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Abstract. In this paper, a second order discrete boundary value problem with a pair
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1 Introduction

In this paper, we consider a boundary value problem (BVP) consisting of a second order
difference equation

− ∆(r(t− 1)∆u(t− 1)) = f (t, u(t)), t ∈ [2, N]Z, (1.1)

and a pair of mixed periodic boundary conditions (BCs)

u(0) = u(N), r(0)∆u(0) = −r(N)∆u(N), (1.2)

where

• N ≥ 2 is an integer and [a, b]Z denotes the discrete interval {a, . . . , b} for any integers a
and b with a ≤ b;

• ∆ is the forward difference operator defined by ∆u(t) = u(t + 1)− u(t);

• r(t) > 0, t ∈ [0, N]Z; and
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• f : [2, N]Z × R → R is odd and continuous with respect to the second variable, i.e.
f (t,−x) = − f (t, x) and f (t, ·) ∈ C(R), t ∈ [2, N]Z.

By a solution of BVP (1.1), (1.2), we mean a function u : [0, N + 1]Z → R that satisfies (1.1)
and (1.2).

BVPs with various BCs have been widely studied for decades due to both theoretic impor-
tance and extensive applications in science and engineering areas. Great effort has been made
to study the existence, multiplicity, and uniqueness of solutions of BVPs, see for example
[4–11, 13–18] and references therein for some recent advances in this area.

Recently, Kong and Wang [15] studied the existence and multiplicity of solutions of the
mixed periodic BVP

− ∆2u(t− 1) = f (u(t)), t ∈ [2, N]Z, (1.3)

u(0) = −u(N), ∆u(0) = ∆u(N), (1.4)

by using the critical point theory. In that work, the asymmetry at the boundaries of the domain
caused by the mixed periodic BC (1.4) was the major obstacle in the construction of a suitable
functional for applying the variational technique. As the result, a particular Banach space and
an associated functional were proposed to overcome the asymmetry of the mixed periodic BC
(1.4). The reader is referred to [15, Lemma 2.3] for the details. We want to point out that there
was a typo in Eq. (1.1) in [15] where the domain was mistakenly written as t ∈ [1, N]Z, which
should be replaced by t ∈ [2, N]Z as seen in Eq. (1.3) above. The reason why we propose
t ∈ [2, N]Z will be explained in Remark 2.5 below.

Clearly, Eq. (1.1) covers Eq. (1.3) as a special case and BC (1.2) and BC (1.4) are closely
related to each other. So BVP (1.1), (1.2) is parallel to BVP (1.3), (1.4) but more general.
Moreover, BC (1.2) leads to an asymmetry at the boundaries as well. This obstacle must be
first eliminated to construct the functional. We will use an idea similar to [15] to overcome this
difficulty and further apply the variational arguments and the critical point theory to study
the existence of multiple solutions of BVP (1.1), (1.2). This will be the first contribution of this
paper.

Once the multiplicity of solutions is proven, it is natural to raise a new question: Which
solution is the “right” one (in the sense that some pre-defined criteria are met)? This question is
practical in applications as there is a common need to identify a particular solution follow-
ing certain pre-defined criteria, among all the solutions, due to constraints or demands of
particular circumstances. In this paper, a framework to derive the necessary conditions for a
particular solution of BVP (1.1), (1.2) following a set of pre-defined criteria, i.e. a target solu-
tion, will be presented. To the best of our knowledge, this type of questions have not been
considered in the literature on BVPs. Our work will fill the void and be applicable to other
problems with multiple solutions. This will be the second contribution of this paper.

The remainder of this paper is organized as follows. The Banach space, the functional, and
the needed lemmas are given in Section 2; criteria on the existence of multiple solutions are
proven in Section 3; the necessary conditions of the target solutions are derived in Section 4;
and three examples are given in Section 5 to demonstrate the applications of our results.

2 Preliminary

We first introduce a few definition and lemmas needed to prove our existence results.
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Definition 2.1. Assume H is a real Banach space. We say that a functional J ∈ C1(H, R) satis-
fies the Palais–Smale (PS) condition if every sequence {un} ⊂ H, such that J(un) is bounded
and J′(un) → 0 as n → ∞, has a convergent subsequence. The sequence {un} is called a PS
sequence.

The following version of Clark’s Theorem is taken from [19] and will play a key role in
proving our existence theorem.

Lemma 2.2 ([19, Theorem 9.1]). Let H be a real Banach space with 0 the zero of H, Sn−1 be the
(n− 1)-dimensional unit sphere, and J ∈ C1(H, R) with J even, bounded from below and satisfying
the PS condition. Suppose J(0) = 0, and there is a set K ⊂ H such that K is homeomorphic to Sn−1

by an odd map, and supK J < 0. Then J possesses at least n distinct pairs of critical points.

In the sequel, we let H be defined by

H = {u : [0, N + 1]Z → R | u(0) = u(N), u(1) = 0, r(0)∆u(0) = −r(N)∆u(N)} . (2.1)

Remark 2.3. By (2.1), we see that any u ∈ H must satisfy

u(0) = u(N), u(1) = 0, u(N + 1) =
r(0) + r(N)

r(N)
u(N). (2.2)

So H is isomorphic to RN−1. Then, equipped with the norm ‖u‖ =
(

∑N
t=1 u2(t)

) 1
2 , H is an

N− 1 dimensional Banach space. When we write the vector u = (0, u(2), . . . , u(N)) ∈ RN , we
always imply that u can be extended as a vector in H so that (2.2) holds, i.e., u can be extended
to the vector (

u(N), 0, u(2), . . . , u(N),
r(0) + r(N)

r(N)
u(N)

)
.

Moreover, for any u ∈ H, when we write u = (0, u(2), . . . , u(N)) ∈ RN , we mean that u have
been extended in the above sense.

Let f̃ : [1, N]Z ×R→ R and F̃ : [1, N]Z ×R→ R be defined by

f̃ (t, x) =


0, t = 1,

f (t, x), t ∈ [2, N − 1]Z,

f (N, x) + 2r(0)x, t = N,

(2.3)

and

F̃(t, x) =
∫ x

0
f̃ (t, s)ds, t ∈ [1, N]Z, (2.4)

resectively. It is clear that f̃ (t, x) and F̃(t, x) are continuous in x and f̃ (t, x) is odd in x if f (t, x)
is odd in x.

Define J : H → R by

J(u) =− 1
2

N

∑
t=1

r(t− 1)(∆u(t− 1))2 +
N

∑
t=1

F̃(t, u(t)). (2.5)

Lemma 2.4. If u ∈ H is a critical point of J, then u is a solution of BVP (1.1), (1.2).
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Proof. By (2.3)–(2.5), for any u ∈ H,

J(u) =− 1
2

N

∑
t=1

r(t− 1)(∆u(t− 1))2 +
N

∑
t=2

∫ u(t)

0
f (t, s)ds + 2

∫ u(N)

0
r(0)sds.

Then J is continuously differentiable and its derivative J′(u) at u ∈ H is given by

〈J′(u), v〉 = −
N

∑
t=1

r(t− 1)∆u(t− 1)∆v(t− 1) +
N

∑
t=2

f (t, u(t))v(t) + 2r(0)u(N)v(N) (2.6)

for any v ∈ H.
By the summation by parts formula and (2.1),

N

∑
t=1

r(t− 1)∆u(t− 1)∆v(t− 1) = r(N)∆u(N)v(N)− r(0)∆u(0)v(0)

−
N

∑
t=1

∆(r(t− 1)∆u(t− 1))v(t)

= − 2r(0)∆u(0)v(0)−
N

∑
t=1

∆(r(t− 1)∆u(t− 1))v(t)

= 2r(0)u(N)v(N)−
N

∑
t=2

∆(r(t− 1)∆u(t− 1))v(t). (2.7)

Then by (2.6) and (2.7), we have 〈J′(u), v〉 = ∑N
t=2 [∆(r(t− 1)∆u(t− 1)) + f (t, u(t))] v(t). This

completes the proof of the lemma.

Remark 2.5. Below, we provide some justification why we introduce the space H and the
functional J as given above and why Eq. (1.1) is defined on [2, N]Z instead of [1, N]Z. To see
this, assume Eq. (1.1) is defined on [1, N]Z, and as in the traditional way, let

H̃ = {u : [0, N + 1]Z → R | u satisfies the BCs (1.2)}

and

J̃(u) = −1
2

N

∑
t=1

r(t− 1)(∆u(t− 1))2 +
N

∑
t=1

∫ u(t)

0
f (t, s)ds.

Then, if u ∈ H̃ is a critical point of J̃(u), by summation by parts formula and (1.2), we have

〈 J̃′(u), v〉 =−
N

∑
t=1

r(t− 1)∆u(t− 1)∆v(t− 1) +
N

∑
t=1

f (t, u(t))v(t)

=− 2r(N)∆u(N)v(N) +
N

∑
t=1

[∆(r(t− 1)∆u(t− 1)) + f (t, u(t))]v(t)

for any v ∈ H. Since v ∈ H̃ is arbitrary, u satisfies (1.1) at t ∈ [1, N − 1]Z. However, u satisfies
Eq. (1.1) at t = N only if ∆u(N) = 0. Then the BCs (1.2) now become

u(0) = u(N), ∆u(0) = ∆u(N) = 0,

which is very restrictive and is a special case of the periodic BCs studied in the literature, for
example, in [12, 16]. We do not have an interest in such a simple case. In this work, in order
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to make u satisfy Eq. (1.1) at t = N without introducing the extra assumption ∆u(N) = 0,
unlike the traditional way, we introduce a modification, f̃ , of the function f , as given in (2.3),
and the corresponding functional J in (2.5). In addition to the BCs, we also impose an extra
condition u(1) = 0 in our working space H defined by (2.1). Then, as seen in Lemma 2.4, any
critical point u ∈ H of J satisfies Eq. (1.1) for all t ∈ [2, N − 1]Z and the BCs

u(0) = u(N), u(1) = 0, r(0)∆u(0) = −r(N)∆u(N).

That is, u is a solution of BVP (1.1), (1.2) with the property that u(1) = 0. This type of
problems are new and are worthy of our studies. The above explanations also explain why
we only require Eq. (1.1) to be defined on [2, N]Z. We propose Eq. (1.3) in [15] due to a similar
reason.

Remark 2.6. Lemma 2.5 offers a general setting to study the BVPs with mixed periodic BCs.
With the functional defined by (2.5), other variational techniques may be applied as well, see,
for example, [1, 3].

Next, let us consider an equivalent form of J. Let

A =


r(0)+r(1) −r(1) 0 ... 0 −r(0)

−r(1) r(1)+r(2) −r(2) ... 0 0

0 −r(2) r(2)+r(3) ... 0 0

. . . . . .
−r(0) 0 0 ... −r(N−1) r(N−1)+r(0)


N×N

. (2.8)

Then it can be verified by direct computation that for any u ∈ H,

J(u) = −1
2

uAuT +
N

∑
t=1

F̃(t, u(t)), (2.9)

where (·)T denotes the transpose.
Matrix A has been studied in [16]. Some needed conclusions are summarized in the

following lemma. The reader is referred to [16] for the details.

Lemma 2.7. Let A be defined by (2.8) with r(t) > 0, t ∈ [0, N − 1]Z. Then

(a) A is positively semi-definite with Rank(A) = N − 1.

(b) A has N nonnegative eigenvalues 0 = λ0 < λ1 ≤ · · · ≤ λN−1 with the associated orthonormal
eigenvectors {η0, . . . , ηN−1}, where η0 =

(√N
N ,

√
N

N , . . . ,
√

N
N

)
.

(c) Let ‖ · ‖ denote the standard Euclidean norm of RN . For any u ∈ RN , uAuT ≤ λN−1‖u‖2; for
any u ∈ span{η2, . . . , ηN−1}, uAuT ≥ λ1‖u‖2.

Similary to [16, Lemma 3.1], we can prove the following lemma.

Lemma 2.8. Assume there exists a constant β > λN−1 such that

lim
x→∞

f (t, x)
x
≥ β, t ∈ [2, N]Z. (2.10)

Then J satisfies the PS condition.
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Proof. Let {un}∞
n=1 ⊂ H be any sequence with {J(un)} bounded and J′(un) → 0 as n → ∞.

For any un, by (2.6), (2.5), and (2.9),

〈J′(un), un〉 = −
N

∑
t=1

r(t− 1)(∆un(t− 1))2 +
N

∑
t=2

f (t, un(t))un(t) + 2r(0)(un(N))2

= − un AuT
n +

N

∑
t=2

f (t, un(t))un(t) + 2r(0)(un(N))2.

Then by Lemma 2.7,

N

∑
t=2

f (t, un(t))un(t) + 2r(0)(un(N))2 = 〈J′(un), un〉+ un AuT
n

≤ 〈J′(un), un〉+ λN−1‖un‖2. (2.11)

On the other hand, by the oddity of f and (2.10), there exists constant C > 0 such that

f (t, un(t))un(t) ≥
(

β + λN−1

2

)
(un(t))2 − C, t ∈ [2, N]Z.

Hence

N

∑
t=2

f (t, un(t))un(t) + 2r(0)(un(N))2 ≥
(

β + λN−1

2

)
‖un‖2 − NC. (2.12)

By (2.11) and (2.12),(
β− λN−1

2

)
‖un‖2 ≤ 〈J′(un), un〉+ NC ≤ ‖J′(un)‖‖un‖+ NC.

Since (β− λN−1) /2 > 0 and J′(un) → 0 as n → ∞, {un} is bounded. Therefore, the PS
condition holds.

3 Existence of solutions

In this section, we consider the existence of multiple solutions of BVP (1.1), (1.2).

Theorem 3.1. Let 0 = λ0 < λ1 ≤ · · · ≤ λN−1 be the eigenvalues of A defined by (2.8) respectively.
Assume that f (t, x) is continuous and odd in its second variable x, and satisfies (2.10) for some β >

λN−1. If in addition there exists a constant µ < λm, m ∈ [1, N − 1]Z, such that

lim
x→0

f (t, x)
x
≤ µ, t ∈ [2, N − 1]Z, and lim

x→0

f (N, x)
x

+ 2r(0) ≤ µ. (3.1)

Then BVP (1.1), (1.2) has at least 2N − 2m distinct solutions.

Remark 3.2. In (3.1), when N = 2, we have [2, N − 1]Z = ∅. Then, the first limit disappears.

Proof. By Lemma 2.8, J satisfies the PS condition. Since f is odd in x, by (2.3) and (2.4), F̃(t, x)
is even in x.

Let {η0, . . . , ηN−1} be the orthonormal eigenvectors of A defined in Lemma 2.7, X =

span{η1, . . . , ηN−1}, and Y = span{η0}. Then it is easy to see that RN = X ⊕ Y. By (2.1),
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H ∩ Y = 0, so H = X. For any u ∈ H, there exist b1, . . . , bN−1 ∈ R such that u = ∑N−1
i=1 biηi

and ‖u‖2 = ∑N−1
i=1 b2

i . By (2.9) and Lemma 2.7, for any u ∈ H,

J(u) = − 1
2

uAuT +
N

∑
t=1

F̃(t, u(t)) = −1
2

N−1

∑
i=1

λib2
i +

N

∑
t=1

F̃(t, u(t))

≥ − 1
2

λN−1

N−1

∑
i=1

b2
i +

N

∑
t=1

F̃(t, u(t)) = −1
2

λN−1‖u‖2 +
N

∑
t=1

F̃(t, u(t)).

Similar to the proof of Lemma 2.8, there exists C̃ > 0 such that

N

∑
t=1

F̃(t, u(t)) ≥
(

β + λN−1

4

)
‖u‖2 − NC̃, u ∈ H.

Therefore, infu∈H J(u) > −∞, i.e. J is bounded below.
By (3.1), there exist ρ > 0 and 0 < D < λm such that for any x ∈ [−ρ, ρ],

∫ x

0
f (t, s)ds ≤ D

2
x2, t ∈ [2, N − 1] and

∫ x

0
f (N, s)ds + r(0)x2 ≤ D

2
x2. (3.2)

Let K = {u ∈ span{ηm, . . . , ηN−1} ⊂ H | ‖u‖ = ρ}. It is clear that K is homeomorphic
to SN−m−1 by an odd map Γ : K → X defined by Γu = u

ρ . By (2.9), (2.3), (2.4), (3.2), and
Lemma 2.7, for any u ∈ K,

J(u) = − 1
2

uAuT +
N

∑
t=1

F̃(t, u(t)) = −1
2

N−1

∑
i=m

λib2
i +

N

∑
t=1

F̃(t, u(t))

≤ − 1
2

λm

N−1

∑
i=1

b2
i +

N

∑
t=1

F̃(t, u(t)) = −1
2

λm‖u‖2 +
N

∑
t=1

F̃(t, u(t)) ≤ D− λm

2
ρ2 < 0.

Therefore, supK J < 0. By Lemma 2.2, J possesses at least N − m distinct pairs of critical
points. Hence BVP (1.1), (1.2) has at least 2N − 2m solutions by Lemma 2.4.

The following corollary is an immediate conclusion of Theorem 3.1.

Corollary 3.3. Assume that f (t, x) is continuous and odd in its second variable x, and satisfies

lim inf
x→∞

min
t∈[2,N]Z

f (t, x)
x

= ∞

and

max

{
lim sup

x→0
max

t∈[2,N−1]Z

f (t, x)
x

, lim sup
x→0

f (N, x)
x

+ 2r(0)

}
< λm, (3.3)

where λm is the mth positive eigenvalue of A following the increasing order. Then BVP (1.1), (1.2) has
at least 2N − 2m distinct solutions.

A note similar to Remark 3.2 applies to Eq. (3.3) in Corollary 3.3.



8 L. Kong and M. Wang

4 Necessary conditions of the target solution

In this section, we investigate how to identify a target solution among multiple solutions
following a set of pre-defined criteria. The main idea is to find the target solution by solving
an optimization problem (OP) with constraints.

Let I be a subset of [0, N + 1]Z and u∗ : I → R be a function defined on I. Assume the
pre-defined criteria is given as a performance index, or objective function, L : RN+2 → R

defined by

L(u) = ∑
t∈I

(u(t)− u∗(t))2. (4.1)

We need to find a particular solution of BVP (1.1), (1.2) that minimizes the objective function
L. In other words, BVP (1.1), (1.2) is the constraints of the OP.

We first introduce some auxiliary functions to simplify the notations. Define G : RN+2 ×
[2, N]Z → R, B0 : RN+2 → R, B1 : RN+2 → R, and B2 : RN+2 → R by

G(u, t) = r(t)u(t + 1)− (r(t) + r(t− 1))u(t) + r(t− 1)u(t− 1) + f (t, u(t)),

B0(u) = u(1), B1(u) = u(0)− u(N), and

B2(u) = r(0)u(1)− r(0)u(0) + r(N)u(N + 1)− r(N)u(N).

It is easy to verify that BVP (1.1), (1.2) is equivalent to the following system consisting of N + 2
equations

G(u, t) = 0, t ∈ [2, N]Z, (4.2)

B0(u) = 0, (4.3)

B1(u) = 0, (4.4)

B2(u) = 0. (4.5)

In the sequel, we use Eq. (4.2)–(4.5) as the constraints and solve the OP (4.1), (4.2)–(4.5) by
the Lagrange multiplier method, see for example [2]. Clearly, N + 2 Lagrange multipliers are
needed. Let θ : [0, N + 1] → R be the Lagrange multipliers and Φ : RN+2 ×RN+2 → R be
defined by

Φ(u, θ) = ζL(u) +
N

∑
t=2

θ(t + 1)G(u, t) + θ(0)B0(u) + θ(1)B1(u) + θ(2)B2(u), (4.6)

where ζ > 0 is a parameter. Then by the Lagrange multiplier method, we obtain the following
necessary conditions for the target solution.

Theorem 4.1. A target solution of BVP (1.1), (1.2) subject to L must satisfy Eq. (4.2)–(4.5) and

∂Φ(u, θ)

∂u(t)
= 0, t ∈ [0, N + 1]Z.

Remark 4.2. The value of ζ in (4.6) does not impact the theoretic result in Theorem 4.1. How-
ever, numerical experiments reveal that the value of ζ impacts the performance of numerical
optimization algorithms. This is the main reason to introduce the parameter ζ.
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5 Examples

In this section, we will demonstrate the applications of our results by considering the BVP

− ∆2u(t− 1) = (u(t))3, t ∈ [2, 10]Z, (5.1)

u(0) = u(10), ∆u(0) = −∆u(10). (5.2)

Let r(t) ≡ 1 on [0, N]Z and f (t, x) ≡ x3. It is easy to verify that

A =

 2 −1 0 ... 0 −1
−1 2 −1 ... 0 0
0 −1 2 ... 0 0
...

...
...

...
...

...
−1 0 0 ... −1 2


10×10

,

lim
x→∞

f (x)
x

= ∞, and lim
x→0

f (x)
x

= 0.

Computing the eigenvalues of A with Matlab, we have λ4 < 2 < λ5. Hence all the conditions
of Corollary 3.3 are satisfied. Therefore, BVP (5.1), (5.2) has at least 10 solutions.

Next, we choose different objective functions to demonstrate the applications of Theo-
rem 4.1.

Example 5.1. We first consider a solution of BVP (5.1), (5.2) that minimizes the objective
function

L1(u) =
6

∑
t=4

(u(t)− 1)2.

Let ζ = 2. By Theorem 4.1, the target solution u must satisfy the following system

u(t− 1)− 2u(t) + u(t + 1) + (u(t))3 = 0, t ∈ [2, 10]Z, (5.3)

u(1) = 0 (5.4)

u(0)− u(10) = 0, (5.5)

− u(0) + u(1)− u(10) + u(11) = 0, (5.6)

Θ̃(u, θ, t) + Φ̃(u, θ, t) = 0, t ∈ [0, 11]Z, (5.7)

where

Θ̃(u, θ, 0) := θ(1)− r(0)θ(2), (5.8)

Θ̃(u, θ, 1) := θ(0) + r(0)θ(2) + r(1)θ(3), (5.9)

Θ̃(u, θ, 2) := (3(u(2))2 − (r(1) + r(2)))θ(3) + r(2)θ(4), (5.10)

Θ̃(u, θ, t) := r(t− 1)θ(t) + (3(u(t))2 − (r(t− 1) + r(t)))θ(t + 1)

+ r(t)θ(t + 2), t = [3, 9]Z, (5.11)

Θ̃(u, θ, 10) := − θ(1)− r(10)θ(2) + r(9)θ(10) + (3(u(10))2 − (r(9) + r(10)))θ(11), (5.12)

Θ̃(u, θ, 11) := r(10)θ(2) + r(10)θ(11), (5.13)

and

Φ̃(u, θ, t) := 4(u(t)− 1), t ∈ [4, 6]Z, (5.14)

Φ̃(u, θ, t) := 0, otherwise. (5.15)
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Note that by (4.2)–(4.5), Eq. (5.3)–(5.6) are equivalent to BVP (5.1), (5.2); Θ̃ defined by (5.8)–
(5.13) are the partial derivatives of

N

∑
t=2

θ(t + 1)G(u, t) + θ(0)B0(u) + θ(1)B1(u) + θ(2)B2(u)

in (4.6) with respect to u(t), t ∈ [0, 11]Z; and Φ̃ defined by (5.14) and (5.15) are the partial
derivatives of ζL(u) in (4.6) with respect to u(t), t ∈ [0, 11]Z.

System (5.3)–(5.7) is solved with Matlab. The graph of the numerical solution u1 subject to
L1 is given in Figure 5.1. Clearly, the behavior of u1 is consistent with our expectation.

Figure 5.1: Numerical solution u1 subject to L1.

Example 5.2. For the comparison purpose, we also consider the solution of BVP (5.1), (5.2)
that minimizes the objective function

L2(u) =
6

∑
t=4

(u(t) + 1)2.

Let ζ = 2. By Theorem 4.1, the target solution must satisfy Eq. (5.3)–(5.7) with

Φ̃(u, θ, t) := 4(u(t) + 1), t ∈ [4, 6]Z,

Φ̃(u, θ, t) := 0, otherwise.

The graph of the numerical solution u2 subject to L2 is given in Figure 5.2.

Example 5.3. In this example, we seek a solution of BVP (5.1), (5.2) that minimizes the objective
function

L3(u) =
9

∑
t=7

(u(3)− 10)2.
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Figure 5.2: Numerical solution u2 subject to L2.

Figure 5.3: Numerical solution u3 subject to L3.

Let ζ = 1. By Theorem 4.1, the target solution must satisfy Eq. (5.3)–(5.7) with

Φ̃(u, θ, t) := 2(u(t)− 10), t ∈ [7, 9]Z,

Φ̃(u, θ, t) := 0, otherwise.

The graph of the numerical solution u3 subject to L3 is given in Figure 5.3.

Remark 5.4. Examples 5.1, 5.2, and 5.3 found three different solutions from the same BVP
following different criteria. These examples demonstrated the effectiveness of Theorem 4.1.
This idea can also be extended to the objective functions of other forms as well as other BVPs
with multiple solutions.
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