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Abstract. By employing the notion of M-matrices and Banach’s contraction mapping
principle, we provide complete characterisation of the existence and uniqueness of an
equilibrium of a Cohen–Grossberg–Hopfield-type neural network endowed with multi-
ple unbounded distributed time delays. Invoking similar arguments, and by construct-
ing a suitable Lyapunov functional, we establish sufficient conditions for the global
asymptotic stability of the equilibrium, independent of time delays.
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1 Introduction

The principal objective of this article is to put on a firm mathematical foundation the exis-
tence, uniqueness, and global asymptotic stability of an equilibrium of a Cohen–Grossberg–
Hopfield-type neural network [9,20,21] motif endowed with multiple distributed time delays.
The neural network model studied in this article falls within the class of so-called static neural
network models with S-type distributed delays [31, 32]. We characterise, in a rigorous man-
ner, the delay-independent global asymptotic stability of the unique equilibrium using only
the notion of M-matrices [3, 12] and the technique of Lyapunov functionals. Let us begin by
recalling that the idea of an artificial neural network equipped with signal transmission time
delays was first studied by Marcus et al. [27], and since then, the research area has blossomed.
Marcus et al. [27] studied a certain class of Hopfield and Cohen–Grossberg [9, 20, 21] artifi-
cial neural networks, and demonstrated that the introduction of discrete signal transmission
time delays in the neuronal responses induced sustained oscillations and chaos in the emer-
gent network dynamics. In the electronic implementation of analog artificial neural networks,
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signal transmission time delays are a consequence of the finite switching speed of individ-
ual amplifiers (neurons) in the network [8, 27]. It is well-known that time delays abound in
biological neuronal networks [10, 25, 27] and in electronic artificial neural networks [27]. Dis-
crete time delays are a good first approximation in mathematical models of simple neural
network circuits comprised of only a small number of units or neurons [8, 34]. Such neural
network circuits are characterised by a compact network structure, with negligible spatial ex-
tent effects. However, the undisputed biophysical reality is that biological neuronal networks
are characterised by an intricate spatial structure of parallel neural pathways in the form of
axons (or bundles of axons) of varying thicknesses and lengths. As these neural pathways
are known to conduct signals between various neurons, it is self-evident that a biophysically
reasonable mathematical modelling paradigm for neuronal networks is one that incorporates
signal transmission time delays in which the time delays are distributed rather than discrete.
Artificial neural networks incorporating discrete time delays have been widely studied in the
literature [2, 18, 26, 30, 33]. The problem of neuronal networks endowed with distributed time
delays has received some attention in the literature in recent times (see [5, 8, 11, 29, 34] and
references therein). Nonetheless, the dynamics of artificial neuronal networks endowed with
distributed time delays remain largely poorly understood today. In this article, much of our
analysis is inspired by the work of Zhang et al. [34] and Chen [8], who studied a special
class of Cohen–Grossberg–Hopfield artificial neural networks endowed with distributed time
delays, and whose work in turn was a further development of the results of [13] and [14]
who had previously established global asymptotic stability results for a class of additive neu-
ral networks without any time delays. Extending the results of Gopalsamy et al. [16] and
Hofbauer et al. [19], Campbell [4] established delay independent local and global asymptotic
stability results for a certain class of additive neural networks endowed with multiple discrete
time delays using technical machinery from matrix theory and the method Lyapunov func-
tionals. Wang et al. [32] studied the asymptotic robust stability of the static neural network
model endowed with so-called S-type finitely distributed time delays, by employing the frame-
work of Lebesgue–Stieltjes integrals. Oliveira [31] studied the global asymptotic stability of
a general class of retarded functional differential equations using ideas from matrix theory
and Lebesgue–Stieltjes integration, and avoided employing the well-known technique of Lya-
punov functionals. Of particular interest, Oliveira [31] studied the existence and the global
asymptotic stability of an equilibrium point in the case of two neural network models with
finitely distributed time delays without using the technique of Lyapunov functionals, namely,
the Cohen–Grossberg and the static models.

Our work in this article draws much of its technical motivation from [4, 6, 16, 19, 31]. In
particular, we consider the infinitely distributed time-delayed Hopfield-type network [6,20,21]
of n artificial neurons described by the system

x′k(t) = −xk(t) + gk

(
n

∑
j=1

akj

∫ ∞

0
xj(t− u) fkj(u)du

)
, k = 1, . . . , n , (1.1)

where akj ∈ R, k, j = 1, . . . , n, and the nonlinearity gk is responsible for modulating the activity
of the kth neuron. It is clear that the system (1.1) is a generalisation of the static neural network
model [31, equation (3), page 82] with multiple general infinitely distributed time delays, and
devoid of any external input signals. Construction of a phase space for infinitely distributed
time delay systems such as (1.1) is a little nuanced and technically delicate. Let ρ > 0 be a
fixed real number. An appropriate (see [6], and references contained therein) phase space for
systems with infinite time delays, such as (1.1), is the Banach space Cn := C0,ρ ((−∞, 0], Rn)
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comprising of all continuous Rn-valued functions ψ(θ) such that the function eρθψ(θ), θ ∈
(−∞, 0], is bounded, uniformly continuous, and satisfies ([23, page 102], [6])

lim
θ→−∞

eρθψ(θ) = 0 . (1.2)

Furthermore, the Banach space Cn is equipped with the weighted sup-norm ([23, page 102],
[6])

‖ψ‖∞,ρ := sup
θ∈(−∞,0]

eρθ |ψ(θ)| . (1.3)

We assume the following hypotheses on the nonlinearity gk [4].

(H1) gk ∈ C2(R), g′k(u) > 0, supu∈R g′k(u) = g′k(0) = 1;

(H2) gk(0) = 0, limu→±∞ gk(u) = ±1.

Without loss of generality, we adopt throughout this article the specific gk given by the hyper-
bolic tangent function

gk(x) = tanh(γx), γ > 0 . (1.4)

We assume that the time delay kernels fkj : [0, ∞) 7→ [0, ∞), for k, j = 1, . . . , n, are continuous
functions satisfying the constraints∫ ∞

0
fkj(s)ds = 1 ,

∫ ∞

0
s fkj(s)ds < ∞ , and fkj = f jk , ∀k, j = 1, . . . , n . (1.5)

The usual initial conditions associated with (1.1) are given by [8, 34]

xk(θ) = φk(θ) , θ ∈ (−∞, 0] , k = 1, . . . , n , (1.6)

where the φk are bounded continuous functions on (−∞, 0]. The linearisation of (1.1) about
its trivial equilibrium is given by

x′k(t) = −xk(t) +
n

∑
j=1

`kj

∫ t

−∞
xj(s) fkj(t− s)ds , k = 1, . . . , n , (1.7)

where `kj := g′k(0)akj = akj ∈ R, k, j = 1, . . . , n, are constants. With respect to (1.7), let Rn 3
x 7→ (x1, . . . , xn)T and denote the interconnection matrix by A := (`kj) = (akj), k, j = 1, . . . , n.

The goal of the present article is to characterise the existence and uniqueness of an equilib-
rium of (1.1) on one hand, and the global asymptotic stability of this equilibrium on the other.
We do so by appealing to the well-known Banach’s contraction mapping principle and by
constructing an appropriate Lyapunov functional, and employing arguments from the theory
of M-matrices [3, 12].

2 Existence and uniqueness of the equilibrium

In this section, we establish sufficient conditions for the existence and uniqueness of an equi-
librium point of the system (1.1). The approach adopted here hinges on Banach’s contraction
mapping theorem, and is largely motivated by the inspirational work of [16] and [4].
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Theorem 2.1. If

β := max
1≤j≤n

(
n

∑
k=1

∣∣akj
∣∣) < 1 , (2.1)

then the system of algebraic equations

xk = gk

(
n

∑
j=1

akjxj

)
, k = 1, . . . , n (2.2)

admits a unique solution.

Proof. For calculational convenience, let vk := xk, k = 1, . . . , n, so that (2.2) becomes

vk = gk

(
n

∑
j=1

akjvj

)
:= Gk(v1, . . . , vn) , k = 1, . . . , n . (2.3)

Our goal is to establish the existence of fixed points of the map G : Rn 7→ Rn defined by
G := (G1(v), . . . , Gn(v)), with v := (v1, . . . , vn). From the hypotheses (H1) and (H2), we have
that

− 1 ≤ gk

(
n

∑
j=1

akjvj

)
≤ 1 , k = 1, . . . , n . (2.4)

This observation implies that the set D defined by

D := {(x1, . . . , xn) ∈ Rn | − 1 ≤ xk ≤ 1, k = 1, . . . , n} (2.5)

is invariant with respect to the mapping G [4, 16]. In what follows, we establish that G is a
contraction mapping on D. By Banach’s contraction mapping principle, it will follow that G
has a unique fixed point. First, let v := (v1, . . . , vn) and u := (u1, . . . , un). We begin by noting
from (2.3) that

‖G(v)−G(u)‖ =
n

∑
k=1
|Gk(v)− Gk(u)|

=
n

∑
k=1

∣∣∣∣∣gk

(
n

∑
j=1

akjvj

)
− gk

(
n

∑
j=1

akjuj

)∣∣∣∣∣
≤

n

∑
k=1

∣∣g′k(θk)
∣∣ n

∑
j=1

∣∣akj
∣∣ ∣∣vj − uj

∣∣
=

n

∑
k=1

ck

n

∑
j=1

∣∣akj
∣∣ ∣∣vj − uj

∣∣
=

n

∑
j=1

(
n

∑
k=1

ck
∣∣akj
∣∣) ∣∣vj − uj

∣∣
≤ β

n

∑
j=1

∣∣vj − uj
∣∣

= β ‖v− u‖ ,

(2.6)

where
n

∑
j=1

akjuj ≤ θk ≤
n

∑
j=1

akjvj , k = 1, . . . , n , ck := g′k(θk) ∈ (0, 1] ,
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and

β := max
1≤j≤n

(
n

∑
k=1

ck
∣∣akj
∣∣) = max

1≤j≤n

(
n

∑
k=1

∣∣akj
∣∣) < 1 (2.7)

by hypothesis. Without loss of generality, and by recourse to hypothesis (H1), we have here
set ck = 1, ∀k = 1, . . . , n. Consequently, G is a contraction on D, and by Banach’s contraction
mapping principle, it has a unique fixed point, say v∗ := (v∗1 , . . . , v∗n), such that

v∗k = gk

(
n

∑
j=1

akjv∗j

)
, k = 1, . . . , n .

Thus, (1.1) has a unique equilibrium point. This completes the proof.

3 Global asymptotic stability of the equilibrium

We now establish the global asymptotic stability of the equilibrium x∗ := (x∗1 , . . . , x∗n) of (1.1)
by recourse to the theory of M-matrices, and by constructing an appropriate Lyapunov func-
tional. Let yk(t) := xk(t)− x∗k , k = 1, . . . , n. From the hypothesis (H1) and Lagrange’s Mean
Value Theorem, there exists

ϑk ∈
(

n

∑
j=1

akjx∗j ,
n

∑
j=1

akj

∫ ∞

0
yj(t− u) fkj(u)du +

n

∑
j=1

akjx∗j

)
, k = 1, . . . , n , (3.1)

such that

gk

(
n

∑
j=1

akj

∫ ∞

0
yj(t− u) fkj(u)du +

n

∑
j=1

akjx∗j

)
− gk

(
n

∑
j=1

akjx∗j

)

= g′k (ϑk)
n

∑
j=1

akj

∫ ∞

0
yj(t− u) fkj(u)du , (3.2)

for k = 1, . . . , n. It is important to stress the fact that ϑk identified in (3.1) is not a constant – it
depends on the solution yj, j = 1, . . . , n, and the time t. By virtue of the coordinate translation
yk(t) := xk(t)− x∗k , k = 1, . . . , n, and (3.2), the system (1.1) transforms to

y′k(t) = −yk(t) + gk

(
n

∑
j=1

akj

∫ ∞

0

(
yj(t− u) + x∗j

)
fkj(u)du

)
− gk

(
n

∑
j=1

akjx∗j

)
,

k = 1, . . . , n, (3.3)

which subsequently leads to the linearisation

y′k(t) = −yk(t) + ck

n

∑
j=1

akj

∫ ∞

0
yj(t− u) fkj(u)du, k = 1, . . . , n , (3.4)

where ck := g′k(ϑk) ∈ (0, 1], ∀k = 1, . . . , n, by the hypothesis (H1). We note that ck depends on
t, and this observation has some consequential ramifications as will be shown in the analysis
to come. Now, borrowing some of the notation of [4], let A := (akj), |A| := (|akj|), K :=
−I + A, and K̂ := −I + |A|, where I is the n × n identity matrix. Sufficient conditions for
the local asymptotic stability of the equilibrium x∗ := (x∗1 , . . . , x∗n) of (1.1) can be established
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in a manner analogous to that presented in [4, Theorem 2.6 and Corollary 2.7, page 6], and
are given in [6]. To prepare the groundwork for the analysis to follow, we note that the off-
diagonal entries of the matrix −K̂ are less than or equal to zero, which means that it is a
Z-matrix. The matrix −K̂ is expressible in the form

−K̂ :=


1− |a11| −|a12| −|a13| · · · −|a1n|
−|a21| 1− |a22| −|a23| · · · −|a2n|
−|a31| −|a32| 1− |a33| · · · −|a3n|

...
...

...
. . .

...
−|an1| −|an2| −|an3| · · · 1− |ann|



=


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−

|a11| |a12| |a13| · · · |a1n|
|a21| |a22| |a23| · · · |a2n|
|a31| |a32| |a33| · · · |a3n|

...
...

...
. . .

...
|an1| |an2| |an3| · · · |ann|


:= sI − B ,

(3.5)

where B is the non-negative matrix given by

B :=


|a11| |a12| |a13| · · · |a1n|
|a21| |a22| |a23| · · · |a2n|
|a31| |a32| |a33| · · · |a3n|

...
...

...
. . .

...
|an1| |an2| |an3| · · · |ann|

 , (3.6)

s := 1 > 0, and I is the n× n identity matrix. The following lemma will be instrumental in
the proof of our main result in the present Section.

Lemma 3.1. If −K̂ is a Z-matrix and ρ(B) < 1, then −K̂ is a non-singular M-matrix.

Proof. That −K̂ is a Z-matrix is trivial. Suppose that ρ(B) < 1. Since −K̂ = I − B, the result
follows [12, page 129, Theorem 5.1.1.].

As an example to amplify the implication of Lemma 3.1, consider n = 2 populations of
artificial neurons, with a11 = a22 = 0, a12 = 2, and a21 = 1. Then, we have that

A = (akj) =

(
a11 a12

a21 a22

)
=

(
0 2
1 0

)
=⇒ −K̂ =

(
1 −2
−1 1

)
=

(
1 0
0 1

)
−
(

0 2
1 0

)
:= I − B , (3.7)

where ρ(B) =
√

2 > 1. Hence, the matrix −K̂ in this example is not a non-singular M-
matrix for the simple reason that it does not satisfy at least one of the hypotheses stipulated
in Lemma 3.1. In the view of Lemma 3.1, we arrive at our main result in the present Section.

Theorem 3.2. If −K̂ is a non-singular M-matrix, then the system (1.1) has a unique globally asymp-
totically stable equilibrium.
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Proof. Assume that −K̂ is a non-singular M-matrix. That is, assume that −K̂ = I − B is a
Z-matrix and that ρ(B) < 1 [12, page 129, Theorem 5.1.1.]. It is well-known that if the spectral
radius of a matrix is less than 1, then the matrix has a norm which is less than 1 [22, page 347,
Lemma 5.6.10]. Since B =

(∣∣aij
∣∣), i, j = 1, . . . , n, the maximum column sum matrix norm of B

is given by [22]

|||B|||1 = max
1≤j≤n

(
n

∑
i=1

∣∣aij
∣∣) < 1 , (3.8)

which is identical to the hypothesis of Theorem 2.1.
Now, since −K̂ := I − |A| is a non-singular M-matrix from Lemma 3.1, it follows [3, 12]

that ∃ ξ j > 0, j = 1, . . . , n, such that

− ξ j +
n

∑
k=1
|akj|ξk < 0 , j = 1, . . . , n . (3.9)

Consider the Lyapunov functional V(t) = V(y)(t) defined by [4, 8, 32, 34]

V(y)(t) :=
n

∑
k=1

ξk

{
|yk(t)|+

n

∑
j=1
|akj|

∫ ∞

0
fkj(s)

(∫ t

t−s
|yj(τ)|dτ

)
ds

}
. (3.10)

Computing the upper Dini derivative of (3.10) along the solutions of the nonlinear system
(3.3) yields

D+V(t) =
n

∑
k=1

ξk

{
sgn(yk(t))y′k(t) +

n

∑
j=1
|akj|

∫ ∞

0
fkj(s)

(
|yj(t)| − |yj(t− s)|

)
ds

}

=
n

∑
k=1

ξk

{
−sgn(yk(t))yk(t) + sgn(yk(t))gk

(
n

∑
j=1

akj

∫ ∞

0

(
yj(t− u) + x∗j

)
fkj(u)du

)

−sgn(yk(t))gk

(
n

∑
j=1

akjx∗j

)
+

n

∑
j=1
|akj|

∫ ∞

0
fkj(s)

(
|yj(t)| − |yj(t− s)|

)
ds

}

≤
n

∑
k=1

ξk

{
−|yk(t)|+

∣∣∣∣∣gk

(
n

∑
j=1

akj

∫ ∞

0

(
yj(t− u) + x∗j

)
fkj(u)du

)
− gk

(
n

∑
j=1

akjx∗j

)∣∣∣∣∣
+

n

∑
j=1
|akj|

∫ ∞

0
|yj(t)| fkj(s)ds−

n

∑
j=1
|akj|

∫ ∞

0
|yj(t− s)| fkj(s)ds

}

≤
n

∑
k=1

ξk

{
−|yk(t)|+

n

∑
j=1
|akj|

∫ ∞

0
|yj(t− u)| fkj(u)du +

n

∑
j=1
|akj||yj(t)|

−
n

∑
j=1
|akj|

∫ ∞

0
|yj(t− u)| fkj(u)du

}

=
n

∑
k=1

ξk

{
−|yk(t)|+

n

∑
j=1
|akj||yj(t)|

}

=
n

∑
k=1

(−ξk|yk(t)|) +
n

∑
k=1

n

∑
j=1

(
|ajk|ξ j|yk(t)|

)
=

n

∑
k=1

(
−ξk +

n

∑
j=1
|ajk|ξ j

)
|yk(t)| ≤ µ

n

∑
k=1
|yk(t)| < 0 ,
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where, by virtue of the condition (3.9),

µ := max
1≤k≤n

{
−ξk +

n

∑
j=1
|ajk|ξ j

}
< 0 . (3.11)

Hence, the trivial equilibrium of (3.3) is globally asymptotically stable [24, corollary 5.2, page
30]. Therefore, the equilibrium x∗ := (x∗1 , . . . , x∗n) of (1.1) is globally asymptotically stable (see
[1, 4, 17] and [15, pages 4-5]). This completes the proof.

4 A numerical example

We give a numerical example to illustrate an application of Theorem 3.2. Consider n = 2
populations of artificial neurons, with a11 = a22 = 1

2 , a12 = 1
16 , and a21 = 1. Thus, we have that

A =

(
a11 a12

a21 a22

)
=

( 1
2

1
16

1 1
2

)
⇒ −K̂ = I − |A| =

( 1
2 − 1

16
−1 1

2

)
=

(
1 0
0 1

)
−
( 1

2
1
16

1 1
2

)
:= I − B , (4.1)

with ρ(B) = 3
4 < 1. That −K̂ is a Z-matrix is trivial. This observation, in conjunction with

the fact that ρ(B) < 1, implies that −K̂ is a non-singular M-matrix by Lemma 3.1. For the
specified interconnection matrix A, the system (1.1) condenses to

x′1(t) = −x1(t) + g1

(
2

∑
j=1

a1j

∫ ∞

0
xj(t− u) f1j(u)du

)
,

x′2(t) = −x2(t) + g2

(
2

∑
j=1

a2j

∫ ∞

0
xj(t− u) f2j(u)du

)
,

(4.2)

with the initial conditions given in (1.6) for n = 2. Since −K̂ is a non-singular M-matrix, we
are guaranteed by Theorem 3.2 that the system (4.2) admits a unique globally asymptotically
stable equilibrium. For the sake of completeness, we establish the existence and uniqueness
of an equilibrium of (4.2). Now, since ρ(B) < 1, it follows that there exists a matrix norm
such that |||A||| < 1 [22, page 347, Lemma 5.6.10]. To characterise such a norm, we proceed
in the manner adumbrated below. Let J := P−1AP = diag

( 1
4 , 3

4

)
be the Jordan form of A,

with P :=
(
− 1

4
1
4

1 1

)
, and let D := I be the 2 × 2 identity matrix. Note that the matrix A

has eigenvalues λ1 := 1
4 and λ2 := 3

4 . The two columns of P are the eigenvectors of A.

The eigenspace for λ1 = 1
4 is spanned by u :=

(
− 1

4
1

)
whilst that for λ2 = 3

4 is spanned by

v :=
(

1
4
1

)
. Now, define a norm by |||A||| :=

∣∣∣∣∣∣D−1P−1APD
∣∣∣∣∣∣

p =
∣∣∣∣∣∣P−1AP

∣∣∣∣∣∣
p, where |||·|||p

denotes the induced p-norm. In other words,

|||A||| := sup
x 6=0

‖Ax‖p

‖x‖p
, (4.3)

where the two norms ‖ · ‖p on the right hand side denote the usual p-norm for vectors. When
p = 1, |||A||| is identical to the maximum column sum of the entrywise absolute value of



Existence, uniqueness, and global asymptotic stability 9

A. For the matrix P in this example, we have that P−1AP = diag
( 1

4 , 3
4

)
, and consequently,

|||A||| = max1≤j≤2
(

∑2
i=1 |aij|

)
= 3

4 < 1; this last inequality matches the hypothesis (2.1) of
Theorem 2.1. Hence, the existence and uniqueness of an equilibrium of the system (4.2) is
guaranteed.
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