

f5) there exist a, b > 0 and q ∈ (p, p∗) such that

(SCP) | f (x, t)| ≤ a + b|t|q−1 for any (x, t) ∈ Ω×R;

f6) f (x,−t) = − f (x, t), ∀(x, t) ∈ Ω×R,

in addition, if p = r, then
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• Problem (PD) possesses a sequence of solutions {un} ∈ W2,p
0 (Ω) such that Iµ(un) → +∞

provided 0 ≤ µ < µs,r(Ω);

• Problem (PNa) contains a sequence of solutions {un} ∈W1,p
0 (Ω)∩W2,p(Ω) such that Iµ(un)→

+∞ in case 0 ≤ µ < µ̃s,r(Ω).

This paper is organized as follows: Section 2 is devoted to review some necessary math-
ematical knowledge about function spaces, embedding and associated functional settings. In
Section 3, we gets the existence of solution to Eq. (PD) and (PNa) under g(x, t) with A–R
condition. In Section 4, we obtain the multiplicity of Eq. (PD) and (PNa). Section A is an
appendix.

2 Functional framework

In this paper, W2,p
0 (Ω) and W1,p

0 (Ω) ∩W2,p(Ω) are equipped with norm

‖u‖ =
(∫

Ω
|4u|pdx

) 1
p

,

then W2,p
0 (Ω) and W1,p

0 (Ω) ∩W2,p(Ω) are all Banach space.
Davies [9] extends the Rellich inequality to Lp spaces. But we only need one special case

here.

Lemma 2.1 ([9, Corollary 14]). For any p ∈ (1, N
2 ) and u ∈ C∞

0 (Ω \ {0}), the following inequality

∫
Ω
|4u|pdx ≥

(
(p− 1)N(N − 2p)

p2

)p ∫
Ω

|u|p
|x|2p dx

is established.

Next, we will prove the corresponding Sobolev–Hardy inequality in the space W2,p(Ω).
Our method is derived from the proof method of Lemma 2.1 in [28] and Lemma 3.2 in [14].

Lemma 2.2 (Sobolev–Hardy inequality). Suppose that 2 < 2p < N, then

(1) If 0 < r < p∗(s), there exists a constant C > 0 such that

(∫
Ω

|u|r
|x|s dx

) 1
r

≤ C
(∫

Ω
|4u|pdx

) 1
p

(2.1)

for any u ∈W1,p
0 (Ω) ∩W2,p(Ω).

(2) If p ≤ r < p∗(s), then the map u→ u
|x| sr

is compact from W1,p
0 (Ω) ∩W2,p(Ω) to Lr(Ω).

Proof. (1) When s = 0 or s = 2p, (2.1) is Sobolev’s inequality or Rellich’s inequality, respec-
tively. Since p∗(s) ≥ p, we only need to consider the scenario of 0 < s < 2p. According to
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Rellich’s inequality, Sobolev’s inequality and Hölder’s inequality, we can get∫
Ω

|u|p∗(s)
|x|s dx =

∫
Ω

|u| s
2

|x|s |u|
p∗(s)− s

2 dx

≤
(∫

Ω

|u|p
|x|2p dx

) s
2p
(∫

Ω
|u|p∗dx

) 2p−s
2p

≤
(

p2

(p− 1)N(N − 2p)

) s
2
(∫

Ω
|4u|pdx

) s
2p

S2

(∫
Ω
|4u|pdx

) 2p−s
2p ·

p∗
p

= C1

(∫
Ω
|4u|pdx

) N−s
N−2p

,

where

C1 =

(
p2

(p− 1)N(N − 2p)

) s
2

S2, S2 = inf
u∈W1,p

0 (Ω)∩W2,p(Ω)

u 6=0

∫
Ω |4u|pdx

(
∫

Ω |u|p
∗dx)

p
p∗

is the corresponding optimal Sobolev constant.

(2) Let {un} be a bounded sequence in W1,p
0 (Ω) ∩W2,p(Ω), then there is a convergent subse-

quence of {un} (still represented by {un}) such that

un ⇀ u weakly in W1,p
0 (Ω) ∩W2,p(Ω),

un → u strongly in Lr(Ω), p ≤ r < p∗(s).

On the other hand,∫
Ω

|un − u|r
|x|s dx ≤ C

∫
Bδ(0)

|un − u|r
|x|s dx + C‖un − u‖r

Lr(Ω), where Bδ(0) = B(0, δ).

In the light of Hölder’s inequality, we have∫
Ω

|un − u|r
|x|s dx ≤ C

(∫
Ω
|un − u|p∗dx

) r
p∗
(∫

Bδ(0)
|x|−

p∗s
p∗−r dx

)1− r
p∗

+ C‖un − u‖r
Lr(Ω)

≤ C
(

δ
− p∗s

p∗−r +N
)1− r

p∗

+ C‖un − u‖r
Lr(Ω).

Considering p ≤ r < p∗(s) and N− p∗s
p−r > 0 and let δ→ 0, n→ ∞, we can get immediately

inequalities ∫
Ω

|un − u|r
|x|s dx → 0.

In order to study Eq. (PD) and (PNa), we need to discuss some properties of operator 42
p

on W2,p(Ω) ∩W1,p
0 (Ω).

Proposition 2.3. For any bounded Ω in RN and any p in (1,+∞), 42
p satisfies the following prop-

erties:

1) ([10]) 42
p : W2,p(Ω) ∩W1,p

0 (Ω)→ (W2,p(Ω) ∩W1,p
0 (Ω))∗ is a hemicontinuous operator;

2) 42
p is a bounded continuous and uniformly convex coercive operator;

3) 42
p : W2,p(Ω) ∩W1,p

0 (Ω)→ (W2,p(Ω) ∩W1,p
0 (Ω))∗ is homeomorphic.
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Proof. 2) Obviously, 42
p is bounded continuously coercive. And the strict monotonicity of 42

p
can be derived from the following inequality [15, Lemma 5.1 and Lemma 5.2]:

Let x, y ∈ RN and 〈·, ·〉 is the usual inner product in RN , then

〈|x|p−2x− |y|p−2y, x− y〉 ≥

Cp|x− y|p if p ≥ 2,

Cp
|x−y|2

(|x|+|y|)2−p if 1 < p < 2.
(2.2)

3) Applying the Browder–Minty theorem, 1) and 2), we known that 42
p is surjection. Similar

to [12, Lemma 3.1 (iii)], it is not difficult to prove 42
p is a homeomorphism.

Remark 2.4. If 42
p is an operator from W2,p

0 (Ω) to (W2,p
0 (Ω))∗, Proposition 2.3 is also valid

[18, Proposition 2.1].

Since f (x, t) satisfies the condition (SCPI), Iµ(u) is well-posed on W2,p(Ω) and is C1, the
weak solution to the problem (PD) is the critical point of Iµ(u) in W2,p

0 (Ω). Because the
boundary condition 4u|∂Ω ≡ 0 in Problem (PNa) is not included in natural space W1,p

0 (Ω) ∩
W2,p(Ω), so Problem (PNa) must be considered in another way. Specifically, we need the
regularity of the critical point to Iµ(u) in space W1,p

0 (Ω) ∩W2,p(Ω) to ensure this boundary
condition.

Proposition 2.5 ([26], Proposition 4.7). Suppose that f (x, t) satisfies the condition (SCPI) and
|µ| ≤ µ̃s,r(Ω), every critical point u of Iµ satisfies 4u|∂Ω ≡ 0 in the sense of the trace in W1,p

0 (Ω)

∩W2,p(Ω).

3 Proof of Theorem 1.2

In order to use Theorem A.2 to study Eq. (PD) and (PNa), we need to verify that the functionals
Iµ satisfies the mountain pass geometry structure and compactness conditions.

Lemma 3.1. Let f satisfies conditions (f1)–(f3) and (SCPI). Then the functional Iµ satisfies mountain
pass geometry:

1. Iµ(0) = 0.

2. There exist positive constants ρ and η such that Iµ(u)|∂Bρ
≥ η.

3. There exists e with ‖e‖ > ρ such that Iµ(e) < 0.

Proof. 1. Iµ(0) = 0 is straightforward by the condition (f 1). For 2, it follows from (f 3) and
(SCPI) that there exist C2, λ such that

F(x, t) ≤ 1
p
(λ1 − λ)|t|p + C2|t|p

∗
for any (x, t) in Ω×R.

Considering the Sobolev embedding theorem and Lemma 2.2, we obtain

Iµ(u) =
1
p

∫
Ω
|4u|pdx− µ

r

∫
Ω

|u|r
|x|s dx−

∫
Ω

F(x, u)dx

≥ 1
p

(
1− λ1 − λ

λ1

)
‖u‖p − µ

r
Cr‖u‖r − C2‖u‖p∗

≥ λ

pλ1
‖u‖p − µ

r
(µs,r(Ω))−

r
p ‖u‖r − C2‖u‖p∗ ,
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where C is the constant in Lemma 2.2.
Thanks to λ > 0 , p ≤ r and p < p∗, we may take an enough small positive ρ and a positive

constant η such that Iµ(u)|∂Bρ
≥ η.

Next, we give the proof of 3. According to the condition (f 2), for all M > 0, there is δ > 0
such that F(x, t) > M|t|p for all (x, t) in Ω̄× [−δ, δ]c.

On the other hand, considering the continuity of F, we may get

m := min
(x,t)∈Ω̄×[−δ,δ]

F(x, t) ≤ F(x, 0) = 0.

Therefore, we take M > ‖u‖p

p‖u‖p
Lp

> 0 especially, then there is an A > 0 such that

F(x, t) ≥ M|t|p − A for any (x, t) in Ω̄×R. (3.1)

Hence,

Iµ(tu) =
1
p

∫
Ω
|4tu|pdx− µ

r

∫
Ω

|tu|r
|x|s dx−

∫
Ω

F(x, tu)dx

≤ 1
p
|t|p

∫
Ω
|4u|pdx− µ

r
|t|r

∫
Ω

|u|r
|x|s dx−

∫
Ω
(M|t|p|u|p − A)dx

= |t|p( 1
p
‖u‖p −M‖u‖p

Lp)−
µ

r
|t|r

∫
Ω

|u|r
|x|s dx + A|Ω|.

Thence limt→+∞ Iµ(tu) = −∞.

Lemma 3.2. Assume that f satisfies (f1)–(f4) and (SCPI), then the energy functional Iµ satisfies the
Cerami condition for all c in R.

Proof. Let {un}∞
n be in W2,p

0 (Ω) such that

Iµ (un)→ c

and (
1 + ‖un‖W2,p

0

) ∥∥I′ (un)
∥∥
(W2,p

0 )∗
→ 0,

that is to say,

1
p

∫
Ω
|4un|pdx− µ

r

∫
Ω

|un|r
|x|s dx−

∫
Ω

F(x, un)dx → c, (3.2)

and (
1 + ‖un‖W2,p

0

)
sup
‖ϕ‖=1

∣∣〈I′(un), ϕ〉
∣∣→ 0. (3.3)
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Step 1. The sequence {un} is bounded in W2,p
0 (Ω).

For if not, i.e. ‖un‖ → +∞ as n → +∞. Let vn =: un
‖un‖ , then ‖vn‖ = 1 (Bounded). Hence, up

to a subsequence, vn ⇀ v in W2,p
0 (Ω). Therefore,

vn → v in Lq(Ω), q < p∗,

vn(x)→ v(x) a.e. in Ω,
vn

|x| sr
→ v
|x| sr

in Lr(Ω), r < p∗(s).

We discuss v in two cases.

Case (i): If v 6= 0, then let Ω 6= := {x ∈ Ω : v(x) 6= 0}.

|un(x)| = |vn(x)|‖un‖ → +∞ a.e. in Ω 6=.

Since Iµ(un)→ c, we get Iµ(un)

‖un‖ → 0, i.e.

o(1) =
1
p
− µ

r

∫
Ω

|u|r
|x|s‖un‖p dx−

∫
Ω 6=

F(x, un)

‖un‖p dx−
∫

Ω\Ω 6=

F(x, un)

‖un‖p dx. (3.4)

In accordance to (f 2), we have

F(x, un)

‖un‖p =
F(x, un)

|un|p
· |un|p
‖un‖p =

F(x, un)

|un|p
|vn|p → +∞ a.e. in Ω 6= as n→ +∞,

which implies
∫

Ω 6=
F(x,un)
‖un‖p dx → +∞.

We claim that ∫
Ω\Ω 6=

F (x, un)

‖un‖p dx > − K
‖un‖p

∣∣Ω \Ω 6=
∣∣ (3.5)

for some positive constant K.
In fact, from the condition (f 2), we get lim|t|→+∞ F(x, t) = +∞ uniformly in x ∈ Ω̄, which

implies
F(x, t) ≥ −K for any (x, t) in Ω̄×R. (3.6)

(The proof for (3.6) is similar to the process of deriving the inequality (3.1) by the condition
(f 2). These details are omitted and left to the reader.)

From the inequality (3.6), we may obtain the inequality (3.5).
Since ‖un‖ → +∞, combining (3.5) and (3.6), we get

Iµ(un)

‖u‖p =
1
p
− µ

r‖u‖p

∫
Ω

|u|r
|x|s dx−

∫
Ω 6=

F(x, un)

‖un‖p dx−
∫

Ω\Ω 6=

F (x, un)

‖un‖p dx

≤ 1
p
−
∫

Ω 6=

F(x, un)

‖un‖p dx−
∫

Ω\Ω 6=

F (x, un)

‖un‖p dx

→ −∞,

which contradicts inequality (3.4).

Case (ii): When v ≡ 0. Because t 7→ Iµ(tun) is continuous in [0, 1], thence for all n in N there
exists tn in [0, 1] such that

Iµ(tnun) = max
t∈[0,1]

Iµ(tun). (3.7)
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According to the condition (SCPI), for any R > 0, there exists C3 > 0 such that

F(x, t) ≤ C3|t|+
|t|p∗

Rp∗ for all (x, t) in Ω×R.

Owing to R
‖un‖ in [0, 1] for n large enough, we get

Iµ (tnun) = max
t∈[0,1]

Iµ (tun) ≥ Iµ

(
R

un

‖un‖

)
= Iµ (Rvn)

and

Iµ (Rvn) =
1
p

∫
Ω
|4Rvn|pdx− µ

r

∫
Ω

|Rvn|r
|x|s dx−

∫
Ω

F(x, Rvn)dx

≥ 1
p

Rp − µ

r
Rr
∫

Ω

|vn|r
|x|s dx− C3R

∫
Ω
|vn|dx−

∫
Ω
|vn|p

∗
dx. (3.8)

Due to vn ⇀ v ≡ 0 in W2,p
0 (Ω), then

∫
Ω |vn(x)|dx → 0,

∫
Ω
|vn|r
|x|s dx → 0 and

∫
Ω |vn(x)|p∗ dx <

C(Ω). Therefore, let n→ +∞ in (3.8), and then let R→ +∞, we have

Iµ (tnun) ≥ Iµ (Rvn)→ +∞ as n→ +∞. (3.9)

In addition, it is not difficult to infer that 0 < tn < 1 from Iµ(0) = 0 and Iµ(un)→ c < +∞ as
n→ +∞.

Furthermore, in the light of (3.7), we have d
dt (Iµ(tun))|t=tn = 0. Therefore,

〈I′µ(tnun), tnun〉 = tn〈I′µ(tnun), un〉

= tn
d

dτ
(Iµ(tnun + τun))|τ=0

= tn
d

dτ
(Iµ(tun + τun))|τ=0,t=tn

= tn
d
dt
(Iµ(tun + τun))|t=tn,τ=0

= tn
d
dt
(Iµ(tun))|t=tn = 0.

And considering the condition (f 4), we have

1
θ

Iµ(tnun) =
1
θ

(
Iµ(tnun)−

1
p
〈I′µ(tnun), tnun〉

)
=

1
θ

µ

(
1
p
− 1

r

)
|tn|r

∫
Ω

|un|r
|x|s dx

+
1
θ

∫
Ω

(
1
p

f (x, tnun) tnun − F (x, tnun)

)
dx

=
1
θ

µ

(
1
p
− 1

r

)
|tn|r

∫
Ω

|un|r
|x|s dx +

1
θ

∫
Ω

H(x, tnun)dx

=
1
θ

µ

(
1
p
− 1

r

)
|tn|r

∫
Ω

|un|r
|x|s dx +

1
θ

∫
Ω
(θH(x, un) + C∗)dx

= µ

(
1
p
− 1

r

)(
|tn|r

θ
− 1
) ∫

Ω

|un|r
|x|s dx

+ Iµ(un)−
1
p
〈I′µ(un), un〉+

C∗
θ
|Ω|
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≤ Iµ(un)−
1
p
〈I′µ(un), un〉+

C∗
θ
|Ω|

→ c +
C∗
θ
|Ω|.

Thence,
lim sup

n→+∞
Iµ(tnun) ≤ θc + C∗|Ω| < +∞,

which is contradictive to (3.7).

Step 2. {un} admits a convergent subsequence in W2,p
0 (Ω).

Since {un} is bounded in the reflexive Bananch space W2,p
0 (Ω), up to a subsequence, un ⇀ u

in W2,p
0 (Ω). Therefore,

un → u in Lq(Ω), q < p∗,

un(x)→ u(x) a.e. in Ω,
un

|x| sr
→ u
|x| sr

in Lr(Ω), r < p∗(s),

|un|r−2 un

|x|s ⇀
|u|r−2u
|x|s weakly in Lr(Ω), r < p∗(s).

According to the condition (SCPI), for every ε > 0, there is a C(ε) > 0 such that | f (x, t)| ≤
C(ε) + ε|t|p∗−1 for any (x, t) in Ω×R. Therefore, we get∣∣∣∣∫Ω

f (x, un) (un − u)dx
∣∣∣∣ ≤ C(ε)

∫
Ω
|un − u|dx + ε

∫
Ω
|un − u| |un|p

∗−1 dx

≤ C(ε)
∫

Ω
|un − u|dx

+ ε

(∫
Ω
|un|p

∗
dx
) p∗−1

p∗
(∫

Ω
|un − u|p

∗
dx
) 1

p∗

≤ C(ε)
∫

Ω
|un − u|dx + εC(Ω).

In line with un ⇀ u in W2,p
0 (Ω),

∫
Ω |un − u|dx → 0, and the arbitrariness of ε, we may infer

that ∫
Ω

f (x, un) (un − u)dx → 0.

On the other hand, ∫
Ω

|un|r−2un

|x|s (un − u)dx → 0.

Hence,

0← 〈I′un
, un − u〉

=
∫

Ω
|4un|p−24un(4un −4u)dx

− µ
∫

Ω

|un|r−2un

|x|s (un − u)dx−
∫

Ω
f (x, un) (un − u)dx

=
∫

Ω
|4un|p−24un(4un −4u)dx + o(1).
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Therefore, ∫
Ω
|4un|p−24un(4un −4u)dx → 0,

which implies that u → u strongly in W2,p
0 (Ω), that is to say, the functional Iµ satisfies the

Cerami condition for any c in R.

Proof of Theorem 1.2. According to Theorem A.2, Lemma 3.1 and Lemma 3.2, we know that
Problem (PD) admits a nontrivial weak solution in W2,p

0 (Ω).
From Proposition 2.5, we obtain Lemma 3.1 and Lemma 3.2 when W2,p

0 (Ω) is replaced by
W1,p

0 (Ω) ∩W2,p(Ω). Hence Problem (PNa) has also a nontrivial weak solution in W1,p
0 (Ω) ∩

W2,p(Ω).

4 Proof of Theorem 1.3

In this section, we apply Theorem A.3 to prove Theorem 1.3. First of all, because W2,p
0 (Ω) is a

Banach space, we formulate Yk and Zk as in (A.1). The condition (f 6) means Iµ(−u) = −Iµ(u).
Since the condition (SCP) indicates the condition (SCPI), Iµ contents the Cerami condition for
any c in R under Lemma 3.2. Here, we mimic part of the proof of Theorem 3.7 in [27] and
Theorem 1.2 in [2].

In order to estimate A6) in Theorem 1.3, we need the following lemma.

Lemma 4.1.
βk = sup

u∈Zk
‖u‖=1

‖u‖Lq → 0 as k→ ∞

provided 1 ≤ q < p∗.

Proof. Zk+1 =
⊕

j≥k+1 Xj ⊂
⊕

j≥k Xj = Zk suggests 0 ≤ βk+1 ≤ βk, thence limk→+∞ βk = b ≥ 0.
According to the definition of supper bound, for any k > 0, there exists uk in Zk with ‖u‖Lq >
βk
2 on ∂B1(0) in W2,p

0 (Ω). Since W2,p
0 (Ω) is a real, reflexive, and separable Banach space, we

can extract a subsequence of {uk} (still denoted for {uk}) such that uk ⇀ u weakly in W2,p
0 (Ω),

i.e. 〈uk, ϕ〉 → 〈u, ϕ〉 for any ϕ in (W2,p
0 (Ω))∗.

Since each Zk is convex and closed, hence it is closed for the weak topology, which implies

u ∈
+∞⋂
k=1

Zk = {0}.

Therefore, according to Sobolev embedding theorem, we have

0 <
βk

2
< uk → 0 in Lq(Ω) as k→ +∞.

Proof of Theorem 1.3. Rewrite (3.1) to the form we need here: For some k > 0, there exist Ck > 0
and Ak > 0 such that

F(x, t) ≥ Ck|t|p − Ak for every (x, s) in Ω×R.

Step 1. For any k ∈N, there exists ρk > 0 such that

ak = max
u∈Yk
‖u‖=ρk

Iµ(u) ≤ 0.
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In fact, all norms on Yk are equivalent since Yk is finite dimensional, hence there exist two
positive constants Ck,p and C̃k,p such that

C
1
p
k,p‖u‖Lp ≤ ‖u‖ ≤ C̃

1
p
k,p‖u‖Lp for all u ∈ Yk.

Therefore, for all u in Yk, we have

Iµ(u) =
1
p

∫
Ω
|4u|pdx− µ

r

∫
Ω

|u|r
|x|s dx−

∫
Ω

F(x, u)dx

≤ 1
p
‖u‖p − µ

r

∫
Ω

|u|r
|x|s dx− Ck‖u‖

p
Lp + Ak|Ω|

≤ 1
p
‖u‖p − ‖u‖p + Ak|Ω| −

µ

r

∫
Ω

|u|r
|x|s dx

≤ 1− p
p
‖u‖p + Ak|Ω|.

Thence, we choose u in Yk with ‖u‖ = ρk > 0 large enough and obtain

Iµ(u) ≤ 0.

Step 2. There exists rk in (0, ρk) such that

bk = inf
u∈Zk
‖u‖=rk

Iµ(u)→ +∞, as k→ ∞.

Indeed, (SCP) implies that there exists C′ > 0 such that

|F(x, t)| ≤ C′ (1 + |t|q) .

Hence, for any u in Zk, we get

Iµ(u) =
1
p

∫
Ω
|4u|pdx− µ

r

∫
Ω

|u|r
|x|s dx−

∫
Ω

F(x, u)dx

≥ 1
p
‖u‖p − µ

r

∫
Ω

|u|r
|x|s dx− C′‖u‖q

Lq − C′|Ω|

≥ 1
p
‖u‖p − µ

r

∫
Ω

|u|r
|x|s dx− C′‖ u

‖u‖‖
q
Lq‖u‖q − C′|Ω|

≥ 1
p
‖u‖p − µ

r
(µs,r(Ω))−

r
p ‖u‖r − C′βq

k‖u‖
q − C′|Ω|

=

[
1
p

(
1− µ

µs,r(Ω)

)
− C′βq

k‖u‖
q−p
]
‖u‖p − C′|Ω|.

According to Lemma 4.1, limk→+∞ βk = +∞. Let rk =
( µs,r(Ω)C′qβ

q
k

µs,r(Ω)−µ

)− 1
q−p , then limk→+∞ rk =

+∞. If for u ∈ Zk with ‖u‖ = rk, then we have

Iµ(u) ≥
(

1
p
− 1

q

)(
1− µ

µs,r(Ω)

)
rp

k − C′|Ω| → +∞, as k→ +∞,

which yields Step 2.

Remark 4.2. If p < r, we seem impossible to get Iµ(u) → +∞, as k → +∞. Therefore, in a
sense, p = r are sharp.
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Appendix A

The machinery of the critical point theory is based on the existence of a linking structure and
deformation lemmas. Generally speaking, it is necessary that some compactness condition
of the functional in order to derive such deformation results. We use the famous Cerami
condition:

Definition A.1 (Cerami (C) condition). Let X be a real Banach space with its dual space X∗

and J ∈ C1(X, R). For c ∈ R we say that J satisfies the (C)c condition if for any sequence
{xn} ⊂ X with J (xn) → c and (1 + ‖xn‖X) ‖J′ (xn)‖X∗ → 0, then the sequence {xn} admits a
subsequence strongly convergent in X.

Theorem A.2 (Mountain Pass Theorem with Cerami condition [8]). Assume that X is a real
Banach space and J ∈ C1(X, R) satisfies the (C)c condition for any c ∈ R, J(0) = 0, and, in addition,

A1) There exist positive constants r and η such that J(u)|∂Br ≥ η;

A2) There exists an u0 ∈ X with ‖u0‖ > ρ such that J (u0) ≤ 0.

Then c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) ≥ α is a critical value of J, where

Γ =
{

γ ∈ C0([0, 1], X) : γ(0) = 0, γ(1) = u0
}

.

Let X be a reflexive and separable Banach space, then there exist sequences
{

ej
}
⊂

X and
{

ϕj
}
⊂ X∗ with

A3) 〈ϕi, ei〉 = δi,j, where δi,j =

{
1, if i = j;

0, if i 6= j;

A4) span
{

ej
}∞

j=1 = X and spanw∗
{

ϕj
}∞

j=1 = X∗.

Let Xj = Rej, then X =
⊕

j≥1 Xj. And we define

Yk =
k⊕

j=1

Xj and Zk =
⊕
j≥k

Xj (A.1)

Theorem A.3 (Fountain Theorem with Cerami condition [2]). Suppose that ϕ ∈ C1(X, R) satis-
fies the (C)c condition for all c ∈ R and ϕ(u) = ϕ(−u). If for any k ∈ N, there exists ρk > rk such
that

A5) ak = max
u∈Yk
‖u‖=ρk

ϕ(u) ≤ 0;

A6) bk = inf
u∈Zk
‖u‖=rk

ϕ(u)→ +∞, as k→ ∞,

then ϕ possesses an unbounded sequence of critical values.
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