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1 Introduction

Here, the unique continuation properties of the following abstract Schrödinger equation

i∂tu + ∆u + A (x) u + V (x, t) u = 0, x ∈ Rn, t ∈ [0, T] , (1.1)

are studied, where A = A (x) is a linear and V (x, t) is a given potential operator functions
in a Hilbert space H; ∆ denotes the Laplace operator in Rn and u = u(x, t) is the H-valued
unknown function. This linear result was then applied to show that two regular solutions u1,
u2 of non-linear abstract Schrödinger equations

i∂tu + ∆u + A ((x)) u = F (u, ū) , x ∈ Rn, t ∈ [0, T] (1.2)

for general non-linearities F must agree in Rn × [0, T], when u1 − u2 and its gradient decay
faster than any quadratic exponential at times 0 and T.

Hardy’s uncertainty principle and unique continuation properties for Schrödinger equa-
tions studied e.g in [4–7] and the references therein. Abstract differential equations studied
e.g. in [2, 12–15, 17–19, 23, 25]. However, there seems to be no such abstract setting for nonlin-
ear Schrödinger equations except the local existence of weak solution (cf. [15]). In contrast to
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these results we will study the unique continuation properties of abstract Schrödinger equa-
tions with the operator potentials. Since the Hilbert space H is arbitrary and A is a possible
linear operator, by choosing H and A we can obtain numerous classes of Schrödinger type
equations and its systems which occur in the different processes. Our main goal is to obtain
sufficient conditions on a solution u, the operator A, potential V and the behavior of the so-
lution at two different times t0 and t1 which guarantee that u (x, t) ≡ 0 for x ∈ Rn, t ∈ [0, T].
If we choose H to be a concrete Hilbert space, for example H = L2 (Ω), A = L, where Ω is a
domain in Rm with sufficiently smooth boundary and L is a regular elliptic operator then, we
obtain the unique continuation properties of the anisotropic Schrödinger equation

∂tu = i (∆u + Lu) + V (x, t) u, x ∈ Rn, y ∈ Ω, t ∈ [0, T] . (1.3)

Moreover, let we choose H = L2 (0, 1) and A to be differential operator with Wentzell–Robin
boundary condition defined by

D (A) =
{

u ∈W2,2 (0, 1) , Au (j) = 0, j = 0, 1
}

, (1.4)

A (x) u = a (x, y) u(2) + b (x, y) u(1),

where a, b are sufficiently smooth functions on Rn × (0, 1) and V (x, t) is a integral operator
so that

V (x, t) u =
∫ 1

0
K (x, y, t) u (x, y, t) dy,

where, K = K (x, τ, t) is a complex valued bounded function. From our general results we ob-
tain the unique continuation properties of the Wentzell–Robin type boundary value problem
(BVP) for the following Schrödinger equation

∂tu = i
(

∆u + a
∂2u
∂y2 + b

∂u
∂y

)
+
∫ 1

0
K (x, y, t) u (x, y, t) dy,

x ∈ Rn, y ∈ (0, 1) , t ∈ [0, T] ,
(1.5)

a∂2
yu (x, j, t) + b∂yu (x, j, t) = 0, j = 0, 1. (1.6)

Note that, the regularity properties of Wentzell–Robin type BVP for elliptic equations were
studied e.g. in [10, 11] and the references therein. Moreover, if put H = l2 and choose A to be
a infinite matrix

[
amj
]
, m, j = 1, 2, . . . , ∞, then we derive the unique continuation properties of

the following system of Schrödinger equation

∂tum = i

[
∆um +

∞

∑
j=1

(
amj (x) + bmj (x, t)

)
uj

]
, x ∈ Rn, t ∈ (0, T) , (1.7)

where amj are continuous and bmj are bounded functions.
Let E be a Banach space. Lp (Ω; E) denotes the space of strongly measurable E-valued

functions that are defined on the measurable subset Ω ⊂ Rn with the norm

‖ f ‖Lp = ‖ f ‖Lp(Ω;E) =

(∫
Ω
‖ f (x)‖p

E dx
) 1

p

, 1 ≤ p < ∞ .

Let H be a Hilbert space and

‖u‖ = ‖u‖H = (u, u)
1
2
H = (u, u)

1
2 for u ∈ H.
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For p = 2 and E = H, Lp (Ω; E) becomes a H-valued function space with inner product:

( f , g)L2(Ω;H) =
∫

Ω
( f (x) , g (x))H dx, f , g ∈ L2 (Ω; H) .

Here, Ws,2 (Rn; H), −∞ < s < ∞ denotes the H-valued Sobolev space of order s which is
defined as:

Ws,2 = Ws,2 (Rn; H) = (I − ∆)−
s
2 L2 (Rn; H)

with the norm
‖u‖Ws,2 =

∥∥∥(I − ∆)
s
2 u
∥∥∥

L2(Rn;H)
< ∞.

It clear that W0,2 (Rn; E) = L2 (Rn; H). Let H0 and H be two Hilbert spaces and H0 is con-
tinuously and densely embedded into H. Let Ws,2 (Rn; H0, H) denote the Sobolev–Lions type
space, i.e.,

Ws,2 (Rn; H0, H) =
{

u ∈Ws,2 (Rn; H) ∩ L2 (Rn; H0) ,

‖u‖Ws,2(Rn;H0,H) = ‖u‖L2(Rn;H0)
+ ‖u‖Ws,2(Rn;H) < ∞

}
.

Let C (Ω; E) denote the space of E-valued uniformly bounded continuous functions on Ω
with norm

‖u‖C(Ω;E) = sup
x∈Ω
‖u (x)‖E .

Cm (Ω; E) will denote the spaces of E-valued uniformly bounded strongly continuous and
m-times continuously differentiable functions on Ω with norm

‖u‖Cm(Ω;E) = max
0≤|α|≤m

sup
x∈Ω
‖Dαu (x)‖E .

Here, Or = {x ∈ Rn, |x| < r} for r > 0. Let N denote the set of all natural numbers, C

denote the set of all complex numbers. Let E1 and E2 be two Banach spaces. B (E1, E2) will
denote the space of all bounded linear operators from E1 to E2. For E1 = E2 = E it will be
denoted by B (E). By (E1, E2)θ,p, 0 < θ < 1, 1 ≤ p ≤ ∞ we will denote the interpolation
spaces obtained from {E1, E2} by the K-method [24, §1.3.2]. Here, S = S(Rn; E) denotes the
E-valued Schwartz class, i.e. the space of E-valued rapidly decreasing smooth functions on
Rn, equipped with its usual topology generated by seminorms. S(Rn; C) will be denoted by
just S. Let S′(Rn; E) denote the space of all continuous linear operators, L : S → E, equipped
with topology of bounded convergence.

Let A = A (x) , x ∈ Rn be closed linear operator in E with independent on x ∈ Rn domain
D (A) that is dense on E. The Fourier transformation of A (x), i.e. Â = FA = Â (ξ) is a linear
operator defined as

Â (ξ) u (ϕ) = A (x) u (ϕ̂) for u ∈ S′ (Rn; E) , ϕ ∈ S (Rn) .

(For details see e.g. [1, Section 3]).
For linear operators A and B, [A, B]-denotes a commutator operator, i.e.

[A, B] = AB− BA.

These kind of operators are of fundamental importance in real analysis, potential theory
and in the study of elliptic and parabolic differential equations (see e.g. [9, 16, 22] and refer-
ences therein).
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Sometimes we use one and the same symbol C without distinction in order to denote
positive constants which may differ from each other even in a single context. When we want
to specify the dependence of such a constant on a parameter, say α, we write Cα.

2 Main results

Let A = A (x) , x ∈ Rn be closed linear operator in a Hilbert space H with independent on
x ∈ Rn domain D (A) that is dense on H. Let

H (A) =
{

u ∈ D (A) , ‖u‖H(A) = ‖Au‖H + ‖u‖H < ∞
}

,

X = L2 (Rn; H) , X (A) = L2 (Rn; H (A)) , X (A) = L2 (Rn; H (A))

X∞ (A) = L∞ (Rn; H (A)) , Ys = Ws,2 (Rn; H) , Ys (A) = Ws,2 (Rn; H (A)) ,

B = L∞ (Rn; B (H)) and µ (t) = αt + β (1− t) .

Definition 2.1. A function u ∈ L∞ (0, T; X (A)) is called a local weak solution to (1.1) on (0, T)
if u satisfies (1.1). In particular, if (0, T) coincides with R, then u is called a global weak
solution to (1.1). If the solution of (1.1) belongs to C

(
[0, T] ; X (A) ∩Y2), then it is called a

strong solution.

Our main result in this paper is the following.

Theorem 2.2. Assume that the following condition are satisfied:

(1) A = A (x) and ∂A
∂xk

are symmetric operators in a Hilbert space H with independent on x ∈ Rn

domain D
(

∂A
∂xk

)
= D (A) that is dense on H. Moreover, (A (x) u, u) ≥ 0 and (A (x) u, u) ∈

L2(Rn) for u ∈ D (A);

(2)
n

∑
k=1

(
xk

[
A

∂ f
∂xk
− ∂A

∂xk
f
]

, f
)

X
≥ 0 for f ∈ L∞

(
0, T; Y1 (A)

)
;

(3) A (x) A−1 (x0) ∈ L1 (Rn; B (H)) for some x0 ∈ Rn and V (x, t) ∈ B (H) for (x, t) ∈ Rn× [0, 1] ;

(4) either, V (x, t) = V1 (x) + V2 (x, t), where V1 (x) ∈ B (H) for x ∈ Rn and

M1 = sup
x∈Rn
‖V1 (x)‖B(H) < ∞, sup

t∈[0,1]

∥∥∥e|x|
2µ−2(t)V2 (·, t)

∥∥∥
B
< ∞

or
lim
r→∞
‖V‖L1(0,1;L∞(Rn/Or);B(H)) = 0;

(5) u ∈ C ([0, 1] ; X (A)) is a solution of the equation (1.1) and∥∥∥eβ−2|x|2 u (·, 0)
∥∥∥

X
< ∞,

∥∥∥eα−2|x|2 u (·, 1)
∥∥∥

X
< ∞.

where
α, β > 0, αβ < 2.

Then u (x, t) ≡ 0.
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As a result of Theorem 2.2 we get the following Hardy’s uncertainty principle result for
the non linear equation (1.2).

Theorem 2.3. Suppose that the assumptions (1)–(2) of Theorem 2.2 are satisfied. Let u1, u2 ∈
C
(
[0, 1] ; Yk (A)

)
, k ∈ Z+ be strong solutions of the equation (1.2) with k > n

2 . Moreover, assume:

(1) F ∈ Ck (C2, C
)

and F (0) = ∂uF (0) = ∂ūF (0) = 0. There are α, β > 0 with αβ < 2 such that

e−β−2|x|2 (u1 (·, 0)− u2 (·, 0)) ∈ X, e−α−2|x|2 (u1 (·, 1)− u2 (·, 1)) ∈ X

(2) there exists a constant B0 > 0 such that

‖F (u, ū)‖H ≤ B0 ‖u‖(H(A),H) 1
p ,p

for all u ∈ (H (A) , H) 1
p ,p.

Then u1 ≡ u2.

One of the results we get is the following one.

Theorem 2.4. Assume that the all conditions of Theorem 2.2 are satisfied. Suppose ∆ + A + V1

generates a bounded continuous group. Let u ∈ C ([0, 1] ; X (A)) be a solution of (1.1). Then∥∥e|x|
2µ−2(t)u (·, t)

∥∥ 1
µ(t)
X is logarithmically convex in [0, 1] and there is N = N (α, β) such that∥∥∥e|x|

2µ−2(t)u (·, t)
∥∥∥ 1

µ(t)

X
≤ eN(M1+M2+M2

1+M2
2)
∥∥∥eβ−2|x|2 u (·, 0)

∥∥∥β(1−t)µ(t)

X

∥∥∥eα−2|x|2 u (·, 1)
∥∥∥αtµ(t)

X
,

when
M2 = e2B(V2) sup

t∈[0,1]

∥∥∥e|x|
2µ−2(t)V2 (·, t)

∥∥∥
B

, B (V2) = sup
t∈[0,1]

‖Re V2 (·, t)‖B .

Moreover, √
t (1− t)

∥∥∥e|x|
2µ−2(t)∇u

∥∥∥
L2(Rn×[0,1];H)

≤ eN(M1+M2+M2
1+M2

2)
[∥∥∥eβ−2|x|2 u (·, 0)

∥∥∥
X
+
∥∥∥eα−2|x|2 u (·, 1)

∥∥∥
X

]
.

Consider the Cauchy problem for abstract parabolic equations with variable operator co-
efficients

∂tu = ∆u + A (x) u + V (x, t) u, (2.1)

u (x, 0) = f (x) , x ∈ Rn, t ∈ [0, 1] ,

where A (x) is a linear and V (x, t) is the given potential operator functions in H. By employ-
ing Theorem 2.2 we obtain the following result for the abstract parabolic equation (2.1):

Theorem 2.5. Assume the assumptions (1)–(3) of Theorem 2.2 are satisfied. Suppose that u ∈
L∞ (0, 1; X (A)) ∩ L2 (0, 1; Y1) is a solution of (2.1) and

‖ f ‖X < ∞,
∥∥∥eδ−2|x|2 u (·, 1)

∥∥∥
X
< ∞

for some δ < 1. Then, f (x) ≡ 0 for x ∈ Rn.
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First of all, we generalize the result of G. H. Hardy (see e.g. [20, p. 131]) about uncertainty
principle for Fourier transform:

Lemma 2.6. Let f (x) be H-valued function for x ∈ Rn and

‖ f (x)‖ = O
(

e
− |x|

2

β2

)
,

∥∥∥ f̂ (ξ)
∥∥∥ = O

(
e−

4|ξ|2

α2

)
, x, ξ ∈ Rn for αβ < 4.

Then f (x) ≡ 0. Also, if αβ = 4, then ‖ f (x)‖ is a constant multiple of e
− |x|

2

β2 .

Proof. Indeed, by employing Phragmén–Lindelöf theorem to the classes of Hilbert-valued an-
alytic functions and by reasoning as in [8] we obtain the assertion.

Consider the Cauchy problem for free abstract Schrödinger equation

i∂tu + ∆u + Au = 0, x ∈ Rn, t ∈ [0, 1] , (2.2)

u (x, 0) = f (x) ,

where A = A (x) is a linear operator in a Hilbert space H with independent on x domain
D (A) .

The above result can be rewritten for solution of the (2.2) on Rn × (0, ∞). Indeed, assume

‖u (x, 0)‖ = O
(

e
− |x|

2

β2

)
, ‖u (x, T)‖ = O

(
e−
|x|2

α2

)
for αβ < 4T.

Then u (x, t) ≡ 0. Also, if αβ = 4T, then u has as a initial data a constant multiple of

e
−
(

1
β2 +

i
4T

)
|x|2

.

Lemma 2.7. Assume that A is a symmetric operator in H with independent on x ∈ Rn domain
D (A) that is dense on H. Moreover, A (x) A−1 (x0) ∈ L1 (Rn; B (H)) for some x0 ∈ Rn. Then for
f ∈Ws,2 (Rn; H) , s ≥ 0 there is a generalized solution of (2.2) expressing as

u (x, t) = F−1
[
eiÂξ t f̂ (ξ)

]
, Âξ = Â (ξ)− |ξ|2 , (2.3)

where F−1 is the inverse Fourier transform and Â(ξ) denotes the Fourier transform of A(x).

Proof. By applying the Fourier transform to the problem (2.2) we get

i∂tû (ξ, t) + Âξ û (ξ, t) = 0, x ∈ Rn, t ∈ [0, 1] , (2.4)

û (ξ, 0) = f̂ (ξ) , ξ ∈ Rn.

It is clear to see that the solution of (2.4) can be exspressed as

û (ξ, t) = eiÂξ t f̂ (ξ) .

Hence, we obtain (2.3)
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3 Estimates for solutions

We need the following lemmas for proving the main results. Consider the abstract Schrödinger
equation

∂tu = (a + ib) [∆u + Au + Vu + F (x, t)] , x ∈ Rn, t ∈ [0, 1] , (3.1)

where a, b are real numbers, A = A (x) is a linear operator, V = V (x, t) is a given potential
operator function in H and F (x, t) is a given H-valued function.

Condition 3.1. Assume that:

(1) A = A (x) is a symmetric operator in Hilbert space H with independent on x ∈ Rn

domain D (A) that is dense on H; moreover, (A (x) u, u) ≥ 0 and (A (x) u, u) ∈ L2(Rn)

for u ∈ D (A);

(2) ∂A
∂xk

are symmetric operators in H with independent on x ∈ Rn domain D
(

∂A
∂xk

)
= D (A).

Moreover,

n

∑
k=1

(
xk

[
A

∂ f
∂xk
− ∂A

∂xk
f
]

, f
)

X
≥ 0, for f ∈ L∞

(
0, T; Y1 (A)

)
; (3.2)

(3) a > 0, b ∈ R; V = V (x, t) ∈ B (H) .

Let

|∇υ|2H =
n

∑
k=1

∥∥∥∥ ∂υ

∂xk

∥∥∥∥2

for υ ∈W1,2 (Rn; H) .

Lemma 3.2. Assume that the Condition 3.1 holds. Then the solution u of (3.1) belonging to
L∞ (0, 1; X (A)) ∩ L2 (0, 1; Y1) satisfies the following estimate

eMT

∥∥∥eφ(·,T)u (·, T)
∥∥∥

X
≤
∥∥∥eγ|x|2 u (·, 0)

∥∥∥
X
+κ

∥∥∥eφ(t)F
∥∥∥

L1(0,T;X)
+ a ‖(Au, u)‖X , (3.3)

where

φ (x, t) =
γa |x|2

a + 4γ (a2 + b2) t
, MT = ‖a Re V − b Im V‖B , κ =

√
a2 + b2, γ ≥ 0.

Proof. Let υ = eϕu, where ϕ is a real-valued function to be chosen later. The function υ verifies

∂tυ = Sυ + Kυ + (a + ib) eϕF, (x, t) ∈ Rn × [0, 1] ,

where S, K are symmetric and skew-symmetric operators respectively given by

S = aA1 − ibB1 + ϕt + a Re V − b Im V, K = ibA1 − aB1 + i (b Re υ + a Im υ) ,

here
A1 = ∆ + A (x) + |∇ϕ|2 , B1 = 2∇ϕ.∇+ ∆ϕ.

By differentiating the inner product in X, we get

∂t ‖υ‖2
X = 2 Re (Sυ, υ)X + 2 Re (Kυ, υ)X

+ 2 Re ((a + ib) eυF, υ)X + 2 Re (a + ib) (Vυ, υ)X , t ≥ 0. (3.4)
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A formal integration by parts gives that

Re (Sυ, υ)X = −a
∫

Rn
|∇υ|2H dx +

∫
Rn

(
a |∇ϕ|2 + ϕt

)
‖υ‖2 dx + a

∫
Rn

(Aυ, υ) dx,

Re (Kυ, υ)X = −aγ
∫

Rn

[
(2∇ϕ.∇υ, υ) + ∆ϕ ‖υ‖2

]
dx. (3.5)

It is clear that

Re (a + ib) (Vυ, υ)X = a
∫

Rn

(Re Vυ, υ) dx− b
∫

Rn

(Im Vυ, υ) dx,

Re ((a + ib) eϕF, υ)X = a Re
∫

Rn

(eϕF, υ) dx− b Im
∫

Rn

(eϕF, υ) dx

= aeϕ Re (F, υ)X − beϕ Im (F, υ)X .

Then by using the Cauchy–Schwarz inequality, by assumptions (2), (3), in view of (3.4) and
(3.5) we obtain

∂t ‖υ‖2
X ≤ 2 ‖a Re V − b Im V‖B ‖υ‖

2
X + 2κ ‖eϕF (t, ·)‖X ‖υ‖X + a ‖(Aυ, υ)‖X ,

where a, b and ϕ are such that(
a +

b2

a

)
|∇ϕ|2 + ϕt ≤ 0 in Rn+1

+ . (3.6)

The remaining part of the proof is obtained by reasoning as in [7, Lemma 1] .
When ϕ (x, t) = q (t)ψ (x), it suffices that(

a +
b2

a

)
q2 (t) |∇ψ|2 + q′ (t)ψ (x) ≤ 0. (3.7)

If we put ψ (x) = |x|2 then (3.6) holds, when

q′ (t) = −4
(

a +
b2

a

)
q2 (t) , q (0) = γ, γ ≥ 0. (3.8)

Let

ψr (x) =

{
|x|2 , |x| < r,

∞, |x| > r.

Regularize ψr with a radial mollifier θρ and set

ϕρ,r (x, t) = q (t) θρ ∗ ψr (x) , υρ,r (x, t) = eϕρ,r u,

where q (t) = γa
[
a + 4γ

(
a2 + b2) t

]−1 is the solution to (3.7). Because the right hand side of
(3.5) only involves the first derivatives of ϕ, ψr is Lipschitz and bounded at infinity,

θρ ∗ ψr (x) ≤ θρ ∗ |x|2 = C (n) ρ2

and (3.6) holds uniformly in ρ and r, when ϕ is replaced by ϕρ,r. Hence, it follows that the
estimate

eMT

∥∥∥eφ(T)u (T)
∥∥∥

X
≤ MT

∥∥∥eγ|x|2 u (0)
∥∥∥

X
+
√

a2 + b2 ‖eϕρ,r F‖L1(0,T;X)

holds uniformly in ρ and r. The assertion is obtained after letting ρ tend to zero and r to
infinity.
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Remark 3.3. It should be noted that if H = C, A = 0 and V (x, t) is a complex valued function,
then the abstract condition (3.3) can be replaced by

MT = ‖a Re V − b Im V‖L1(0,T;L∞(Rn)) < ∞.

Let

Q (t) = ( f , f )X , D (t) = (S f , f )X , N (t) = D (t) Q−1 (t) , ∂tS = St.

In a similar way as in [7, Lemma 2] we have the following result.

Lemma 3.4. Assume that S = S (t) is a symmetric, K = K (t) is a skew-symmetric operators in H,
G (x, t) is a positive and f (x, t) is an X-valued reasonable function. Then,

Q′′ (t) = 2∂t Re (∂t f − S f − K f , f )X + 2 (St f + [S, K] f , f )X

+ ‖∂t f − S f + K f ‖2
X − ‖∂t f − S f − K f ‖2

X (3.9)

and

∂tN (t) ≥ Q−1 (t)
[
(St f + [S, K] f , f )X −

1
2
‖∂t f − S f − K f ‖2

X

]
.

Moreover, if

‖∂t f − S f − K f ‖H ≤ M1 ‖ f ‖H + G (x, t) , St + [S, K] ≥ −M0

for x ∈ Rn, t ∈ [0, 1] and

M2 = sup
t∈[0,1]

‖G (., t)‖L2(Rn) (‖ f (·, t)‖X)
−1 < ∞.

Then Q (t) is logarithmically convex in [0, 1] and there is a constant M such that

Q (t) ≤ eM(M0+M1+M2+M2
1+M2

2)Q1−t (0) Qt (1) , 0 ≤ t ≤ 1.

Lemma 3.5. Assume that the Condition 3.1 holds. Moreover, suppose

sup
t∈[0,1]

‖V (·, t)‖B ≤ M1,
∥∥∥eγ|x|2 u (·, 0)

∥∥∥
X
< ∞,

∥∥∥eγ|x|2 u (·, 1)
∥∥∥

X
< ∞, M2 = sup

t∈[0,1]

∥∥∥eγ|x|2 F (·, t)
∥∥∥

X
‖u‖X

< ∞.

Then, for solution u ∈ L∞ (0, 1; X (A)) ∩ L2 (0, 1; Y1) of (3.1), eγ|x|2 u (·, t) is logarithmically
convex in [0, 1] and there is a constant N such that∥∥∥eγ|x|2 u (·, t)

∥∥∥
X
≤ eNM(a,b)

∥∥∥eγ|x|2 u (·, 0)
∥∥∥1−t

X

∥∥∥eγ|x|2 u (·, 1)
∥∥∥t

X
, (3.10)

where
M (a, b) = κ2 (γM2

1 + M2
2
)
+κ (M1 + M2)

when 0 ≤ t ≤ 1.
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Proof. Let f = eγϕu, where ϕ is a real-valued function to be chosen. The function f (x) verifies

∂t f = S f + K f + (a + ib) (V f + eγϕF) in Rn × [0, 1] , (3.11)

where S, K are symmetric and skew-symmetric operator, respectively given by

S = aA1 − ibγB1 + ϕt + a Re V − b Im V,

K = ibA1 − aγB1 + i (b Re υ + a Im υ) ,

where
A1 = ∆ + A (x) + γ2 |∇ϕ|2 , B1 = 2∇ϕ.∇+ ∆ϕ.

A calculation shows that,

St + [S, K] = γ∂2
t ϕ + 2γ2a∇ϕ.∇ϕt − 2ibγ (2∇ϕt.∇+ ∆ϕt)

− γκ2 [4∇.
(

D2ϕ∇
)
− 4γ2D2ϕ∇ϕ + ∆2ϕ

]
+ 2 [A (x)∇ϕ.∇−∇ϕ.∇A] . (3.12)

If we put ϕ = |x|2, then (3.12) reduces to the following

St + [S, K] = −γκ2
[
8∆− 32γ2 |x|2

]
+

d
dt

A + 2 [A (x)∇ϕ.∇−∇ϕ.∇A] .

Moreover by assumption (2),

(St f + [S, K] f , f ) = γκ
∫

Rn

(
8 |∇ f |2H + 32γ2 |x|2 ‖ f ‖2

)
dx

+ 2
∫

Rn
([A (x)∇ϕ.∇ f −∇ϕ.∇A f ] , f ) dx ≥ 0. (3.13)

This identity, the condition on V and (3.13) imply that

‖∂t f − S f − K f ‖X ≤ κ2 (M1 ‖ f ‖X + eγϕ ‖F‖X) . (3.14)

If we knew that the quantities and calculations involved in the proof of Lemma 3.4 (similar
as in [7, Lemma 2]) were finite and correct, when f = eγ|x|2 u we would have the logarithmic
convexity of Q (t) =

∥∥eγ|x|2 u (·, t)
∥∥

X and the estimate (3.10) from Lemma 3.4. But this fact is
verifying by reasoning as in [7, Lemma 3].

Let
σ =

√
t (1− t)eγ|x|2 , Y = L2 ([0, 1]×Rn; H) .

Lemma 3.6. Assume that a, b, u, A and V are as in Lemma 3.5 and γ > 0. Then,

‖σ∇u‖Y + ‖σ |x| u‖Y ≤ N [(1 + M1)]

[
sup

t∈[0,1]

∥∥∥eγ|x|2 u (., t)
∥∥∥

X
+ sup

t∈[0,1]

∥∥∥eγ|x|2 F (., t)
∥∥∥

Y

]
,

where N is bounded number, when γ and κ are bounded below.
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Proof. The integration by parts shows that∫
Rn

(
|∇ f |2H + 4γ2 |x|2 ‖ f ‖

)
dx =

∫
Rn

[
e2γ|x|2

(
|∇u|2H − 2nγ

)
‖u‖2

]
dx,

when f = eγ|x|2 u, while integration by parts, the Cauchy–Schwarz inequality and the identity,
n = ∇·x, give that ∫

Rn

(
|∇ f |2H + 4γ2 |x|2 ‖ f ‖

)
dx ≥ 2γn ‖ f ‖2

X .

The sum of the last two formulae gives the inequality

2
∫

Rn

(
|∇ f |2H + 4γ2 |x|2 ‖ f ‖

)
dx ≥

∫
Rn

eγ|x|2 |∇ f |2H dx. (3.15)

Integration over [0, 1] of t(1− t) times the formula (3.6) for Q′′ (t) and integration by parts,
shows that

2
∫ 1

0
t(1− t) (St f + [S, K] f , f )X dt +

∫ 1

0
Q (t) dt

≤ Q (1) + Q (0) + 2
∫ 1

0
(1− 2t)Re (∂t f − S f − K f , f )X dt

+
∫ 1

0
t(1− t) ‖∂t f − S f − K f ‖2

X dt. (3.16)

Assuming again that the last two calculations are justified for f = eγ|x|2 . Then (3.13)–(3.16)
imply the assertion.

4 Appell transformation in abstract function spaces

Let

ρ (t) = α (1− t) + βt, ϕ (x, t) =
(α− β)

∣∣x2
∣∣

4 (a + ib) ρ (t)
,

ν (s) =
[

γαβρ2 (s) +
(α− β) a

4 (a2 + b2)
ρ (s)

]
.

Lemma 4.1. Assume A and V are as in Lemma 3.5 and u = u (x, s) is a solution of the equation

∂su = (a + ib) [∆u + Au + V (y, s) u + F (y, s)] , y ∈ Rn, s ∈ [0, 1] .

Let a + ib 6= 0, γ ∈ R and α, β ∈ R+. Set

ũ (x, t) =
(√

αβρ−1 (t)
) n

2 u
(√

αβxρ−1 (t) , βtρ−1 (t)
)

eϕ. (4.1)

Then, ũ (x, t) verifies the equation

∂tũ = (a + ib)
[
∆ũ + Aũ + Ṽ (x, t) u + F̃ (x, t)

]
, x ∈ Rn, t ∈ [0, 1]

with
Ṽ (x, t) = αβρ−2 (t)V

(√
αβxρ−1 (t) , βtρ−1 (t)

)
,
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F̃ (x, t) =
(√

αβρ−1 (t)
) n

2 +2 (√
αβxρ−1 (t) , βtρ−1 (t)

)
.

Moreover, ∥∥∥eγ|x|2 F̃ (·, t)
∥∥∥

X
= αβρ−2 (t) eν|y|2 ‖F (s)‖X ,∥∥∥eγ|x|2 ũ (·, t)

∥∥∥
X
= eν|y|2 ‖u (s)‖X ,

when s = µ (t) and γ ∈ R.

Proof. If u is a solution of the equation

∂su = (a + ib) [∆u + Au + Q (y, s)] , y ∈ Rn, s ∈ [0, 1] (4.2)

then, the function u1 (x, t) = u
(√

rx, rt + τ
)

verifies

∂tu1 = (a + ib)
[
∆u1 + Au1 + rQ

(√
rx, rt + τ

)]
, y ∈ Rn, s ∈ [0, 1]

and u2 (x, t) = t−
n
2 u
( x

t , 1
t

)
e
|x|2

4(a+ib)t is a solution to

∂tu2 = − (a + ib)
[

∆u2 + Au + t−(2+ n
2 )Q

(
x
t

,
1
t

)
e
|x|2

4(a+ib)t

]
, y ∈ Rn, s ∈ [0, 1] .

These two facts and the sequel of changes of variables below verify the lemma, when α > β,
i.e.

u

(√
αβ

α− β
x,

αβ

α− β
t− β

α− β

)
is a solution to the same non-homogeneous equation but with right-hand side

αβ

α− β
Q

(√
αβ

α− β
x,

αβ

α− β
t− β

α− β

)
.

The function,

1

(α− t)
n
2

u

( √
αβx√

α− β (α− t)
,

αβ

(α− β) (α− t)
− β

α− β

)
e

|x|2
4(a+ib)(α−t)

verifies (4.2) with right-hand side

αβ

(α− β) (α− t)
n
2 +2 Q

( √
αβx√

α− β (α− t)
,

αβ

(α− β) (α− t)
− β

α− β

)
e

|x|2
4(a+ib)(α−t) .

Replacing (x, t) by
(√

α− βx, (α− β) t
)

we get that

ρ−
n
2 (t) u

(√
αβρ−1 (t) x,

αβρ−1 (t)− β

α− β

)
e
(α−β) |x|2ρ(t)

4(a+ib) (4.3)

is a solution of (4.2) but with right-hand

ρ−(
n
2 +2) (t) Q

(√
αβρ−1 (t) x,

αβρ−1 (t)− β

α− β

)
e
(α−β) |x|2ρ(t)

4(a+ib) . (4.4)

Finally, observe that

s = βtρ (t) =
αβρ−1 (t)− β

α− β

and multiply (4.3) and (4.4) we obtain the assertion for α > β. The case β > α follows by
reversing by changes of variables, s′ = 1− s and t′ = 1− t.
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5 Variable coefficients. Proof of Theorem 2.4

We are ready to prove Theorem 2.4. Let

B = L1 (0, 1; L∞ (Rn; B (H))) .

Proof of Theorem 2.4. We may assume that α 6= β. The case α = β follows from the latter by
replacing β by β + δ, δ > 0, and letting δ tend to zero. We may also assume that α < β.
Otherwise, replace u by ū(1− t). Assume a > 0. Set W = ∆ + A + V1. By Lemma 2.7 the
problem

∂tu = (a + ib) [∆u + A (x) u + V1 (x) u] , x ∈ Rn, t ∈ [0, 1] , (5.1)

u (x, 0) = u0 (x) .

has a solution u = U (t) u0 = et(a+ib)Wu0 ∈ C ([0, 1] ; X (A)), where

U (t) = F−1
[
e−Q(ξ)

]
, Q (ξ) = (a + ib)

[
− |ξ|2 + Â (ξ) + V̂1 (ξ)

]
,

here, F−1 is the inverse Fourier transform, Â (ξ) , V̂1 (ξ) respectively denote the Fourier trans-
forms of A (x) , V1 (x) . By reasoning as the Duhamel principle we get that the problem

∂tu = (a + ib) [∆u + A (x) u + V (x, t)] u, x ∈ Rn, t ∈ [0, 1] ,

u (x, 0) = u0 (x)

has a solution expressing as

u (x, t) = H (t) u0 + i
∫ t

0
H (t− s)V2 (x, s) u (x, s) ds for x ∈ Rn, s ∈ [0, 1] , (5.2)

where
eitW = H (t) = H (t, x) = F−1

[
eiQ(ξ)

]
.

For 0 ≤ ε ≤ 1 set

Fε (x, t) =
i

ε + i
eεtWV2 (x, t) u (x, t) (5.3)

and

uε (x, t) = e(ε+i)tWu0 + (ε + i)
∫ t

0
e(ε+i)(t−s)W Fε (x, s) u (x, s) ds. (5.4)

Then, uε (x, t) ∈ L∞ (0, 1; X (A)) ∩ L2 (Rn; Y1) and satisfies

∂tuε = (ε + i) (Wu + Fε) in Rn × [0, 1] ,

uε (·, 0) = u0 (·) .

The identities
e(z1+z2)W = ez1Wez2W , when Re z1, Re z2 ≥ 0,

and (5.2)–(5.4) show that

uε (x, t) = eεtWu (x, t) , for t ∈ [0, 1] . (5.5)
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In particular, the equality uε (x, 1) = eεWu (x, 1), Lemma 3.2 with a + ib = ε, γ = 1
β , F ≡ 0 and

the fact that uε(0) = u (0) imply that∥∥∥∥∥e
|x|2

β2+4ε uε (·, 1)

∥∥∥∥∥
X

≤ eε‖V1‖B

∥∥∥∥∥e
|x|2

β2 u (·, 1)

∥∥∥∥∥
X

,∥∥∥∥∥e
|x|2

α2 uε (·, 0)

∥∥∥∥∥
X

=

∥∥∥∥∥e
|x|2

α2 u (·, 0)

∥∥∥∥∥
X

.

A second application of Lemma 3.2 with a + ib = ε, F ≡ 0, the value of γ = µ−2 (t) and (5.2)
show that ∥∥∥∥∥ε

|x|2

µ2(t)+4εt Fε (·, t)

∥∥∥∥∥
X

≤ eε‖V1‖B

∥∥∥∥∥ε
|x|2

µ2(t) V2 (·, t)

∥∥∥∥∥
B

‖u (·, t)‖X

for t ∈ [0, 1] . Setting, αε = α + 2ε and βε = β + 2ε, the last three inequalities give that∥∥∥∥∥e
|x|2

β2
ε uε (·, 1)

∥∥∥∥∥
X

≤ eε‖V1‖B

∥∥∥∥e
|x|2
β2 u (·, 1)

∥∥∥∥
X

, (5.6)

∥∥∥∥∥e
|x|2

α2
ε uε (·, 0)

∥∥∥∥∥
X

≤ eε‖V1‖B

∥∥∥∥∥e
|x|2

α2 u (·, 0)

∥∥∥∥∥
X

,

∥∥∥ε|x|
2µ−2(t)Fε (·, t)

∥∥∥
X
≤ eε‖V1‖B

∥∥∥ε|x|
2µ−2(t)V2 (·, t)

∥∥∥
B
‖u (·, t)‖X , t ∈ [0, 1] . (5.7)

A third application of Lemma 3.2 with a + ib = b, F ≡ 0, γ = 0, and (5.2), (5.5) implies that

‖Fε (·, t)‖X ≤ eε‖V1‖B ‖V2 (·, t)‖B ‖u (·, t)‖X , (5.8)

‖uε (·, t)‖X ≤ eε‖V1‖B ‖u (·, t)‖X , t ∈ [0, 1] .

Set γε =
1

αεβε
and let

ũε (x, t) =
(√

αεβερ
−1
ε (t)

) n
2 u
(√

αεβεxρ−1
ε (t) , βεtρ−1

ε (t)
)

eϕε

be the function associated to uε in Lemma 4.1, where a + ib = ε + i and α, β are replaced
respectively by αε, βε when

ρε (t) = αε (1− t) + βεt, ϕε = ϕε (x, t) =
(αε − βε) |x|2

4 (a + ib) ρε (t)
.

Because α < β, ũε ∈ L∞ (0, 1; X) ∩ L2 (0, 1; Y1) and satisfies the equation

∂tũε = (ε + i)
(
∆ũε + A (x) ũε + Ṽε

1 (x, t) ũε + F̃ε (x, t)
)

in Rn × [0, 1] ,

where

Ṽε
1 (x, t) = αεβερ

−2
ε (t)V1

(√
αεβερ

−1
ε (t) x

)
, sup

t∈[0,1]

∥∥Ṽε
1 (·, t)

∥∥
B ≤

β

α
M1,

F̃ε (x, t) =
[√

αεβερ
−1
ε (t)

] n
2 +2

Fε

(√
αεβερ

−1
ε (t) x, βεtρ−1

ε (t)
)

eϕε , (5.9)



Abstract Schrödinger equations 15

∥∥∥eγε|x|2 F̃ε (·, t)
∥∥∥

X
≤ β

α

∥∥∥eρ−2
ε |x|

2
Fε (·, t)

∥∥∥
X

, (5.10)∥∥F̃ε (., t)
∥∥

X ≤
β

α
‖Fε (., t)‖X

and ∥∥∥eγε|x|2 ũε (·, t)
∥∥∥

X
=
∥∥∥e[ρ

−2
ε (s)+ϕε(s,t)]|y|2 uε (·, s)

∥∥∥
X

, (5.11)

‖ũε (·, t)‖X ≤ ‖u (·, s)‖X ,

when s = βερ
−1
ε (t) . The above identity when t is zero or one and (5.6) shows that∥∥∥eγε|x|2 ũε (·, 0)

∥∥∥
X
≤
∥∥∥∥∥e
|x|2

β2 u (·, 0)

∥∥∥∥∥
X

,

∥∥∥eγε|x|2 ũε (·, 1)
∥∥∥

X
≤ eε‖V‖B ‖V2 (·, t)‖B

∥∥∥∥∥e
|x|2

β2 u (·, 1)

∥∥∥∥∥
X

.

(5.12)

On the other hand,

N−1
1 ‖u (·, 0)‖X ≤ ‖u (·, t)‖X ≤ N1 ‖u (·., 0)‖X , t ∈ [0, 1] , (5.13)

where
N1 = eB(V2), B (V2) = sup

t∈[0,1]
‖Re V2 (·, t)‖B .

The energy method imply that

∂t ‖ũε (·, t)‖2
X ≤ 2ε

∥∥Ṽε
1 (x, t)

∥∥
B ‖ũε (·, t)‖2

X + 2
∥∥F̃ε (x, t)

∥∥
X ‖ũε (·, t)‖X . (5.14)

Let 0 = t0 < t1 < · · · < tm = 1 be a uniformly distributed partition of [0, 1], where m will
be chosen later. The inequalities (5.8)–(5.10), (5.13) and (5.14) imply that there is N2, which
depends on β

α , ‖V1‖B and B (V2) such that

‖ũε (·, ti)‖X ≤ e
εβ
α ‖V1‖B ‖ũε (·, t)‖X + N2

√
ti − ti−1 ‖u (·, 0)‖X (5.15)

for t ∈ [ti−1, ti] and i = 1, 2, . . . , m. Choose now m so that

N2 max
i

√
ti − ti−1 ≤

1
4N1

. (5.16)

Because limε→0 ‖ũε (·, t)‖X = ‖u (·, s)‖X when s = βtρ (t) and (5.13), there is ε0 such that

‖ũε (·, ti)‖X ≥
1

4N1
‖u (·, 0)‖X , when 0 < ε ≤ ε0, i = 1, 2, . . . , m (5.17)

and now, (5.15)–(5.17) show that

‖ũε (·, t)‖X ≥
1

4N1
‖u (·, 0)‖X , when 0 < ε ≤ ε0, t ∈ [0, 1] . (5.18)

It is now simple to verify that (5.18), the first inequality in (5.7), (5.10) and (5.13) imply that

sup
t∈[0,1]

∥∥∥eγε|x|2 F̃ε (·, t)
∥∥∥

X
‖ũε (·, t)‖X

≤ 4β

α
M2 (ε) , when 0 < ε ≤ ε0, (5.19)
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where

M2 (ε) = e
sup

t∈[0,1]
‖Re V2(·,t)‖B+ε‖V1‖B

sup
t∈[0,1]

∥∥∥e|x|
2µ−2(t)V2 (·, t)

∥∥∥
B

.

By using Lemma 3.5, (5.12), (5.9) and (5.19) to show that
∥∥eγε|x|2 ũε (·, t)

∥∥
X is logarithmically

convex in [0, 1] and that∥∥∥eγ|x|2 ũε (·, t)
∥∥∥

X
≤ eNM(a,b)

∥∥∥eγ|x|2 ũε (0)
∥∥∥1−t

X

∥∥∥eγ|x|2 ũε (1)
∥∥∥t

X
, (5.20)

when 0 < ε ≤ ε0, t ∈ [0, 1] and N = N (α, β). Then, Lemma 3.6 gives that

‖η∇ũε‖Z + ‖η |x| ũε‖Z

≤ N (1 + M1)

[
sup

t∈[0,1]

∥∥∥eγ|x|2 ũε (·, t)
∥∥∥

X
+ sup

t∈[0,1]

∥∥∥eγ|x|2 F̃ε (·, t)
∥∥∥

Y

]

≤ NeN(M0+M1+M2(ε)+M2
1+M2

2(ε))

[∥∥∥∥∥e
|x|2

β2 u (·, 0)

∥∥∥∥∥
X

+

∥∥∥∥e
|x|2

α2 u (·, 1)
∥∥∥∥

X

]
,

when 0 < ε ≤ ε0, the logarithmic convexity and regularity of u follow from the limit of the
identity in (5.11), the final limit relation between the variables s and t, s = βtρ (t) and letting
ε tend to zero in (5.20) and the above inequality.

By reasoning as in [4, Lemma 6] we obtain the following lemma.

Lemma 5.1. Let the assumption (1) of the Condition 3.1 holds and ‖V‖B ≤ ε0 for a ε0 > 0. Let
u ∈ C ([0, 1] ; X (A)) be a solution of the equation

∂tu = i [∆u + Au + V (x, t) u + F (x, t)] , x ∈ Rn, t ∈ [0, 1] .

Then,

sup
t∈[0,1]

∥∥∥eλ·xu (·, t)
∥∥∥

X
≤ N

[∥∥∥eλ·xu (·, 0)
∥∥∥

X
+
∥∥∥eλ·xu (·, 1)

∥∥∥
X
+
∥∥∥eλ·xF (·, t)

∥∥∥
L1(0,1;X)

]
,

where λ ∈ Rn and N > 0 is a constant.

Theorem 5.2. Let the assumption (1) of the Condition 3.1 hold and

V ∈ B and lim
r→∞
‖V‖O(r) = 0.

Suppose that α, β are positive numbers and∥∥∥∥∥e
|x|2

β2 u (·, 0)

∥∥∥∥∥
X

< ∞,
∥∥∥∥e
|x|2

α2 u (·, 1)
∥∥∥∥

X
< ∞.

Let u ∈ C ([0, 1] ; X (A)) be a solution of the equation

∂tu = i [∆u + A (x) u + V (x, t) u] , x ∈ Rn, t ∈ [0, 1] .
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Then, there is a N = N(α, β) such that

sup
t∈[0,1]

∥∥∥e|x|
2µ−2(t)u (·, t)

∥∥∥
X
+

∥∥∥∥√t (1− t)e|x|
2µ−2(t)∇u

∥∥∥∥
L2(Rn×[0,1];H)

≤ NeB(V)

[∥∥∥∥∥e
|x|2

β2 u (·, 0)

∥∥∥∥∥
X

+

∥∥∥∥e
|x|2

α2 u (·, 1)
∥∥∥∥

X
+ sup

t∈[0,1]
‖u (·, t)‖X

]
,

where
B (V) = sup

t∈[0,1]
‖V‖B .

Proof. Assume that u(y, s) verifies the equation

∂su = i [∆u + A (y) u + V (y, s) u + F (y, s)] , y ∈ Rn, s ∈ [0, 1] .

Set γ = (αβ)−1 and let

ũ (x, t) =
(√

αβρ−1 (t)
) n

2 u
(√

αβxρ−1 (t) , βtρ−1 (t)
)

eϕ. (5.21)

The function (5.21) is a solution of

∂tu = i [∆u + A (x) u + V (x, t) u] , x ∈ Rn, t ∈ [0, 1]

with
Ṽ (x, t) = αβδ−2 (t)V

(√
αβxρ−1 (t) , βtρ−1 (t)

)
,

sup
t∈[0,1]

∥∥Ṽ (·, t)
∥∥

B ≤ max
(

α

β
,

β

α

)
sup

t∈[0,1]
‖V (·, t)‖B , lim

r→∞

∥∥Ṽ (·, t)
∥∥

O(r) = 0

and ∥∥∥eγ|x|2 ũ (·, t)
∥∥∥

X
=
∥∥∥eµ2(t)|x|2 u (·, s)

∥∥∥
X

, (5.22)

‖ũ (·, t)‖X = ‖u (·, s)‖X when s = βtµ (t) .

Choose r > 0 such that
∥∥Ṽ (·, t)

∥∥
O(r) ≤ ε0 we get

∂tũ = i
[
∆ũ + Aũ + Ṽr (x, t) u + F̃r (x, t)

]
, x ∈ Rn, t ∈ [0, 1] ,

with
Ṽr (x, t) = χRn/Or Ṽ (x, t) , F̃r (x, t) = χOr Ṽ (x, t) ũ.

Then using the Lemma 5.1 we obtain

sup
t∈[0,1]

∥∥∥eλ·xũ (·, t)
∥∥∥

X
≤ N

[∥∥∥eλ·xũ (·, 0)
∥∥∥

X
+
∥∥∥eλ·xũ (·, 1)

∥∥∥
X
+ e|λ|r

∥∥Ṽ (·, t)
∥∥

B sup
t∈[0,1]

‖u (·, t)‖X

]
.

Replace λ by λ
√

γ in the above inequality, square both sides, multiply all by e−
|λ2 |

2 and inte-
grate both sides with respect to λ in Rn. This and the identity∫

Rn
e2
√

γλ.x− |λ|
2

2 dλ = (2π)
n
2 e2γ|x|2
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imply the inequality

sup
t∈[0,1]

‖ũ (·, t)‖X

≤ N

[∥∥∥e2γ|x|2 ũ (·, 0)
∥∥∥

X
+
∥∥∥e2γ|x|2 ũ (·, 1)

∥∥∥
X
+
∥∥∥e2γr2

Ṽ (·, t)
∥∥∥

B
sup

t∈[0,1]
‖ũ (·, t)‖X

]
. (5.23)

This inequality and (5.22) imply that

sup
t∈[0,1]

‖ũ (·, t)‖X ≤ N

[∥∥∥∥∥e
|x|2

β2 ũ (·, 0)

∥∥∥∥∥
X

+

∥∥∥∥∥e
|x|2

β2 ũ (·, 1)

∥∥∥∥∥
X

+ sup
t∈[0,1]

‖V (·, t)‖B sup
t∈[0,1]

‖u (·, t)‖X

]
for some new constant N.

To prove the regularity of u we proceed as in (5.2)–(5.4). The Duhamel formula shows that

uε (x, t) = eitWu0 + i
∫ t

0
ei(t−s)WV2 (x, s) u (x, s) ds, x ∈ Rn, t ∈ [0, 1] . (5.24)

For 0 ≤ ε ≤ 1, set

F̃ε (x, t) =
i

ε + i
eεt(∆+A)Ṽ (x, t) ũ (x, t) , (5.25)

and

ũε (x, t) = e(ε+i)t(∆+A)u0 + (ε + i)
∫ t

0
e(ε+i)(t−s)(∆+A) F̃ (x, s) u (x, s) ds,

x ∈ Rn, t ∈ [0, 1] . (5.26)

The identities

e(z1+z2)(∆+A) = ez1(∆+A).ez2(∆+A) for Re z1, Re z2 ≥ 0

and (5.24)–(5.26) show that

ũε (x, t) = eεt(∆+A)ũ (x, t) for t ∈ [0, 1] . (5.27)

From Lemma 3.2 with a + ib = ε, (5.27) and (5.25) we get that

sup
t∈[0,1]

∥∥∥eγε|x|2 ũε (·, t)
∥∥∥

X
≤ sup

t∈[0,1]

∥∥∥eγ|x|2 ũ (·, t)
∥∥∥

X
,

sup
t∈[0,1]

∥∥∥eγε|x|2 F̃ε (·, t)
∥∥∥

X
≤ eṼ0 sup

t∈[0,1]

∥∥∥eγ|x|2 F̃ (·, t)
∥∥∥

X
,

(5.28)

where
γε =

γ

1 + 4γε
, Ṽ0 = sup

t∈[0,1]

∥∥Ṽ
∥∥

B .

Then, Lemma 3.6, (5.28) and (5.23) show that∥∥∥eγε|x|2 u (·, t)
∥∥∥

L2(Rn×[0,1];H)
+

∥∥∥∥√t (1− t)eγε|x|2∇u
∥∥∥∥

L2(Rn×[0,1];H)

≤ NeNV0

[∥∥∥∥∥e
|x|2

β2 u (·, 0)

∥∥∥∥∥
X

+

∥∥∥∥e
|x|2

α2 u (·, 1)
∥∥∥∥

X
+ sup

t∈[0,1]
‖u (·, t)‖X

]
,

where
V0 = sup

t∈[0,1]
‖V (x, t)‖B .

The Theorem 5.2 follows from this inequality, from (5.21)–(5.23) and letting ε tend to zero.
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6 A Hardy type abstract uncertainty principle. Proof of Theorem 2.2

The assertion about the Carleman inequality in Lemma 6.1 below is the following monotonic-
ity or frequency function argument related to Lemma 3.4. When u ∈ C([0, 1]; X) is a solution
to the free abstract Schrödinger equation

∂tu− i (∆u + A (x) u) = 0, x ∈ Rn, t ∈ [0, 1] ,

satisfies ∥∥∥eγ|x|2 u (·, 0)
∥∥∥

X
< ∞

∥∥∥eγ|x|2 u (·, 1)
∥∥∥

X
< ∞

and
f = eκu, Q (t) = ( f (·, t) , f (·, t))X ,

where

κ (x, t) = µ|x + rt(1− t)|2 − r2t(1− t)
8µ

, σ (ε, t) =
(1 + ε) t(1− t)

16µ
.

Then, log Q (t) is logarithmically convex in [0, 1], when 0 < µ < γ.
The formal application of the above argument to a C([0, 1]; X) solution of the equation

∂tu− i [∆u + Au + V (x, t) u] = 0, x ∈ Rn, t ∈ [0, 1] , (6.1)

implies a similar result, when V is a bounded potential, though the justification of the correct-
ness of the assertions involved in the corresponding formal application of Lemma 3.4 were
formal. In fact, we can only justify these assertions, when the potential V verifies the first
condition in Theorem 2.2 or when we can obtain the additional regularity of the gradient of
u in the strip, as in Theorem 5.2. Here, we choose to prove Theorem 2.2 using the Carleman
inequality in Lemma 6.1 in place of the above convexity argument. The reason for our choice
is that it is simpler to justify the correctness of the application of the Carleman inequality to a
C([0, 1]; X) solution to (6.1) than the corresponding monotonicity or logarithmic convexity of
the solution.

Lemma 6.1. Let the assumptions (1)–(2) of Conditon 3.1 hold. Moreover,

V ∈ B and lim
r→∞
‖V‖O(r) = 0.

Then the estimate

r
√

ε

8µ

∥∥eκ−συ
∥∥

L2(Rn+1;H)
≤
∥∥eκ−σ [∂tu− i (∆u + Au)] υ

∥∥
L2(Rn+1;H)

holds, when ε > 0, µ > 0, r > 0 and υ ∈ C∞
0
(
Rn+1; H (A)

)
.

Proof. Let f = eκ−συ. Then,

eκ−σ [∂tu− i (∆u + Au)] υ = ∂t f + S f − K f .

From (3.8)–(3.10) with γ = 1, a + ib = i and ϕ (x, t) = κ (x, t)− σ (ε, t) we have

S = −4µi(x + rt(1− t)e1)·∇− 2µni + 2µr(1− 2t)(x1 + rt(1− t))− σ,
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K = i (4+ A) + 42i|x + rt(1− t)e1|2

St + [S, K] = − 83|x + rt(1− t)e1|2 − 4r(x1 + rt(1− t))

+ 2µr2(1− 2t)2 +
(1 + ε) r2

8µ
+−4iµr(1− 2t)∂x1

and

(St f + [S, K] f , f )X = 323
∫

Rn

∣∣∣∣x + rt(1− t)e1 −
r

16µ2 e1

∣∣∣∣2 ‖ f ‖2 dx +
εr2

8µ

∫
Rn
‖ f ‖2 dx

+ 8µ
∫

Rn

‖∇x′ f ‖2
H dx + 8µ

∫
Rn

∥∥∥∥i∂x1 f − r
(

1
2
− t
)

f
∥∥∥∥2

dx

≥ εr2

8µ

∫
Rn
‖ f ‖2 dx. (6.2)

Following the standard method to handle L2-Carleman inequalities, the symmetric and skew-
symmetric parts of ∂t − S− K, as a space-time operator, are respectively −S and ∂t − K, and
[−S, ∂t − K] = St + [S, K]. Thus,

‖∂t f − S f − K f ‖2
L2(Rn+1;H)

= ‖∂t f − K f ‖2
L2(Rn+1;H) + ‖S f ‖2

L2(Rn+1;H) − 2 Re
∫

Rn

∫ ∞

−∞
(S f , ∂t f − K f ) dxdt

≥
∫

Rn

∫ ∞

−∞
([−S, ∂t − K] f , f ) dxdt

=
∫ ∞

−∞
(St f + [S, K] f , f )H dt, (6.3)

and the Lemma 6.1 follows from (5.2) and (5.3).

Proof of Theorem 2.2. Let u be as in Theorem 2.2, ũ and Ṽ be corresponding functions defined
in Lemma 4.1, when a + ib = i. Then, ũ ∈ C([0, 1]; X (A)) is a solution of the equation

∂tu− i
[
∆u + Au + Ṽu

]
= 0, x ∈ Rn, t ∈ [0, 1]

and ∥∥∥eγ|x|2 ũ (·, 0)
∥∥∥

X
< ∞,

∥∥∥eγ|x|2 ũ (·, 1)
∥∥∥

X
< ∞ for γ =

1
αβ

, γ >
1
2

.

The proof of Theorem 2.4 shows that in either case

Nγ = sup
t∈[0,1]

[∥∥∥eγε|x|2 ũ (·, t)
∥∥∥

L2(Rn×[0,1];H)
+

∥∥∥∥√t (1− t)eγε|x|2∇ũ
∥∥∥∥

L2(Rn×[0,1];H)

]
< ∞. (6.4)

For given r > 0, choose µ and ε such that

(1 + ε)
3
2

2 (1− ε)3 < µ ≤ γ

1 + ε
(6.5)

and let ηM and θr be smooth functions verifying, θM (x) = 1, when |x| ≤ M, θM (x) = 0, when
|x| > 2M, M ≥ 2r, ηr ∈ C∞

0 (0, 1), 0 ≤ ηr (t) ≤ 1, ηr (t) = 1 for t ∈
[ 1

r , 1− 1
r

]
and ηr (t) = 0



Abstract Schrödinger equations 21

for t ∈
[
0, 1

2r

]
∪
[
1− 1

2r , 1
]

. Then, υ (x, t) = ηr (t) θM (x) ũ (x, t) is compactly supported in
Rn × (0, 1) and

∂tυ− i
[
∆υ + Aυ + Ṽυ

]
= η′r (t) θM (x) ũ (x, t)− (2∇θM.∇ũ + ũ∆θM) ηr. (6.6)

The terms on the right-hand side of (6.6) are supported, where

µ|x + rt(1− t)|2 ≤ γ |x|2 + γ

ε
,

µ|x + rt(1− t)e1|2 ≤ γ |x|2 + γ

ε
r2.

Apply now Lemma 6.1 to υ with the values of µ and ε chosen in (6.5). This, the bounds for
µ|x + rt(1− t)e1|2 in each of the parts of the support of

∂tυ− i
[
∆υ + Aυ + Ṽυ

]
and the natural bounds for ∇θM, 4θM and η′r show that there is a constant Nε such that

r
∥∥eκ−συ

∥∥
L∞(Rn×[0,1];H)

≤ Nε

∥∥Ṽ
∥∥

B

∥∥eκ−συ
∥∥

L2(Rn×[0,1];H)
+ Nεre

γ
ε sup

t∈[0,1]

∥∥∥eγ|x|2 ũ (·, t)
∥∥∥

X

+ Nε M−1e
γ
ε r2
∥∥∥eγ|x|2 (‖ũ‖+ ‖∇ũ‖H)

∥∥∥
L2(Rn×σr)

, (6.7)

where

σr =

[
1
2r

, 1− 1
2r

]
.

The first term on the right hand side of (6.7) can be hidden in the left hand side, when
r ≥ 2Nε

∥∥Ṽ
∥∥

B, while the last tends to zero, when M tends to infinity by (6.4). This and the
fact that υ = ũ in Orε ×

[ 1−ε
2 , 1+ε

2

]
, where

κ − σ ≥ r2

16µ

(
4µ2 (1− ε)6 − (1 + ε)3

)
, rε =

ε
(
1− ε2)2 r

4
;

and (6.5) show that

eC(γ,ε) ‖ũ‖L2(O(r,ε);H) ≤ Nγ,ε, O (r, ε) = O r
8
×
[

1− ε

2
,

1 + ε

2

]
(6.8)

when r ≥ 2Nε

∥∥Ṽ
∥∥

B . At the same time(
B
(
Ṽ
))−1 ‖ũ (·, 0)‖X ≤ ‖ũ (·, t)‖X ≤ B

(
Ṽ
)
‖ũ (·, 1)‖X (6.9)

for 0 ≤ t ≤ 1 and B
(
Ṽ
)
= supt∈[0,1]

∥∥Ṽ
∥∥

B. Moreover, from (6.4) we get

‖ũ (·, t)‖X ≤ ‖ũ (·, t)‖
L2
(

O r
8

;H
) + e

−γr2
64 Nγ when 0 ≤ t ≤ 1. (6.10)

Then, (6.8)–(6.10) show that there is a constant Nγ,ε,V , which such that

eC(γ,ε)r2 ‖ũ (·, 0)‖X ≤ Nγ,ε,V .

For r → ∞ we obtain u ≡ 0.
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Proof of Theorem 2.5.

First of all, we show the following.

Lemma 6.2. Let the assumptions (1)–(2) of Condition 3.1 hold. Moreover, let

V ∈ B, lim
r→∞
‖V‖O(r) = 0.

Then the estimate

r
√

ε

8µ

∥∥eκ−σ+χυ
∥∥

L2(Rn+1;H)
≤
∥∥eκ−σ+χ [∂tu− ∆u− Au] υ

∥∥
L2(Rn+1;H)

(6.11)

holds, when ε > 0, µ > 0, r > 0 and υ ∈ C∞
0
(
Rn+1; H (A)

)
, where

χ (t) =
r2t(1− t) (1− 2t)

6
.

Proof. Let f = eκ+χ−συ. Then,

eκ+χ−σ [∂tu− (∆u + Au)] υ = ∂t f − S f − K f .

From (3.8)–(3.10) with γ = 1, a + ib = 1 and ϕ (x, t) = κ (x, t) + χ (t)− σ (ε, t) we have

S = ∆ + A + 4µ2i|x + rt(1− t)e1|2 + 2µni

+ 2µr(1− 2t)(x1 + rt(1− t))− σ +

(
t2 − t +

1
6

)
r2,

K = − 4µ(x + rt(1− t)e1)·∇− 2µn,

St + [S, K] = − 8µ4+ 32µ3|x + rt(1− t)e1|2

+ 4µr(4µ (1− 2t− 1) ((x1 + rt(1− t)) + (2t− 1) r2 +
(1 + ε) r2

8µ

and

(St f + [S, K] f , f )X = 32µ3
∫

Rn

∣∣∣∣x + rt(1− t)e1 +
(4µ (1− 2t− 1) r

16µ2 e1

∣∣∣∣2 ‖ f ‖2 dx

+ 8µ
∫

Rn
|∇ f |2H dx +

εr2

8µ

∫
Rn
‖ f ‖2 dx ≥ εr2

8µ

∫
Rn
‖ f ‖2 dx. (6.12)

Then from (6.12) a similar way as Lemma 6.1 we obtain the estimate (6.11).

Proof of Theorem 2.5. Assume that u verifies the conditions in Theorem 2.5 and let ũ be the
Appel transformation of u defined in Lemma 4.1 with a + ib = 1, α = 1 and β = 1 + 2

β .
ũ ∈ L∞ (0, 1; X (A)) ∩ L2 (0, 1; Y1) is a solution of the equation

∂tu = ∆u + Au + Ṽu, x ∈ Rn, t ∈ [0, 1]

with Ṽ a bounded potential in Rn × [0, 1] and γ = 1
2δ . Then, we have∥∥∥eγ|x|2 ũ (·, 0)

∥∥∥
X
= ‖ũ (·, 0)‖X ,

∥∥∥eγ|x|2 ũ (·, 1)
∥∥∥

X
= ‖ũ (·, 1)‖X .
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From Lemma 3.5 and Lemma 3.6 with a + ib = 1, we have

sup
t∈[0,1]

∥∥∥eγ|x|2 ũ (·, t)
∥∥∥

X
+

∥∥∥∥√t (1− t)eγ|x|2∇ũ
∥∥∥∥

L2(Rn×[0,1];H)

≤ e(M1+M2
1)
[∥∥∥eγ|x|2 ũ (·, 0)

∥∥∥
X
+
∥∥∥eγ|x|2 ũ (·, 1)

∥∥∥
X

]
,

where
M1 =

∥∥Ṽ
∥∥

B .

The proof is finished by setting υ(x, t) = θM(x)ηr(t)ũ(x, t), by using Carleman inequality
(6.11) and a similar argument that we used to prove Theorem 2.2.

7 Unique continuation properties for the system of Schrödinger
equations

Consider the system of Schrödinger equation

∂tum = i

[
∆um +

N

∑
j=1

amjuj +
N

∑
j=1

bmjuj

]
, x ∈ Rn, t ∈ (0, T) , (7.1)

where u = (u1, u2, . . . , uN) , uj = uj (x, t) , amj and bmj = bmj (x, t) are real-valued functions.
Let l2 = l2 (N) and ls

2 = ls
2 (N) (see [24, § 1.18]). Let A be the operator in l2 (N) defined by

D (A) =

u =
{

uj
}

, ‖u‖D(A) =

(
N

∑
m,j=1

(
amjuj

)2

) 1
2

< ∞

 ,

A =
[
amj
]

, m, j = 1, 2, . . . , N, N ∈N (7.2)

and

V (x, t) =
[
bmj (x, t)

]
, m, j = 1, 2, . . . , N, N ∈N.

Let
X2 = L2 (Rn; l2) , Ys,2 = Hs,2 (Rn; l2) .

From Theorem 2.2 we obtain the following result.

Theorem 7.1. Assume:

(1) amj = ajm ≥ 0, amj ∈ C(1) (Rn) , ∑N
m,j=1 amj > 0, (A (x) u, u) ∈ L2(Rn) for u ∈ ls

2. Moreover,

n

∑
k=1

(
xk

[
A

∂ f
∂xk
− ∂A

∂xk
f
]

, f
)

X2

≥ 0 for f ∈ C1 (Rn; ls
2) ;

(2)

sup
t∈[0,T], x∈Rn

(
N

∑
m,j=1

∣∣bmj (x, t)
∣∣2) 1

2

< ∞, sup
t∈[0,T], x∈Rn

∣∣∣e|x|2µ−2(t)
∣∣∣ ( N

∑
m,j=1

∣∣bmj (x, t)
∣∣2) 1

2

< ∞,

where
µ (t) = αt + β (1− t) , α, β > 0, αβ < 2;
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(3) u ∈ C ([0, T] ; l2) be a solution of the equation (7.1) and∥∥∥∥∥e
|x|2

β2 u (·, 0)

∥∥∥∥∥
X2

< ∞,
∥∥∥∥e
|x|2

α2 u (·, T)
∥∥∥∥

X2

< ∞.

Then u (x, t) ≡ 0.

Proof. Consider the operators A and V (x, t) in H = l2 defined by (7.2). Then the problem
(8.1)–(8.2) can be rewritten as the problem (1.1), where u (x) =

{
uj (x)

}
, f (x) =

{
f j (x)

}
,

j = 1, 2, . . . , N, x ∈ Rn are the functions with values in H = l2 (N). Since amj = ajm for
m, j = 1, 2, . . . , N, N ∈N, it is easy to see that

(Ax, y)l(N) = (x, Ay)l(N) for all x, y ∈ l (N) ,

i.e., A is a symmetric operator in l2 and other conditions of Theorem 2.2 are satisfied. Hence,
from Theorem 2.2 we obtain the conclusion.

8 Unique continuation properties for anisotropic Schrödinger equa-
tion

Let us consider the following problem

∂tu = i

[
∆xu + ∑

|α|=2m
aαDα

y u (x, y, t) +
∫

G
K (x, y, t) u (x, y, t) dy

]
,

x ∈ Rn, y ∈ G, t ∈ [0, T] , (8.1)

Bju = ∑
|β|≤mj

bjβDβ
y u (x, y, t) = 0, x ∈ Rn, y ∈ ∂G, j = 1, 2, . . . , m, (8.2)

where G is a bounded domain in Rd for d ≥ 2 with sufficiently smooth (d− 1)-dimensional
boundary ∂G, aα = aα (x, y) are real valued function on Ω = Rn × G, bjβ are the real valued
functions on ∂G, α = (α1, α2, . . . , αd), β = (β1, β2, . . . , βd) , µi < 2m, K = K (x, y, t) is a complex
valued bounded function in Ω× [0, T] and

Dk
x =

∂k

∂xk , Dj = −i
∂

∂yj
, Dy = (D1, . . . , Dd) , y = (y1, . . . , yd) ,

M1 = sup
x∈Rn
‖V1 (x)‖B(H) < ∞, sup

t∈[0,1]

∥∥∥e|x|
2µ−2(t)V2 (·, t)

∥∥∥
B
< ∞.

Theorem 8.1. Let the following conditions be satisfied:

(1) Ω ∈ C2, aα(·) ∈ C(1)(Ω̄) and bjβ ∈ C(∂Ω) such that A(x) is symmetric in L2(G), (A(x)u, u) ∈
L2(Rn) for u ∈W2m (G). Moreover,

n

∑
k=1

(
xk

[
A

∂ f
∂xk
− ∂A

∂xk
f
]

, f
)

L2(Ω)

≥ 0 for f ∈ C1 (Rn; W2m,2 (G)
)

;
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(2)
sup

t∈[0,T], x∈Rn
‖K (x, ·, t)‖L2(G) < ∞, sup

t∈[0,T], x∈Rn

∥∥∥e|x|
2µ2(t)K (x, ·, t)

∥∥∥
L2(G)

< ∞,

where µ (t) = αt + β (1− t), α, β > 0, αβ < 2;

(3) u ∈ C
(
[0, T] ; L2 (Ω)

)
be a solution of the equation (8.1)–(8.2) and∥∥∥∥∥e

|x|2

β2 u (·, ·, 0)

∥∥∥∥∥
L2(Ω)

< ∞,
∥∥∥∥e
|x|2

α2 u (·, ·, T)
∥∥∥∥

L2(Ω)

< ∞.

Then u (x, y, t) ≡ 0.

Proof. Let us consider operators A and V (x, t) in H = L2 (G) that are defined by the equalities

D (A) =
{

u ∈W2m,2 (G) , Bju = 0, j = 1, 2, . . . , m
}

, Au = ∑
|α|=2m

aαDα
y u (y) ,

V (x, t) u =
∫

G
K (x, y, t) u (x, y, t) dy.

Then the problem (8.1)–(8.2) can be rewritten as the problem (1.1), where u (x) = u (x, ·) ,
f (x) = f (x, ·), x ∈ σ are the functions with values in H = L2 (G). In view of assumptions
(1)–(4) all conditions of Theorem 2.2 are hold. Then Theorem 2.2 implies the assertion.

9 Theorem 9.1.

Theorem 9.1. Suppose the the following conditions are satisfied:

(1) let a (x, ·) be positive, b (x, .) be a real-valued function on (0, 1) , a ∈ C(1) ([0, 1]×Rn), moreover,
A is symmetric in L2 (0, 1) and (A (x) u, u) ∈ L2(Rn) for u ∈W2 (0, 1)

n

∑
k=1

(
xk

[
A

∂ f
∂xk
− ∂A

∂xk
f
]

, f
)

L2(σ)

≥ 0 for f ∈ C1 (Rn; W2 (0, 1)
)

,

b (·, y) ∈ C (Rn) for a.e. y ∈ [0, 1] , b (x, ·) ∈ L∞ (0, 1) for a.e. x ∈ Rn and

exp
(
−
∫ x

1
2

b (τ) a−1 (x, τ) dτ

)
∈ L1 (0, 1) for a.e.x ∈ Rn;

(2)
sup

t∈[0,T], x∈Rn
‖K (x, ·, t)‖L2(0,1) < ∞, sup

t∈[0,T], x∈Rn

∥∥∥e|x|
2µ2(t)K (x, ·, t)

∥∥∥
L2(0,1)

< ∞,

where µ (t) = αt + β (1− t), α, β > 0, αβ < 2;

(3) u ∈ C
(
[0, T] ; L2 (σ)

)
be a solution of the equation (1.5)–(1.6) and∥∥∥∥∥e
|x|2

β2 u (., 0)

∥∥∥∥∥
L2(σ)

< ∞,
∥∥∥∥e
|x|2

α2 u (., T)
∥∥∥∥

L2(σ)

< ∞.

Then u (x, y, t) ≡ 0.

Proof. Let us consider the operator A in H = L2 (0, 1) defined by (1.4). Then (8.1)–(8.2) can
be rewritten as the problem (1.1) where u (x) = u (x, ·) , f (x) = f (x, ·), x ∈ σ are the func-
tions with values in H = L2 (0, 1). Hence, by virtue of assumptions (1)–(4), all conditions of
Theorem 2.2 are satisfied. Then Theorem 2.2 implies the assertion.
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