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Abstract. We shall consider weak solutions of initial-boundary value problems for
semilinear and nonlinear parabolic differential equations for t ∈ (0, ∞) with certain
nonlocal terms. We shall prove theorems on the number of solutions and certain qual-
itative properties of the solutions. These statements are based on arguments for fixed
points of some real functions and operators, respectively, and theorems on the existence,
uniqueness and qualitative properties of the solutions of partial differential equations
(without functional terms).

Keywords: partial functional differential equations, multiple solutions, qualitative
properties.

2010 Mathematics Subject Classification: 35R10, 35R09.

1 Introduction

It is well known that mathematical models in several applications are functional differential
equations of one variable (e.g. delay equations). In the monograph by Jianhong Wu [7] semi-
linear evolutionary partial functional differential equations and applications are considered,
where the book is based on the theory of semigroups and generators. In the monograph by
A. L. Skubachevskii [6] linear elliptic functional differential equations (equations with non-
local terms and nonlocal boundary conditions) and applications are considered. A nonlocal
boundary value problem, arising in plasma theory, was considered by A. V. Bitsadze and
A. A. Samarskii in [1].

It turned out that the theory of pseudomonotone operators is useful to study nonlinear
(quasilinear) partial functional differential equations (both stationary and evolutionary equa-
tions) and to prove existence of weak solutions (see [2, 4]).

In [5] we considered some nonlinear parabolic functional differential equations for t ∈
(0, T) (T < ∞) and proved existence of several weak solutions of initial-boundary boundary
value problems.

In the present work we shall prove existence of weak solutions of some parabolic functional
equations for t ∈ (0, ∞) and show certain qualitative properties of the solutions (boundedness
and stabilization as t→ ∞).
BEmail: simonl@cs.elte.hu
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First we remind the reader of the definition of weak solutions of initial-boundary value
problems of nonlinear parabolic (functional) differential equation for t ∈ (0, T) and t ∈ (0, ∞)

with zero initial and boundary conditions.
Let Ω ⊂ Rn be a bounded domain with sufficiently smooth boundary, 1 < p < ∞. Denote

by W1,p(Ω) the usual Sobolev space of real valued functions with the norm

‖u‖W1,p(Ω) =

[∫
Ω
(|Du|p + |u|p)

]1/p

.

Further, let V ⊂ W1,p(Ω) be a closed linear subspace containing C∞
0 (Ω), V? the dual space of

V, the duality between V? and V will be denoted by 〈·, ·〉.
Denote by Lp(0, T; V) the Banach space of functions u : (0, T) → V (V ⊂ W1,p(Ω) is a

closed linear subspace) with the norm

‖u‖Lp(0,T:V) =

[∫ T

0
‖u(t)‖p

Vdt
]1/p

(1 < p < ∞).

The dual space of Lp(0, T; V) is Lq(0, T; V?) where 1/p + 1/q = 1. (See, e.g. [8].) Let A :
Lp(0, T; V)→ Lq(0, T; V?) be a given (nonlinear) operator and F ∈ Lq(0, T; V?).

Weak solutions of
Dtu + A(u) = F (1.1)

for t ∈ (0, T) with zero initial and boundary condition is a function u ∈ Lp(0, T; V) satisfying
Dtu ∈ Lq(0, T; V?), (1.1) and u(0) = 0. (For p ≥ 2, u ∈ Lp(0, T; V) and Dtu ∈ Lq(0, T; V?)

imply u ∈ C([0, T]; L2(Ω)) thus the initial condition makes sense.)
Consider first the particular case (without functional terms) A = Ã where

〈[Ã(u)](t), v〉 =
∫

Ω

[
n

∑
j=1

aj(t, x, u, Du)Djv + a0(t, x, u, Du)v

]
dx (1.2)

for all v ∈ V, almost all t ∈ [0, T]. By using the theory of monotone operators the following
existence and uniqueness theorem is proved. (See, e.g., [3, 4, 8].)

(C1) The functions aj : (0, T) × Ω × Rn+1 → R (j = 0, 1, . . . , n) satisfy the Carathéodory
conditions, i.e. (t, x) 7→ aj(t, x, ξ) is measurable for all ξ ∈ Rn+1 and ξ 7→ aj(t, x, ξ) is
continuous for a.a. (t, x).

(C2) There exist a constant c1 and a function k1 ∈ Lq((0, T)×Ω) (1/p + 1/q = 1, p ≥ 2) such
that

|aj(t, x, ξ)| ≤ c1[1 + |ξ|p−1] + k1(t, x),

j = 0, 1, . . . , n, for a.a. (t, x) ∈ (0, T)×Ω, each ξ ∈ Rn+1.

(C3) The inequality
n

∑
j=0

[aj(t, x, ξ)− aj(t, x, ξ?)](ξ j − ξ?j ) ≥ c2|ξ − ξ?|p

holds with come constant c2 > 0.

Theorem 1.1. Assume (C1)–(C3). Then for any F ∈ Lq(0, T; V?) there exists a unique u ∈ Lp(0, T; V)

weak solution of (1.1) with A = Ã which depends on F continuously.
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A more general case is when [A(u)](t) is depending not only on u(t) and (Du)(t), then
(1.1) is a functional equation. By using the theory of pseudomonotone operators, one can
prove existence of solutions for t ∈ [0, T] in this more general case. (See, e.g., [4].)

Now we formulate a theorem on weak solutions of (1.1) for t ∈ (0, ∞). The set Lp
loc(0, ∞; V)

consists of all functions f : (0, ∞) → V for which the restriction f |(0,T) belongs to Lp(0, T; V)

for each finite T > 0. Furthermore, by using the notations QT = (0, T)×Ω, Q∞ = (0, ∞)×Ω
denote by LP

loc(Q∞) the set of functions f : Q∞ → R for which f |QT ∈ Lp(QT) with arbitrary
T > 0. Assume that

(C∞1) Functions aj : Q∞ ×Rn+1 satisfy the Carathéodory conditions.

(C∞2) There exist a constant c1 and a function k1 ∈ Lq(Ω) such that

|aj(t, x, ξ)| ≤ c1|ξ|p−1 + k1(x).

(C∞3) For a.a. (t, x) ∈ Q∞, all ξ, ξ? ∈ Rn+1

n

∑
j=0

[aj(t, x, ξ)− aj(t, x, ξ?)](ξ j − ξ?) ≥ c2|ξ − ξ?|p

with some constant c2 > 0.

Theorem 1.2. Assume (C∞1)–(C∞3). Then for arbitrary F ∈ Lq
loc(0, ∞; V?) there is a unique u ∈

Lp
loc(0, ∞; V) such that u′ ∈ Lq

loc(0, ∞; V?) and

Dtu(t) + [Ã(u)](t) = F(t) for a.a. t ∈ (0, ∞), u(0) = 0

with the operator Ã defined in (1.2).
If ‖F(t)‖V? is bounded for a.a. t ∈ (0, ∞) then for a solution u, ‖u(t)‖L2(Ω) is bounded and∫ T2

T1

‖u(t)‖p
Vdt ≤ c3(T2 − T1) with some constant c3. (1.3)

Now we formulate a theorem on the stabilization of u(t) as t→ ∞.

Theorem 1.3. Assume that the assumptions of the above theorem are satisfied. Further, there exist
Carathéodory functions aj,∞ : Ω × Rn+1 → R, a continuous function Φ : (0, ∞) → (0, ∞) and
F∞ ∈ V? such that

|aj(t, x, ξ)− aj,∞(x, ξ)| ≤ Φ(t)(|ξ|p−1 + 1), where lim
∞

Φ = 0, (1.4)

‖F(t)− F∞‖V? ≤ Φ(t) for a.a. t > 0. (1.5)

Then

lim
t→0
‖u(t)− u∞‖L2(Ω) = 0, lim

T→∞

∫ T+a

T−a
‖u(t)− u∞‖p

Vdt = 0 (1.6)

for arbitrary fixed a > 0 where u∞ ∈ V is the unique solution z ∈ V to
n

∑
j=1

∫
Ω

aj,∞(x, z, Dz)Djvdx +
∫

Ω
a0,∞(x, z, Dz)vdx = 〈F∞, v〉, v ∈ V.

(For the proofs, see, e.g., [4].)
By using the above results, we shall consider parabolic functional equations (equations

containing some nonlocal terms) of certain particular type. In Section 2 equations with real
valued functionals and in Section 3 equations with certain operators will be studied.
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2 Parabolic equations with real valued functionals, applied to the
solution

Case 1. First consider a semilinear parabolic functional equation for t ∈ (0, ∞)

Dtu + B̃u = Dtu−
n

∑
j,k=1

Dj[ajk(t, x)Dku] + a0(t, x)u = k(M(u))F1 + F2 (2.1)

(i.e. the elliptic operator Ã in (1.2) is linear), where M : L2(0, T0; V) → R is a given linear
continuous functional (T0 < ∞), V ⊂ W1,2(Ω), k : R → R is a given continuous function,
F1, F2 ∈ L2

loc(0, ∞; V?). Further, ajk, a0 ∈ L2
loc((0, ∞)×Ω), ajk = akj and the functions ajk satisfy

the uniform ellipticity condition

c1|ξ|2 ≤
n

∑
j,k=1

ajk(t, x)ξ jξk + a0(t, x)ξ2
0 ≤ c2|ξ|2

for all ξ = (ξ0, ξ1, . . . , ξn) ∈ Rn+1, x ∈ Ω, t ∈ (0, ∞) with some positive constants c1, c2.

Remark 2.1. The linear continuous functional M : L2(0, T0; V)→ R may have the form

M(u) =
∫ T0

0

∫
Ω

[
K0(t, x)u(t, x) +

n

∑
j=1

Kj(t, x)Dju(t, x)

]
dxdt (2.2)

where K0, K1 ∈ L2((0, T0)×Ω).

According to Theorem 1.2, for arbitrary F ∈ L2
loc(0, ∞; V?) there is a unique solution u ∈

L2
loc(0, ∞; V) of

Dtu + B̃u = F,

denoted by u = (Dt + B̃)−1F.

Theorem 2.2. A function u ∈ L2
loc(0, ∞; V) is a weak solution of (2.1) if and only if λ = Mu satisfies

the equation
λ = k(λ)M[(Dt + B̃)−1F1] + M[(Dt + B̃)−1F2]. (2.3)

and
u = k(λ)(Dt + B̃)−1F1 + (Dt + B̃)−1F2. (2.4)

Proof. By Theorem 1.2 function u ∈ L2
loc(0, ∞; V) is a weak solution of (2.1) if and only if

u = k(M(u))(Dt + B̃)−1F1 + (Dt + B̃)−1F2,

thus
M(u) = k(M(u))M[(Dt + B̃)−1F1 + (Dt + B̃)−1F2]

which implies the theorem.

Corollary 2.3. The number of weak solutions of (2.1) (with zero initial-boundary conditions) equals
the number of solutions λ of equation (2.3). Consequently, it is easy to show that for any natural
number N or for N = ∞ one can choose functions k such that (2.1) has exactly N solutions.
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Remark 2.4. If we know the values of M[(Dt + B)−1F1] and M[(Dt + B)−1F2] then by using
some numerical procedure one can calculate the λ roots of (2.3). Further, it is easy to show
simple sufficient conditions on M[(Dt + B)−1F1], M[(Dt + B)−1F2] and the function k which
imply that (2.3) has zero, exactly one (two or three) roots.

From Theorem 1.3 it directly follows

Theorem 2.5. If there exist measurable functions aj,k,∞, a0,∞ ∈ L∞(Ω) and F1,∞, F2,∞ ∈ V? such that

|a0(t, x)− a0,∞(x)| ≤ Φ(t), |aj,k(t, x)− aj,k,∞(x)| ≤ Φ(t), where lim
∞

Φ = 0,

‖F1(t)− F1,∞‖V? ≤ Φ(t), ‖F2(t)− F2,∞‖V? ≤ Φ(t) for a.a. t > 0

then we have (1.6) where u∞ ∈ V is the unique solution z ∈ V to

n

∑
j,k=1

∫
Ω

aj,k,∞(x)(Djz)(Dkv)dx +
∫

Ω
a0,∞(x)zvdx = 〈k(M(u))F1,∞, v〉+ 〈F2,∞, v〉, v ∈ V.

Case 2. Now consider nonlinear parabolic functional equations of the form

Dtu + [lM(u))]γ Ã(u) = [lM(u))]βF, t ∈ (0, ∞), u(0) = 0 (2.5)

where the nonlinear operator Ã has the form (1.2) and has the property

Ã(µu) = µp−1Ã(u), for all µ > 0 with some p ≥ 2 (2.6)

(e.g. Ã(u) = −4pu + c0u|u|p−2 with c0 > 0 has this property), further, M : Lp(0, T0; V) → R

(V ⊂W1,p(Ω)) is (homogeneous) functional with the property

M(µu) = µσ M(u) for all µ > 0 with some σ > 0; (2.7)

l is a given positive continuous function and the numbers β, γ satisfy

γ = β(2− p), β > 0.

A simple calculation shows

Theorem 2.6. A function u ∈ Lp
loc(0, ∞; V) satisfies (2.5) in weak sense if and only if

ũ = [l(M(u))]−βu satisfies Dtũ + Ã(ũ) = F.

This theorem implies

Theorem 2.7. A function u ∈ Lp
loc(0, ∞; V) is a weak solution of (2.5) with zero initial and boundary

condition if and only if λ = M(u) satisfies the equation

λ = [l(λ)]βσ M[B−1
0 (F)] and u = [l(λ)]βB−1

0 (F) (2.8)

where B0 is defined by B0(u) = Dtu + Ã(u), i.e. B−1
0 (F) is the unique weak solution of (1.1) (with

A = Ã and zero initial and boundary condition). If F ∈ L∞(0, ∞; V?) then ‖u(t)‖L2(Ω) is bounded
and (1.3) holds.
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Corollary 2.8. The number of weak solutions of (2.5) equals the number of roots of (2.8). Further,
assuming M[B−1

0 (F)] > 0, for arbitrary N = 1, 2, . . . , ∞ one can construct a continuous positive
function l such that (2.5) has exactly N solutions, in the following way. Let g : R → R be a
continuous function such that g(λ) + λ > 0 for all λ ∈ R and g has N real roots. Then for

l(λ) =

[
g(λ) + λ

M(B−1
0 (F))

]1/(βσ)

(2.5) has N weak solutions.

Remark 2.9. An example for functional M with property (2.7) is integral operator

M(u) =
∫ T

0

∫
Ω

K(t, x)|u(t, x)|σdtdx.

By Theorems 1.3 and 2.6 one obtains

Theorem 2.10. If the assumptions (1.4), (1.5) are satisfied then we have (1.6) where u∞ ∈ V is the
unique solution z ∈ V to

n

∑
j=1

∫
Ω

aj,∞(x, z, Dz)Djvdx +
∫

Ω
a0,∞(x, z, Dz)vdx

= (l(λ))β〈F∞, v〉 = [l(M(u))]β〈F∞, v〉, v ∈ V.

3 Parabolic equations with nonlocal operators

Now consider partial functional equations of the form

Dtu + Ã(u) = C(u) (3.1)

where Ã is nonlinear differential operator (1.2) satisfying (C∞1)–(C∞3) (or Ã = B̃ is a uni-
formly elliptic linear differential operator (see (2.1)) and C : Lp

loc(0, ∞; V)→ Lp
loc(0, ∞; V?) is a

given (possibly nonlinear) operator. Clearly, u ∈ Lp
loc(0, ∞; V) satisfies (3.1) if and only if

u = (Dt + Ã)−1[C(u)] =: G(u) (3.2)

where G : Lp
loc(0, ∞; V)→ Lp

loc(0, ∞; V) is a given (possibly nonlinear) operator, i.e. u is a fixed
point of G. Then

C(u) = (Dt + Ã)[G(u)]. (3.3)

Now we consider three particular cases for G.

Case 1. The operator G is defined by

[G(u)](t, x) = (Lu)(t, x) + F(t, x) =
∫ ∞

0

∫
Ω

K(t, τ, x, y)u(τ, y)dτdy + F(t, x) (3.4)

where K ∈ L2((0, ∞)× (0, ∞)×Ω×Ω); u, F ∈ L2((0, ∞)×Ω).
By using (3.1) and (3.3) we find
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Theorem 3.1. If K and F are sufficiently smooth and “good” then the solution u ∈ L2(0, ∞)×Ω) of
(3.2) with the operator (3.4) belongs to Lp

loc(0, ∞; V), Dtu belongs to Lq
loc(0, ∞; V?) (in the linear case

Ã = B̃, p = q = 2), u(0) = 0 and the equation (3.1) has the form

Dtu + (Ã(u))(t, x) =
∫ ∞

0

∫
Ω

DtK(t, τ, x, y)u(τ, y)dxdy + DtF(t, x)

+ Ãx

[∫ ∞

0

∫
Ω

K(t, τ, x, y)u(τ, y)dτdy + F(t, x)
]

. (3.5)

In the linear case Ã = B̃

Dtu + (B̃u)(t, x) =
∫ ∞

0

∫
Ω

DtK(t, τ, x, y)u(τ, y)dxdy + DtF(t, x)

+
∫ ∞

0

∫
Ω

B̃xK(t, τ, x, y)u(τ, y)dτdy + B̃xF(t, x). (3.6)

(ÃxK(t, τ, x, y) denotes the differential operator Ã applied to x 7→ K(t, τ, x, y) and B̃xF(t, x) denotes
the differential operator B̃ applied to x 7→ F(t, x).)

Further, if 1 is an eigenvalue of the linear integral operator L : L2((0, ∞)Ω)→ L2((0, ∞)Ω) with
multiplicity N then (for certain functions F) (3.6) may have N “linearly independent” solutions.

The proof is similar to the previous ones.

Remark 3.2. The value of solution u at some time t is connected with the values of u for all
t ∈ (0, ∞) (and for all t ∈ [0, T0] if K(t, τ, x, y) = 0 for τ > T0).

By using (3.2), (3.4) and the Cauchy–Schwarz inequality, one obtains

Theorem 3.3. Assume that there exist sufficiently smooth K∞ ∈ L2((0, ∞)×Ω×Ω) = L2(Q) and
F∞ ∈ L2(Ω) such that

lim
t→∞
‖K(t, τ, x, y)− K∞(τ, x, y)‖L2(Q) = 0,

lim
t→∞
‖F(t, x)− F∞(x)‖L2(Ω) = 0.

Then
lim
t→∞
‖u(t, x)− u∞(x)‖L2(Ω) = 0,

where
u∞(x) =

∫ ∞

0

∫
Ω

K∞(τ, x, y)u(τ, y)dτdy + F∞(x)

and u∞ satisfies

[Ã(u∞)](x) = Ãx

[∫ ∞

0

∫
Ω

K∞(τ, x, y)u(τ, y)dτdy + F∞(x)
]

.

Case 2. Now consider operators G of the form

G(u) = Lu + h(Pu)F + H, t ∈ (0, ∞) (3.7)

where operator L is defined by

(Lu)(t, x) =
∫ t

0

∫
Ω

K(t, τ, x, y)u(τ, y)dτdy,
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K ∈ L2((0, ∞)× (0, ∞)×Ω×Ω), u ∈ L2((0, ∞)×Ω) and the kernel K has the same smooth-
ness property as in Theorem 3.1, P : L2(0, T0; V) → R is a linear continuous functional
(T0 < ∞), h : R → R is a given continuous function and F, H ∈ L2((0, ∞)×Ω), DtF, DtH ∈
L2((0, ∞) × Ω). In this case the integral operator L is of Volterra type and so (I − L)−1 :
L2((0, ∞)×Ω)→ L2((0, ∞)×Ω) exists.

Theorem 3.4. If Ã = B̃ (i.e. Ã is linear) then equation (3.1) has the form

Dtu + B̃u =
∫ t

0

∫
Ω
[DtK(t, τ, x, y) + B̃xK(t, τ, x, y)]u(τ, y)dτdy

+
∫

Ω
K(t, t, x, y)u(t, y)dy + h(Pu)(Dt + B̃)F + (Dt + B̃)H, u(0, x) = 0. (3.8)

Further, u ∈ L2((0, ∞) × Ω) is a weak solution of (3.8) if and only if u = h(λ)[(I − L)−1F] +
(I − L)−1H where λ is a root of the equation

λ = h(λ)P[(I − L)−1F] + P[(I − L)−1H]. (3.9)

Thus the number of solutions of (3.8) equals the number of the roots of (3.9).

Proof. Equation (3.8) is fulfilled if and only if

u(t, x) =
∫ t

0

∫
Ω

K(t, τ, x, y)u(τ, y)dτdy + h(Pu)F(t, x) + H(t, x), (3.10)

i.e.
(I − L)u = h(Pu)F + H, u = h(Pu)[(I − L)−1F] + (I − L)−1H. (3.11)

Let uλ = h(λ)(I − L)−1F + (I − L)−1H then

P(uλ) = h(λ)P[(I − L)−1F] + P[(I − L)−1H].

Consequently, (3.11) (and so (3.8)) is satisfied if and only if λ = Pu satisfies (3.9).

Corollary 3.5. If P[(I − L)−1F] 6= 0 then for arbitrary N (= 0, 1, . . . , ∞) we can construct h such
that (3.8) has N solutions, in the following way. Let g : R → R be a continuous functions having N
zeros. Then (3.8) has N solutions if

h(λ) =
g(λ) + λ− P[(I − L)−1H]

P[(I − L)−1F]
.

Remark 3.6. The linear functional P : L2(0, T0; V)→ R may have the form (2.2).

By (3.10) and the Cauchy–Schwarz inequality we obtain

Theorem 3.7. Assume that there exist sufficiently smooth F∞, H∞ ∈ L2(Ω) and K∞ ∈ L2((0, ∞)×
Ω×Ω) such that

lim
t→∞
‖F(t, x)− F∞(x)‖L2(Ω) = 0, lim

t→∞
‖H(t, x)− H∞(x)‖L2(Ω) = 0,

lim
t→∞

∫
Ω

[∫ t

0

∫
Ω
[K(t, τ, x, y)− K∞(τ, x, y)]2dτdy

]
dx = 0.

Then
lim
t→∞
‖u(t, x)− u∞(x)‖L2(Ω) = 0,
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where
u∞(x) =

∫ ∞

0

∫
Ω

K∞(τ, x, y)u(τ, y)dτdy + h(λ)F∞(x) + H∞(x),

λ = P(u) and u∞ satisfies

(B̃u∞)(x) =
∫ ∞

0

∫
Ω

B̃x[K∞(τ, x, y)]u(τ, y)dτdy + h(λ)(B̃F∞)(x) + (B̃H∞)(x).

Case 3. Finally, consider the case

[G(u)](t, x) = P̂(M̂u(t))F(t, x), (t, x) ∈ (0, ∞)×Ω

where

(M̂u))(t) =
∫ t

0

∫
Ω

M̃(τ, y)u(τ, y)dτdy, M̃ ∈ C([0, ∞]×Ω),

P̂ : R → R is a given continuously differentiable function, P̂(0) = 0, F is sufficiently smooth,
F(0, x) = 0, F(t, x) = 0 for x ∈ ∂Ω.

Theorem 3.8. In this case the partial functional equation (with possibly nonlinear operator Ã) (1.2)
has the form

Dtu + Ã(u) = P̂′(M̂u(t))F
∫

Ω
M̃(t, y)u(t, y)dy + P̂(M̂u(t))DtF

+ Ãx[P̂(M̂u(t))F], u(0, x) = 0, u(t, x) = 0 for x ∈ ∂Ω (3.12)

which is satisfied if and only if
u(t, x) = P̂(M̂u(t))F(t, x). (3.13)

Then v(t) = M̂u(t) satisfies the separable differential equation

v′(t) =
∫

Ω
M̃(t, y)u(t, y)dy = P̂(v(t))

∫
Ω

M̃(t, y)F(t, y)dy and v(0) = 0. (3.14)

Conversely, if v satisfies (3.14) then u(t, x) = P̂(v(t))F(t, x) satisfies (3.13).

Proof. Clearly, (3.12) is equivalent with (3.13). If u satisfies (3.13) then for

v(t) = (M̂u)(t) =
∫ t

0

∫
Ω

M̃(τ, y)u(τ, y)dτdy (3.15)

we have by (3.13)

v′(t) =
∫

Ω
M̃(t, y)u(t, y)dy = P̂((M̂u)(t))

∫
Ω

M̃(t, y)F(t, y)dy

= P̂(v(t))
∫

Ω
M̃(t, y)F(t, y)dy and, clearly, v(0) = 0.

Conversely, if v satisfies (3.14) then for

u(t, x) = P̂(v(t))F(t, x) (3.16)

we have u(x, 0) = 0, u(t, x) = 0 for x ∈ Ω and by v(0) = 0

(M̂u)(t) =
∫ t

0

∫
Ω

M̃(τ, y)u(τ, y)dτdy

= P̂(v(t))
∫ t

0

∫
Ω

M̃(τ, y)F(τ, y)dτdy =
∫ t

0
v′(τ)dτ = v(t),

thus by (3.16)
u(t, x) = P̂((M̂u)(t))F(t, x).
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Theorem 3.9. Assume that P̂(w) > 0 for w > 0 and P̂(0) = 0, further,

Q̂(v) =
∫ v

0

dw
P̂(w)

< ∞, lim
v→∞

Q̂(v) = ∞;

F(0, y) = 0 for all y ∈ Ω,
∫

Ω
M̃(t, y)F(t, y)dy > 0 for all t > 0.

Then we obtain for the solution of (3.14) v = 0 (v identically 0) and

v(t) = Q̂−1
[∫ t

0

∫
Ω

M̃(τ, y)F(τ, y)dydτ

]
and, consequently, we have solutions u = 0 and

u(t, x) = P̂(v(t))F(t, x) = P̂
{

Q̂−1
[∫ t

0

∫
Ω

M̃(τ, y)F(τ, y)dydτ

]}
F(t, x). (3.17)

Proof. By the assumptions on P̂, Q̂ is strictly monotone increasing, Q̂ maps from R to R,
Q̂(0) = 0, limv→∞ Q̂(v) = ∞, thus

v(t) = Q̂−1
[∫ t

0

∫
Ω

M̃(τ, y)F(τ, y)dydτ

]
, t ≥ 0

is a solution of (3.14). By the previous theorem, function u, defined by (3.17) and u = 0 are
solutions of (3.13) and (3.12).

By using the continuity of functions P̂ and Q̂−1, we obtain

Theorem 3.10. Assume that there exist F∞ ∈ L2(Ω) and c0 ∈ R such that

lim
t→∞

∫
Ω
|F(t, y)− F∞(y)|2dy = 0, (3.18)

lim
t→∞

∫ t

0

∫
Ω
|M̃(τ, y)F(τ, y)dydτ = c0. (3.19)

Then for the nonzero solution u we have

lim
t→∞
‖u(t, x)− u∞(x)‖L2(Ω) = 0

where
u∞(x) = P̂(Q̂−1(c0))F∞(x).

Remark 3.11. If there exists M̃∞ ∈ L2(Ω) such that

lim
t→∞

∫
Ω

[∫ t

0
M̃(τ, y)dτ − M̃∞(y)

]
dy = 0

then (3.18) implies (3.19) with c0 =
∫

Ω M̃∞(y)F∞(y)dy.

Acknowledgements

This work was supported by Grants No.: OTKA K 115926, SNN 125119.



Qualitative behavior of multiple solutions 11

References

[1] A. V. Bitsadze, A. A. Samarskii, On some simple generelizations of linear elliptic bound-
ary value problems. Dokl. Akad. Nauk SSSR 185(1969), 739–740, English transl. in Soviet
Math Dokl. 10(1969). MR0247271

[2] M. Csirik, On pseudomonotone operators with functional dependence on unbounded
domains, Electron. J. Qual. Theory Differ. Equ. 2016, No. 21, 1–15. https://doi.org/10.
14232/ejqtde.2016.1.21; MR1934390

[3] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires (in French),
Dunod, Gauthier-Villars, Paris, 1969. MR0259693

[4] L. Simon, Application of monotone type operators to parabolic and functional parabolic
PDE’s, in: Handbook of differential equations: evolutionary equations, Vol. IV, Handb. Differ.
Equ., Elsevier, 2008, pp. 267–321. https://doi.org/10.1016/S1874-5717(08)00006-6;
MR2508168

[5] L. Simon, Multiple solutions of nonlinear partial functional differential equations and
systems, Electron. J. Qual. Theory Differ. Equ. 2019, No. 21, 1–8. https://doi.org/10.
14232/ejqtde.2019.1.21; MR3932928

[6] A. L. Skubachevskii, Elliptic functional differential equations and applications, Operator The-
ory: Advances and Applications, Vol. 91, Birkhäuser, Basel, 1997. https://doi.org/10.
1007/978-3-0348-9033-5; MR1437607

[7] J. Wu, Theory and applications of partial functional differential equations, Applied Math-
ematical Sciences, Vol. 119, Springer, New York, 1996. https://doi.org/10.1007/
978-1-4612-4050-1; MR1415838

[8] E. Zeidler, Nonlinear functional analysis and its applications. II/B, Springer, 1990. https:
//doi.org/10.1007/978-1-4612-0981-2; MR1033498

https://www.ams.org/mathscinet-getitem?mr=0247271
https://doi.org/10.14232/ejqtde.2016.1.21
https://doi.org/10.14232/ejqtde.2016.1.21
https://www.ams.org/mathscinet-getitem?mr=1934390
https://www.ams.org/mathscinet-getitem?mr=0259693
https://doi.org/10.1016/S1874-5717(08)00006-6
https://www.ams.org/mathscinet-getitem?mr=2508168
https://doi.org/10.14232/ejqtde.2019.1.21
https://doi.org/10.14232/ejqtde.2019.1.21
https://www.ams.org/mathscinet-getitem?mr=3932928
https://doi.org/10.1007/978-3-0348-9033-5
https://doi.org/10.1007/978-3-0348-9033-5
https://www.ams.org/mathscinet-getitem?mr=1437607
https://doi.org/10.1007/978-1-4612-4050-1
https://doi.org/10.1007/978-1-4612-4050-1
https://www.ams.org/mathscinet-getitem?mr=1415838
https://doi.org/10.1007/978-1-4612-0981-2
https://doi.org/10.1007/978-1-4612-0981-2
https://www.ams.org/mathscinet-getitem?mr=1033498

	Introduction
	Parabolic equations with real valued functionals, applied to the solution
	Parabolic equations with nonlocal operators

