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Abstract. We study some qualitative properties for the set of principal eigenvalues of a
degenerate elliptic system such as strict monotonicity with respect to the domain, local
isolation and monotonicity and continuity of the principal eigenvalue with respect to
the weight functions. Finally, explicit lower bounds for principal eigenvalues in terms
of the measure of domain are also proved.
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1 Introduction

In this paper we study the following system:
−∆pu = λa(x)|v|β1−1v in Ω;

−∆qv = µb(x)|u|β2−1u in Ω;

u = v = 0 on ∂Ω,

(1.1)

where β1, β2 > 0 with β1β2 = (p − 1)(q − 1), (λ, µ) ∈ R2, p, q ∈ (1, ∞), Ω is a bounded
domain in Rn with a C2-boundary and a and b are bounded functions on Ω satisfying

ess inf
x∈Ω

a(x) > 0 and ess inf
x∈Ω

b(x) > 0. (1.2)

The p-Laplacian operator ∆p : W1,p
0 (Ω)→W−1, p

p−1 (Ω) is defined by

〈−∆pu, v〉 =
∫

Ω
|∇u|p−2∇u∇vdx,

where W−1, p
p−1 (Ω) is the dual space of W1,p

0 (Ω).
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Consider the classical problem{
−∆pu = f (x) in Ω;

u = 0 on ∂Ω.
(1.3)

Notice that, if f ∈ L∞(Ω), then problem (1.3) admits a unique weak solution (−∆p)−1( f ) :=
u ∈W1,p

0 (Ω). In this case, there exists α ∈ (0, 1) such that u ∈ C1,α(Ω) (see [12, 18, 24, 35]).
Thus, (−∆p)−1 : L∞(Ω) → C1,α′

0 (Ω) is continuous and bounded for α′ = α and compact
whenever 0 < α′ < α. Moreover, the (weak and strong) comparison principles related to the
p-Laplacian operator (see [6–10,15–19,31,34]) shows that (−∆p)−1 is order preserving, that is,
for all f , g ∈ L∞(Ω), f ≤ g in Ω implies (−∆p)−1 f ≤ (−∆p)−1g and it is also strictly order
preserving, i.e., f ≤ ( 6≡) g and g ( 6≡) ≥ 0 in Ω imply

(−∆p)
−1 f < (−∆p)

−1g in Ω and
∂(−∆p)−1g

∂ν
<

∂(−∆p)−1 f
∂ν

on ∂Ω,

where ν ≡ ν(y0) denotes the exterior unit normal to ∂Ω at y0 ∈ ∂Ω. More generally, we have

(−∆p)
−1 : W−1, p

p−1 (Ω)→ Lp(Ω)

is well defined, compact and order preserving, when p > 2 (see [18, Corollary 8]).
By weak maximum principle in Ω means that for any weak solution u ∈W1,p

0 (Ω) to{
−∆pu = f (x) in Ω;

u ≥ 0 on ∂Ω,

with f ≥ 0 in Ω implies that u ≥ 0 in Ω. Besides, the strong maximum principle is said to hold
in Ω if, in addition, u > 0 in Ω whenever f 6≡ 0 in Ω. The validity of the (weak and strong)
maximum principles related to the p-Laplacian operator was established in [34, 36]. Later, the
paper [18] generalizes such results for operators involving the p-Laplacian. More generally, in
[15] the authors showed an anti-maximum principle for a class of strictly cooperative elliptic
systems.

In 1994, López-Gómez and Molina-Meyer [27] made a fairly complete characterization on
maximum principles for linear second order elliptic operators and, more generally, in the
context of cooperative systems. More recently, in [23] the authors established the connection
between maximum principle for Lane–Emden systems and their principal spectral curves. We
refer to [26] for a more detailed discussion of the maximum principle for elliptic problems
and cooperative systems involving linear second order elliptic operators.

We shall introduce a bit of notation. Here X stands for the space
[
C1

0(Ω)
]2

, X+ is given by
{(u, v) ∈ X : u ≥ 0 and v ≥ 0 in Ω}, and X̊+ is the topological interior of X+ in X. Then, X̊+

is nonempty and given by:{
(u, v) ∈ X : u, v > 0 in Ω and

∂u
∂ν

,
∂v
∂ν

< 0 on ∂Ω
}

.

Let (u, v) in W1,p
0 (Ω)×W1,q

0 (Ω). The weak formulation of (1.1) is given by

λ
∫

Ω
a(x)|v|β1−1vΦdx =

∫
Ω
|∇u|p−2∇u∇Φdx (1.4)
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and
µ
∫

Ω
b(x)|u|β2−1uΨdx =

∫
Ω
|∇v|q−2∇v∇Ψdx

for any (Φ, Ψ) ∈ (C1
0(Ω))2.

We say that (λ, µ) ∈ R∗+ ×R∗+ = (0, ∞)2 is an eigenvalue of (1.1) if the system admits a
nontrivial weak solution (ϕ, ψ) in W1,p

0 (Ω) ×W1,q
0 (Ω) which is called an eigenfunction cor-

responding to (λ, µ). We also say that (λ, µ) is a principal eigenvalue if admits a positive
eigenfunction (ϕ, ψ). Finally, the couple (λ, µ) is said to be simple in X̊+ if for any eigenfunc-

tions (ϕ, ψ), (ϕ̃, ψ̃) ∈ X̊+, there exists θ > 0 such that ϕ̃ = θϕ and ψ̃ = θµ
1

β2 ψ in Ω.
During the past decades, the system (1.1) has been extensively studied in the case p = q =

2. For example, we can list the papers [4, 11, 14, 20, 28, 32], where several results on existence,
nonexistence and uniqueness of nontrivial solutions have been developed when β1β2 6= 1.
The case β1β2 = 1 was treated in Montenegro [29]. Namely, the author proved that the set
of principal eigenvalues (λ, µ) of the system (1.1) is nonempty and determines a curve in
the cartesian plane which satisfies some properties as simplicity, continuity, monotonicity and
local isolation. We also refer to [30] where a biparameter elliptic system was considered.

For the general case p, q > 1, we refer to [5] when β1β2 > (p − 1)(q − 1) and [7] when
β1β2 = (p − 1)(q − 1). For instance, Cuesta and Takáč [7] showed that the set of principal
eigenvalues of (1.1) is given by

C1(a, b, Ω) :=
{
(λ, µ) ∈ (R∗+)

2 : λ
1√

β1(p−1) µ
1√

β2(q−1) = Λ′(a, b, Ω)

}
for some Λ′(a, b, Ω) > 0, satisfying:

(a) (Uniqueness) (λ, µ) ∈ C1(a, b, Ω) if and only if (λ, µ) ∈ R+ ×R+ is a principal eigen-
value of the problem (1.1);

(b) (Simplicity in X̊+) The principal curve C1(a, b, Ω) is simple in X̊+, i.e., (λ, µ) is simple in
X̊+ for all (λ, µ) ∈ C1(a, b, Ω);

(c) (Simplicity in X) Let (ϕ, ψ) ∈ X be an eigenfunction associated to (λ, µ) ∈ C1(a, b, Ω).
So, either (ϕ, ψ) ∈ X̊+ or (−ϕ,−ψ) ∈ X̊+.

Let R1(a, b, Ω) be the open region in the first quadrant below C1(a, b, Ω), that is,

R1(a, b, Ω) =

{
(λ, µ) ∈ (R∗+)

2 : λ
1√

β1(p−1) µ
1√

β2(q−1) < Λ′(a, b, Ω)

}
.

We say that the principal curve C1(a, b, Ω) is locally isolated above (or below) if for each
(λ1, µ1) ∈ C1(a, b, Ω), there is ε = ε(λ1, µ1) > 0 such that the system (1.1) does not have any
eigenvalue in Bε(λ1, µ1) ∩R1(a, b, Ω)

c
(or Bε(λ1, µ1) ∩R1(a, b, Ω)).

Theorem 1.1. Let p, q ∈ (1, ∞), Ω be a bounded domain in Rn with a C2-boundary, β1, β2 > 0 be
such that β1β2 = (p− 1)(q− 1) and a, b, ã and b̃ be functions in L∞(Ω) satisfying (1.2) in Ω. Then,
the curve C1(a, b, Ω) to the system (1.1) satisfies:

(i) (Strict monotonicity with respect to the domain) Let D be a bounded domain in Rn with a C2-
boundary, such that D ⊂ Ω. Then, Λ′(a, b, Ω) < Λ′(a, b, D);
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(ii) (Monotonicity with respect to the weights) Suppose that a ≤ ã and b ≤ b̃ in Ω. Then,
Λ′(a, b, Ω) ≥ Λ′(ã, b̃, Ω). Moreover, if (a, b) 6≡ (ã, b̃) then Λ′(a, b, Ω) > Λ′(ã, b̃, Ω);

(iii) (Local isolation above) The curve C1(a, b, Ω) is locally isolated above;

(iv) (Local isolation below) The system (1.1) does not admit any eigenvalues in R1(a, b, Ω). In
particular, the curve C1(a, b, Ω) is locally isolated below;

(v) (Continuity of the principal eigenvalue with respect to the weight functions a and b) Let (ak)k≥1
and (bk)k≥1 be sequences of weight functions in L∞(Ω) which are positive in Ω. Assume that
ak → a and bk → b uniformly in Ω. If a, b > 0 in Ω, then Λ′(ak, bk, Ω)→ Λ′(a, b, Ω).

Note that the part (i) of Theorem 1.1 is essential for establish the Harnack inequality
associated to the system (1.1). A very important application of Harnack inequality is the
obtention of principal eigenvalues associated to the problems in general domains. Parts (ii)
and (v) of Theorem 1.1 are important tools to furnish a min–max type characterization for
principal curves associated to the problems whose solutions are not usually classical.

Now, we show an explicit lower estimate for principal eigenvalues of system (1.1) in terms
of the Lebesque measure of Ω, more specifically, a counterpart of [2, Theorem 10.1] to degen-
erate elliptic systems. More recently, it was proved in [23] for Lane–Emden systems involving
second order uniformly elliptic operators. Their proof use in a crucial way the celebrated
Faber–Krahn inequality due to Faber [13] and Krahn [22]. We present now some essential
ingredients:

For 1 ≤ p < n, we use the sharp Sobolev inequality for any u ∈W1,p
0 (Ω),

‖u‖Lp∗ (Ω) ≤ cn,p‖∇u‖Lp(Ω), (1.5)

where p∗ = np
n−p and an explicit formula of cn,p depending only on n and p was proved in

[1, 33].
For p = n and u ∈W1,p

0 (Ω), we have

‖u‖Lη(Ω) ≤ C(n)|Ω|
1
η ‖∇u‖Lp(Ω), (1.6)

where C(n) > 0, 1 ≤ η < ∞ and | · | stands for the Lebesgue measure of Rn.
For p > n, there is a constant C(n, p) > 0 such that

‖u‖L∞(Ω) ≤ C(n, p)|Ω|−
1

p∗ ‖∇u‖Lp(Ω), (1.7)

for all u ∈W1,p
0 (Ω).

Consider now the nonlinear eigenvalue problem{
−∆pu− λ|u|p−2u = 0 in Ω;

u = 0 on ∂Ω.

In [25], the author proved that the first eigenvalue λ1,p(Ω) has the following properties, it is
strictly positive, simple in any bounded connected Ω and characterized by

λ1,p(Ω) = min
ϕ∈W1,p

0 (Ω)\{0}

∫
Ω |∇ϕ(x)|pdx∫

Ω |ϕ(x)|pdx
.
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By the Cheeger’s constant (see [3, 21]), we have

λ1,p(B1) ≥
(

n
p

)p

, (1.8)

where B1 is the unit ball of Rn.

Faber–Krahn inequality for the first eigenvalue of −∆p. Let 1 < p < ∞ and Ω be a open set
in Rn with finite Lebesgue measure. Then,

λ1,p(Ω) ≥ λ1,p(B1)|B1|
p
n |Ω|−

p
n .

Our main result gives an explicit lower estimate for principal eigenvalues of system (1.1)
in terms of the measure of Ω and the weighted functions a and b.

Precisely, we have:

Theorem 1.2. Let (λ, µ) be a principal eigenvalue of (1.1). Suppose β1 ≥ β2, p ≤ q and |Ω| ≤ 1.

(i) For 1 < p < n, q < p∗ and

q− 1 ≤ β1 <
np− n + p

n− p
,

there exists an explicit constant C = C(p, q, β1, β2, n, a, b) > 0 such that

λ + µ
p(q−1)

qβ2 ≥ C
(

n
q

)pθp

|B1|θp
p
n |Ω|−θp

p
n , (1.9)

where
1

β1 + 1
=

θp

p
+

1− θp

p∗
;

(ii) For p = q = n and q− 1 ≤ β1 < ∞, the estimate (1.9) holds with

1
β1 + 1

=
θp

p
+

1− θp

2(β1 + 1)
;

(iii) For n < p and q− 1 ≤ β1 < ∞, there is an explicit constant C = C(p, q, β1, β2, n, a, b) > 0
such that

λ + µ
p(q−1)

qβ2 ≥ C
(

n
q

) θq β1 p
p−1

|B1|θp
p
n |Ω|−θp

p
n , (1.10)

where θp = p
β1+1 and θq =

q
β1+1 ;

(iv) For n = p < q and q− 1 ≤ β1 < ∞, we have (1.10) holds, with

1
β1 + 1

=
θp

p
+

1− θp

2(β1 + 1)
and θq =

q
β1 + 1

.

In particular,
lim
|Ω|↓0

Λ′(a, b, Ω) = ∞.

Using the ideas of the proof of Theorem 1.2, we obtain the following result:
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Theorem 1.3. Let (λ, µ) be a principal eigenvalue of (1.1). Suppose β1 ≤ β2, p ≤ q and |Ω| ≤ 1.

(i) For 1 < p < n, q < p∗ and

(p− 1)(q− 1)(n− p)
np− n + p

< β1 ≤ p− 1,

there exists an explicit constant C = C(p, q, β1, β2, n, a, b) > 0 such that

λ
q(p−1)

pβ1 + µ ≥ C
(

n
q

)rq

|B1|r
q
n |Ω|−r q

n , (1.11)

where r := min
{

θp, θq
β2

q−1

}
,

1
β2 + 1

=
θp

p
+

1− θp

p∗

and 
1

β2+1 =
θq
q +

1−θq
q∗ if 1 < q < n;

1
β2+1 =

θq
q +

1−θq
p∗ if q = n;

θq =
q

β2+1 if q > n;

(ii) For p = q = n and 0 < β1 ≤ p− 1, the estimate (1.11) holds with r = θq
β2

q−1 and

1
β2 + 1

=
θq

q
+

1− θq

2(β2 + 1)
;

(iii) For n < p and 0 < β1 ≤ p− 1, there is an explicit constant C = C(p, q, β1, β2, n, a, b) > 0
such that

λ
q(p−1)

pβ1 + µ ≥ C
(

n
q

)sq

|B1|r
q
n |Ω|−r q

n , (1.12)

where s := max
{

θp, θq
β2

q−1

}
, θp = p

β2+1 and θq =
q

β2+1 ;

(iv) For n = p < q and 0 < β1 ≤ p− 1, we have (1.12) holds, with

1
β2 + 1

=
θp

p
+

1− θp

2(β2 + 1)
and θq =

q
β2 + 1

.

In particular,
lim
|Ω|↓0

Λ′(a, b, Ω) = ∞.

Note that, supposing p ≤ q, we get an explicit lower estimate for principal eigenvalues of
system (1.1) for the range on β1 and β2,

(p− 1)(q− 1)(n− p)
np− n + p

< β1, β2 ≤ p− 1 and q− 1 ≤ β1, β2 <
np− n + p

n− p

for 1 < p < n and 0 < β1, β2 ≤ p− 1 and q− 1 ≤ β1, β2 < ∞ for p ≥ n. In particular, the
result holds for all hyperbole β1β2 = (p− 1)(q− 1) if p = q ≥ n. The problem remains open
in other remaining cases (see Figure 1.1). Clearly, the case q < p follows similarly.

Our approach is inspired by the papers [2, 7, 23, 29]. By mean of topological arguments,
strong maximum principle, Hopf’s lemma and (weak and strong) comparison principles re-
lated to the p-Laplacian operator, we prove five properties of C1(a, b, Ω) which will be pre-
sented in Section 2. In Section 3, by using the Faber–Krahn inequality for the first eigenvalue
of −∆p, variational characterization of λ1,p(Ω), Hölder, Young, interpolation and Sobolev
inequalities, we show Theorem 1.2.
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(a) Case 1 < p < n and p ≤ q < p∗ (b) Case p ≥ n and p ≤ q

Figure 1.1: Couples (β1, β2).

2 Proof of Theorem 1.1

In this section we provide some essential properties satisfied by the principal curve C1(a, b, Ω)

which is organized into five propositions.
We first show the strict monotonicity of the principal eigenvalues with respect to the do-

main stated in the part (i) of Theorem 1.1. Precisely:

Proposition 2.1. Let D and Ω be two bounded domain in Rn with a C2-boundary, such that D ⊂ Ω
and C1(a, b, Ω) and C1(a, b, D) principal curves. Then, Λ′(a, b, Ω) < Λ′(a, b, D).

Proof. Assume by contradiction that Λ′(a, b, Ω) ≥ Λ′(a, b, D). Let (λ1, µ1) ∈ C1(a, b, Ω) and
(λ̃1, µ̃1) ∈ C1(a, b, D) be such that λ1

µ1
= λ̃1

µ̃1
. Thus, λ1 ≥ λ̃1 and µ1 ≥ µ̃1. Let (ϕ, ψ), (ϕ̃, ψ̃) be

positive eigenfunctions associated to the principal eigenvalues (λ1, µ1), (λ̃1, µ̃1), respectively.
Define

c := min
{

min
x∈D

ϕ(x), min
x∈D

ψ(x)
}

> 0.

We claim that ϕ ≥ ϕ̃ and ψ ≥ ψ̃ in D. In fact, assume by contradiction that ϕ < ϕ̃ or
ψ < ψ̃ somewhere in D. In this case, the set Γ := {γ > 0 : ϕ > γϕ̃ and ψ > γωψ̃ in D} is
upper bounded, where ω := p−1

β1
. In addition, the positivity of ϕ and ψ in D imply that Γ is

nonempty. Define 0 < γ := sup Γ < 1. It is clear that ϕ ≥ γϕ̃ and ψ ≥ γωψ̃ in D, with ϕ 6≡ γϕ̃

and ψ 6≡ γωψ̃ in D. Moreover, ϕ ≥ γϕ̃ + c and ψ ≥ γωψ̃ + c on ∂D. So, we get{
−∆p(γϕ̃ + c) = −∆p(γϕ̃) = λ̃1a(x)(γωψ̃)β1 ≤ ( 6≡) λ1a(x)ψβ1 = −∆p(ϕ)

−∆q(γ
ωψ̃ + c) = −∆q(γ

ωψ̃) = µ̃1b(x)(γϕ̃)β2 ≤ ( 6≡) µ1b(x)ψβ2 = −∆q(ψ)
in D.

Then, applying the weak comparison principle to each above equation (see [18] or [34, Lemma
3.1]), we derive ϕ ≥ γϕ̃ + c and ψ ≥ γωψ̃ + c in D. Thus, ϕ > γϕ̃ and ψ > γωψ̃ in D. So,
we can find 0 < ε < 1 such that ϕ > (γ + ε)ϕ̃ and ψ > (γ + ε)ωψ̃ in D, contradicting the
definition of γ. Therefore, ϕ ≥ ϕ̃ and ψ ≥ ψ̃ in D. Note that (κϕ̃, κωψ̃), κ > 0, are also
eigenfunctions associated to (λ̃1, µ̃1). Then, ϕ ≥ κϕ̃ and ψ ≥ κωψ̃ in D for all κ > 0; and from
there we arrive at a contradiction. This concludes the desired proof.
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We now show the monotonicity of principal eigenvalues with respect to the weights which
corresponds to the part (ii) of Theorem 1.1.

Proposition 2.2. Let a, b, ã and b̃ be functions in L∞(Ω) satisfying (1.2) such that a ≤ ã and b ≤ b̃
in Ω. Then, Λ′(a, b, Ω) ≥ Λ′(ã, b̃, Ω). Moreover, if (a, b) 6≡ (ã, b̃) then Λ′(a, b, Ω) > Λ′(ã, b̃, Ω).

Proof. Assume by contradiction that Λ′(a, b, Ω)<Λ′(ã, b̃, Ω). Let (λ1(a, b), µ1(a, b))∈C1(a, b, Ω)

and (λ1(ã, b̃), µ1(ã, b̃)) ∈ C1(ã, b̃, Ω) be such that λ1(a,b)
µ1(a,b) =

λ1(ã,b̃)
µ1(ã,b̃)

. Thus,

λ1(a, b) < λ1(ã, b̃) and µ1(a, b) < µ1(ã, b̃).

Let (ϕ, ψ) and (ϕ̃, ψ̃) be positive eigenfunctions associated to the principal eigenvalues

(λ1(a, b), µ1(a, b)) and (λ1(ã, b̃), µ1(ã, b̃)),

respectively. Consider the set Γ = {γ > 0 : ϕ̃ > γϕ and ψ̃ > γωψ in Ω}, where ω := p−1
β1

. Note
that Γ is upper bounded, and by strong maximum principle (see [18, 34, 36]) Γ is nonempty.
Define γ = sup Γ > 0. Note that, ϕ̃ ≥ γϕ and ψ̃ ≥ γωψ in Ω.

Since (−∆p)−1 and (−∆q)−1 are strictly order preserving, we can find 0 < ε < 1 such that
ϕ̃ > (γ + ε)ϕ and ψ̃ > (γ + ε)ωψ in Ω which clearly contradicts the definition of γ. Therefore,
Λ′(a, b, Ω) ≥ Λ′(ã, b̃, Ω).

Finally, assume that (a, b) 6≡ (ã, b̃). Arguing again by contradiction, assume that

Λ′(a, b, Ω) = Λ′(ã, b̃, Ω).

Let (ϕ, ψ) and (ϕ̃, ψ̃) be positive eigenfunctions corresponding to the principal eigenvalues
(λ1(a, b), µ1(a, b)) = (λ1(ã, b̃), µ1(ã, b̃)). Proceeding similarly to the first part of the proof, we
obtain Λ′(a, b, Ω) > Λ′(ã, b̃, Ω). This ends the proof.

The two next propositions are dedicated the local isolation above and below the principal
curve C1(a, b, Ω). These correspond to the parts (iii) and (iv) of Theorem 1.1, respectively.
Precisely:

Proposition 2.3. The curve C1(a, b, Ω) is locally isolated above.

Proof. Assume by contradiction that the claim is false. Thus, there are (λ1, µ1) ∈ C1(a, b, Ω)

and a sequence of eigenvalues ((λk, µk))k≥1 contained in Bεk(λ1, µ1)∩R1(a, b, Ω)
c
, where εk →

0 with εk > 0 for all k ∈N. Let (ϕk, ψk) an eigenfunction associated to (λk, µk); that is, a weak
solution of the system 

−∆p ϕk = λka(x)|ψk|β1−1ψk in Ω;

−∆qψk = µkb(x)|ϕk|β2−1ϕk in Ω;

ϕk = ψk = 0 on ∂Ω,

where at least one of −ϕk or −ψk does not belong to X̊+. Define the functions

uk :=
ϕk

‖ψk‖
β1

p−1

L∞(Ω)

, ũk :=
ϕk

‖ϕk‖L∞(Ω)
, ṽk :=

ψk

‖ψk‖L∞(Ω)
and vk :=

ψk

‖ϕk‖
β2

q−1

L∞(Ω)

.
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Then, we have 0 ≤ |ũk|, |ṽk| ≤ 1 in Ω. Therefore, the right-hand side of the following
system 

−∆puk = λka(x)|ṽk|β1−1ṽk in Ω;

−∆qvk = µkb(x)|ũk|β2−1ũk in Ω;

ϕk = ψk = 0 on ∂Ω;

(2.1)

is uniformly bounded in (L∞(Ω))2. It follows the sequences (uk)k≥1 and (vk)k≥1 are bounded
in C1,α

0 (Ω), by regularity and, in addition, also bounded in L∞(Ω); i.e., there exists a constant
C > 0 such that ‖uk‖L∞(Ω), ‖vk‖L∞(Ω) ≤ C for all k ∈ N. Therefore, ‖ϕk‖L∞(Ω) is uniformly
bounded if, and only if, ‖ψk‖L∞(Ω) is uniformly bounded.

First, we assume that, both ‖ϕk‖L∞(Ω) and ‖ψk‖L∞(Ω) are uniformly bounded. Applying
the regularity result in C1,α

0 (Ω), we get (ϕk)k≥1 and (ψk)k≥1, are bounded in C1,α
0 (Ω). Since Ω

is bounded, by Arzelà–Ascoli Theorem, up to a subsequence, we derive the convergence

ϕk → ϕ and ψk → ψ in C1
0(Ω) as k→ ∞. (2.2)

Thus, (ϕ, ψ) ∈ (C1
0(Ω))2 is a weak solution of the system

−∆p ϕ = λ1a(x)|ψ|β1−1ψ in Ω;

−∆qψ = µ1b(x)|ϕ|β2−1ϕ in Ω;

ϕ = ψ = 0 on ∂Ω.

By simplicity in X property (c), we must have either (ϕ, ψ) ∈ X̊+ or (−ϕ,−ψ) ∈ X̊+. If
(ϕ, ψ) ∈ X̊+, from the convergence in (2.2), we obtain (ϕk, ψk) ∈ X̊+ for k sufficiently large.
So, by uniqueness property (a), we have (λk, µk) ∈ C1(a, b, Ω) for k large enough, contradicting
that (λk, µk) ∈ R1(a, b, Ω)

c
for all k ∈ N. Then, we must have (−ϕ,−ψ) ∈ X̊+. We now

obtain (−ϕk,−ψk) ∈ X̊+ for k sufficiently large, by convergence in (2.2). But this contradicts
our hypothesis that at least one of −ϕk or −ψk doesn’t belong to X̊+ for all k ∈N.

Now, we assume that, ‖ϕk‖L∞(Ω) → ∞ and ‖ψk‖L∞(Ω) → ∞ as k → ∞. For a subsequence
indicated again by ((ϕk, ψk))k≥1, there is a function (ϕ̃, ψ̃) ∈ (C1

0(Ω))2, such that ‖ϕ̃‖L∞(Ω) =

‖ψ̃‖L∞(Ω) = 1,
ũk → ϕ̃ and ṽk → ψ̃ in C1

0(Ω) as k→ ∞. (2.3)

Moreover, there are λ̃, µ̃ ∈ R such that λ̃β2 µ̃p−1 = 1,

‖uk‖
β2
L∞(Ω)

→ µ̃ and ‖vk‖
β1
L∞(Ω)

→ λ̃ as k→ ∞.

Letting k→ ∞ in problem (2.1), we obtain (ϕ̃, ψ̃) ∈ (C1
0(Ω))2 is a weak solution of the problem

−∆p ϕ̃ = λ1λ̃a(x)|ψ̃|β1−1ψ̃ in Ω;

−∆qψ̃ = µ1µ̃b(x)|ϕ̃|β2−1 ϕ̃ in Ω;

ϕ̃ = ψ̃ = 0 on ∂Ω.

Therefore, (λ1λ̃, µ1µ̃) ∈ C1(a, b, Ω). By simplicity in X property (c), we must have either
(ϕ̃, ψ̃) ∈ X̊+ or (−ϕ̃,−ψ̃) ∈ X̊+. Again, we obtain a contradiction in an analogous way,
instead of convergence in (2.2), we invoke convergence in (2.3). This ends the proof.

Proposition 2.4. The system (1.1) does not admit any eigenvalues in R1(a, b, Ω). In particular, the
curve C1(a, b, Ω) is locally isolated below.
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Proof. Arguing by contradiction, assume that the system (1.1) has an eigenvalue (λ, µ) ∈
R1(a, b, Ω). Let (λ1, µ1) ∈ C1(a, b, Ω) be such that µ

λ = µ1
λ1

. So, we have λ < λ1 and µ < µ1.
Consider a positive eigenfunction (ϕ, ψ) corresponding to (λ1, µ1) and an eigenfunction (u, v)
to (λ, µ). Now, we can assume that u or v is positive somewhere in Ω. Otherwise, we take
(−u,−v) in place of (u, v). Consider the set Γ = {γ > 0 : ϕ > γu and ψ > γωv in Ω}, where
ω := p−1

β1
. Notice that Γ is upper bounded. Moreover, by strong maximum principle, Γ is

nonempty. Define the positive number γ = sup Γ. Note that, ϕ ≥ γu and ψ ≥ γωv in Ω.
Since λ < λ1, µ < µ1 and (−∆p)−1 and (−∆q)−1 are strictly order preserving, we can find

0 < ε < 1 such that ϕ > (γ + ε)u and ψ > (γ + ε)ωv in Ω. But this contradicts the definition
of γ. This concludes the proof.

The last proposition establishes the continuity of the principal eigenvalue with respect to
the weight functions a and b which corresponds to the part (v) of Theorem 1.1.

Proposition 2.5. Let (ak)k≥1 and (bk)k≥1 be sequences of weight functions in L∞(Ω) which are
positive in Ω. Assume that ak → a and bk → b uniformly in Ω. If a, b > 0 in Ω, then Λ′(ak, bk, Ω)→
Λ′(a, b, Ω).

Proof. Given a fixed number r0>0, let (λ1(a, b), µ1(a, b))∈C1(a, b, Ω) and (λ1(ak, bk), µ1(ak, bk))∈
C1(ak, bk, Ω) be such that

λ1(a, b)
µ1(a, b)

=
λ1(ak, bk)

µ1(ak, bk)
=

1
r0

, for all k ∈N. (2.4)

By definitions of Λ′(ak, bk, Ω) and Λ′(a, b, Ω) and equalities in (2.4), it suffices to prove only
that λ1(ak, bk) → λ1(a, b) as k → ∞. Assume by contradiction that there is a number ε > 0
such that

|λ1(ak, bk)− λ1(a, b)| ≥ ε

for k ∈N. Without loss of generality, we can assume

λ1(ak, bk)− λ1(a, b) ≥ ε .

Since a and b are positive on Ω, we can define δ ∈ R to be such that

0 < δ <
ε

λ1(a, b) + ε
min

{
inf
x∈Ω

a(x), inf
x∈Ω

b(x)
}

.

By uniform convergence of the sequences (ak)k≥1 and (bk)k≥1, up to a subsequence, we can
assume without loss of generality that

ak(x) ≥ a(x)− δ, bk(x) ≥ b(x)− δ

for all x ∈ Ω and k ∈ N. Let (ϕk, ψk) and (ϕ, ψ) be positive eigenfunctions associated to the
principal eigenvalues

(λ1(ak, bk), µ1(ak, bk)) and (λ1(a, b), µ1(a, b)) ,

respectively. Then, by strong maximum principle, the usual set Γ = {γ > 0 : ϕk > γϕ and ψk >

γωψ in Ω} is nonempty and upper bounded, where ω := p−1
β1

. Set γ := sup Γ > 0. Using the
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definitions of r0, ε and δ and the above inequalities, we get

−∆p(γϕ) = λ1(a, b)a(x)(γωψ)β1

= (λ1(a, b) + ε)(a(x)− δ)(γωψ)β1 + (−εa(x) + λ1(a, b)δ + εδ)(γωψ)β1

< λ1(ak, bk)ak(x)ψβ1
k = −∆p(ϕk) ;

−∆q(γ
ωψ) = µ1(a, b)b(x)(γϕ)β2

= r0(λ1(a, b) + ε)(b(x)− δ)(γϕ)β2 + r0(−εb(x) + λ1(a, b)δ + εδ)(γϕ)β2

< r0λ1(ak, bk)bk(x)ϕ
β2
k = µ1(ak, bk)bk(x)ϕ

β2
k = −∆q(ψk);

and ϕk = γϕ = ψk = γωψ = 0 on ∂Ω. Applying the strong comparison principle to each
above equation (see [7, Theorem A.1]), we derive

ϕk > γϕ, ψk > γωψ in Ω and
∂ϕk

∂ν
<

∂γϕ

∂ν
,

∂ψk

∂ν
<

∂γωψ

∂ν
on ∂Ω.

Then, ϕk > (γ + ε)ϕ and ψk > (γ + ε)ωψ in Ω for 0 < ε < 1. But this contradicts the definition
of γ, and so concluding the proof.

3 Proof of Theorem 1.2

We first prove the case 1 < p, q < n. Let (ϕ, ψ) denote a principal eigenfunction corresponding
to (λ, µ). Since

−∆p ϕ = λa(x)ψβ1

in the weak sense, then applying the equality (1.4) with Φ = ϕ, we obtain

λ
∫

Ω
a(x)ψβ1 ϕdx =

∫
Ω
|∇ϕ|pdx.

Moreover, by using Hölder and Young inequalities, we get∫
Ω

a(x)ψβ1 ϕdx ≤ ‖a‖L∞(Ω)

(
1
p
‖ϕ‖p

Lβ1+1(Ω)
+

p− 1
p
‖ψ‖pβ1/(p−1)

Lβ1+1(Ω)

)
.

Consequently,

λD1

(
‖ϕ‖p

Lβ1+1(Ω)
+ ‖ψ‖pβ1/(p−1)

Lβ1+1(Ω)

)
≥
∫

Ω
|∇ϕ|pdx, (3.1)

where

D1 = max
{

1
p
‖a‖L∞(Ω),

p− 1
p
‖a‖L∞(Ω),

1
q
‖b‖L∞(Ω),

q− 1
q
‖b‖L∞(Ω)

}
.

Similarly, it follows from
−∆qψ = µb(x)ϕβ2

in the weak sense that

µ‖b‖L∞(Ω)|Ω|
β1−β2
β1+1

(
q− 1

q
‖ϕ‖qβ2/(q−1)

Lβ1+1(Ω)
+

1
q
‖ψ‖q

Lβ1+1(Ω)

)
≥
∫

Ω
|∇ψ|qdx.

Now, since |Ω| ≤ 1 and p(q−1)
qβ2

≥ 1, we have

(D1µ)
p(q−1)

qβ2 D2

(
‖ϕ‖p

Lβ1+1(Ω)
+ ‖ψ‖pβ1/(p−1)

Lβ1+1(Ω)

)
≥
(∫

Ω
|∇ψ|qdx

) p(q−1)
qβ2

, (3.2)
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where D2 = 2
p(q−1)

qβ2
−1. Thus, adding up (3.1) and (3.2) inequalities shows that

λ + µ
p(q−1)

qβ2 ≥ 1
D3

∫Ω |∇ϕ|pdx +
(∫

Ω |∇ψ|qdx
) p(q−1)

qβ2

‖ϕ‖p
Lβ1+1(Ω)

+ ‖ψ‖pβ1/(p−1)
Lβ1+1(Ω)

 ,

where D3 = max
{

D2D
p(q−1)

qβ2
1 , D1

}
.

On the other hand, by interpolation inequality, inequality (1.5) and variational characteri-
zation of λ1,p(Ω), we obtain ∫

Ω |∇ϕ|pdx
‖ϕ‖p

Lβ1+1(Ω)

≥
(
cn,p
)(θp−1)p

λ1,p(Ω)θp ,

where
1

β1 + 1
=

θp

p
+

1− θp

p∗

and (∫
Ω |∇ψ|qdx

) p(q−1)
qβ2

‖ψ‖pβ1/(p−1)
Lβ1+1(Ω)

≥
(
cn,q
)(θq−1) pβ1

p−1 λ1,q(Ω)
θq

pβ1
(p−1)q ,

where
1

β1 + 1
=

θq

q
+

1− θq

q∗
.

Furthermore, by Faber-Krahn inequality for the first eigenvalue of −∆p and inequality (1.8),
we get

λ1,p(Ω) ≥ λ1,p(B1)|B1|
p
n |Ω|−

p
n ≥

(
n
p

)p

|B1|
p
n |Ω|−

p
n .

Then, using that p ≤ q, |Ω| ≤ 1 and β1 ≥ p− 1, we obtain

λ1,p(Ω)θp , λ1,q(Ω)
θq

pβ1
(p−1)q ≥

(
n
q

)pθp

|B1|θp
p
n |Ω|−θp

p
n .

Therefore,

λ + µ
p(q−1)

qβ2 ≥ C
(

n
q

)pθp

|B1|θp
p
n |Ω|−θp

p
n ,

where C = 1
D3

min
{
(cn,p)(θp−1)p, (cn,q)

(θq−1) pβ1
p−1
}

.
The rest of proof is analogue, by using interpolation inequality with θp and θq appropriate

and instead of inequality (1.5), we invoke inequalities (1.6) and (1.7). This concludes the proof
of the theorem.

Acknowledgements

The author is indebted to the anonymous referee for his/her valuable comments and for
pointing out several fundamental references.



On the principal eigenvalues of the degenerate elliptic systems 13

References

[1] T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geom. 11(1976),
573–598. MR448404

[2] S. Cano-Casanova, J. López-Gómez, Properties of the principal eigenvalues of a general
class of nonclassical mixed boundary value problems, J. Differential Equations 178(2002),
123–211. https://doi.org/10.1006/jdeq.2000.4003; MR1878528

[3] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, in: R. C. Gunning
(Ed.), Problems in analysis (Papers dedicated to Salomon Bochner, 1969), Princeton University
Press, Princeton, 1970, pp. 195–199. MR0402831

[4] Ph. Clément, D. G. de Figueiredo, E. Mitidieri, Positive solutions of semilinear ellip-
tic systems, Comm. Partial Differential Equations 17(1992), 923–940. https://doi.org/10.
1080/03605309208820869; MR1177298

[5] Ph. Clément, R. F. Manásevich, E. Mitidieri, Positive solutions for a quasilinear system
via blow up, Comm. Partial Differential Equations 18(1993), 2071–2106. https://doi.org/
10.1080/03605309308821005; MR1249135
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