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Abstract. In this work, we investigate the following p-Laplacian Liénard equation:

(ϕp(x
′(t)))′ + f(x(t))x′(t) + g(x(t)) = e(t).

Under some assumption, a necessary and sufficient condition for the existence and

uniqueness of periodic solutions of this equation is given by using Manásevich–Mawhin

continuation theorem. Our results improve and extend some known results.
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1 Introduction

In this paper, we investigate the existence and uniqueness of periodic solutions of the following p-Laplacian

Liénard equation

(ϕp(x
′(t)))′ + f(x(t))x′(t) + g(x(t)) = e(t), (1.1)

where p > 1, ϕp : R → R is given by ϕp(s) = |s|p−2s for s 6= 0, ϕp(0) = 0, f, g, e ∈ C(R, R) and e is

T -periodic with T > 0. If p = 2, (1.1) becomes the following forced Liénard equation:

x′′(t) + f(x(t))x′(t) + g(x(t)) = e(t). (1.2)
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Figure 1: Diagrammatic representation for applications of the Liénard equation (1.1).

Generalized Liénard equations appear in a number of physical models, and the problem concerning the

periodic solutions for these equations has been studied extensively by lots of authors; see for example

[1-12] and the references therein.

Here we are keen to dispel any perception that the mathematical proofs of existence and uniqueness

that we present are merely verifying facts which might already be obvious in other disciplines, based on

purely physical considerations. In particular, in many nonlinear problems arising in practical dynamical

systems, physical reasoning alone is not sufficient or fully convincing. In these cases questions of existence

and uniqueness are of importance in understanding the full range of solution behaviour possible, and

represent a genuine mathematical challenge. The answers to these mathematical questions then provide

the basis for obtaining the best numerical solutions to these problems, and determining other important

practical aspects of the solution behaviour. Figure 1 shows the various applications of the Liénard

equation (1.1).

The main purpose in this work is to give a necessary and sufficient condition for the existence and

uniqueness of T -periodic solutions of (1.1) by using Manásevich–Mawhin continuation theorem. Our

results improve and extend some results in [6] (see Remark 2 and Examples 1 and 2).
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2 Lemmas

Let us start with some notations. Set C1
T = {x ∈ C1(R, R) : x is T -periodic}, which is a Banach space

endowed with the norm ‖ · ‖ defined by ‖x‖ = max{|x|∞, |x′|∞}, and

|x|∞ = max
t∈[0,T ]

|x(t)|, |x′|∞ = max
t∈[0,T ]

|x′(t)|, |x|k =

(

∫ T

0

|x(t)|kdt

)1/k

.

For the T -periodic function e, denote

ē =
1

T

∫ T

0

e(t)dt.

The following conditions will be used later:

(H1) g ∈ C1(R, R) and g′(x) < 0 for all x ∈ R.

(H2) ē ∈ g(R).

Remark 1. Generally, x refers to the displacement, f(x)x′ refers to the damping term, g(x) refers

to the stiffness term and e refers to the forced term in a vibration system. It implies that the stiffness of

the vibration system is monotone decreasing with regard to the displacement if g′(x) < 0.

Lemma 1 ( [6]). Suppose (H1) holds. Then (1.1) has at most one T-periodic solution.

Consider the homotopic equation of (1.1):

(ϕp(x
′(t)))′ + λf(x(t))x′(t) + λg(x(t)) = λe(t), λ ∈ (0, 1). (2.1)

We have the following lemma.

Lemma 2. Suppose (H1) and (H2) hold. Then the set of T -periodic solutions of (2.1) are bounded

in C1
T .

Proof. Let S ⊂ C1
T be the set of T -periodic solutions of (2.1). If S = ∅, the proof is ended. Suppose

S 6= ∅, and let x ∈ S. Noticing that x(0) = x(T ), x′(0) = x′(T ) and ϕp(0) = 0, it follows from (2.1) that

∫ T

0

(g(x(t)) − e(t))dt = 0,

which implies that there exists τ ∈ [0, T ] such that

g(x(τ)) = ē.

By (H1), we know that g(x) is strictly decreasing in R. So we have

x(τ) = g−1(ē) =: C.

Then, for t ∈ [τ, τ + T ],

|x(t)| =

∣

∣

∣

∣

x(τ) +

∫ t

τ

x′(s)ds

∣

∣

∣

∣

≤ |C| +

∫ τ+T

τ

|x′(s)|ds = |C| +

∫ T

0

|x′(s)|ds,

which leads to

|x|∞ ≤ |C| + |x′|1. (2.2)
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By (H2) we have g(x0) = ē for some x0 ∈ R. Let d = |x0|, since g(x) is strictly decreasing in R, we get

x(g(x) − ē) < 0 for |x| > d. (2.3)

Define E1 = {t : t ∈ [0, T ], |x(t)| > d}, E2 = {t : t ∈ [0, T ], |x(t)| ≤ d}. Multiplying x(t) and (2.1) and

then integrating from 0 to T , by (2.3) we have

∫ T

0

|x′(t)|pdt = −

∫ T

0

(ϕp(x
′(t)))′x(t)dt

= λ

∫ T

0

(g(x(t)) − ē)x(t)dt − λ

∫ T

0

(e(t) − ē)x(t)dt

= λ

∫

E1

(g(x(t)) − ē)x(t)dt + λ

∫

E2

(g(x(t)) − ē)x(t)dt − λ

∫ T

0

(e(t) − ē)x(t)dt

≤ λ

∫

E2

(g(x(t)) − ē)x(t)dt − λ

∫ T

0

(e(t) − ē)x(t)dt

≤

(

max
|x|≤d

|g(x) − ē| + |e − ē|∞

)

T |x|∞.

Let M0 =

(

max
|x|≤d

|g(x) − ē| + |e − ē|∞

)

T . Then we obtain

|x′|p ≤ M
1/p
0 |x|1/p

∞ . (2.4)

Let q > 1 such that 1/p + 1/q = 1. Then by the Hölder inequality we have

|x′|1 ≤ |x′|p|1|q = T 1/q|x′|p. (2.5)

By (2.2), (2.4) and (2.5), we can get

|x′|1 ≤ T 1/qM
1/p
0 (|C| + |x′|1)

1/p,

which yields that there exists M1 > 0 such that |x′|1 ≤ M1 since p > 1, and this together with (2.2)

implies that |x|∞ ≤ |C| + M1.

Meanwhile, there exists t0 ∈ [0, T ] such that x′(t0) = 0 since x(0) = x(T ). Then by (2.1) we have, for

t ∈ [t0, t0 + T ],

|ϕp(x
′(t))| =

∣

∣

∣

∣

∫ t

t0

(ϕp(x
′(s)))′ds

∣

∣

∣

∣

= λ

∣

∣

∣

∣

∫ t

t0

(f(x(s))x′(s) + g(x(s)) + e(s))ds

∣

∣

∣

∣

≤

∫ T

0

(|f(x(s))||x′(s)| + |g(x(s))| + |e(s)|)ds

≤ FM1 + (G + |e|∞)T,

where F = max{|f(x)| : |x| ≤ |C| + M1}, G = max{|g(x)| : |x| ≤ |C| + M1}. So we obtain

|x′|∞ = max
t∈[0,T ]

{|ϕp(x
′(t))|1/(p−1)} ≤ (FM1 + (G + |e|∞)T )1/(p−1).

Let M = max{|C| + M1, (FM1 + (G + |e|∞)T )1/(p−1)}. Then ‖x‖ ≤ M . This completes the proof. �
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For the periodic boundary value problem

(ϕp(x
′(t)))′ = h(t, x, x′), x(0) = x(T ), x′(0) = x′(T ), (2.6)

where h ∈ C(R3, R) is T -periodic in the first variable. The following continuation theorem can be induced

directly from the theory in [9], and is cited as Lemma 1 in [12].

Lemma 3 (Manásevich–Mawhin [9]). Let B = {x ∈ C1
T : ‖x‖ < r} for some r > 0. Suppose the

following two conditions hold:

(i) For each λ ∈ (0, 1) the problem (ϕp(x
′(t)))′ = λh(t, x, x′) has no solution on ∂B.

(ii) The continuous function F defined on R by F (a) = 1
T

∫ T

0 h(t, a, 0)dt is such that F (−r)F (r) < 0.

Then the periodic boundary value problem (2.6) has at least one T-periodic solution on B̄.

3 Main results

We are now in the position to give our main result.

Theorem 1. Suppose (H1) holds. Then (1.1) has a unique T -periodic solution if and only if (H2)

holds.

Proof. Let x(t) be a T -periodic solution of (1.1). By integrating the two sides of (1.1) from 0 to T ,

and noticing that x(0) = x(T ) and x′(0) = x′(T ), we have

∫ T

0

(g(x(t)) − e(t))dt = 0.

Then there exists τ ∈ [0, T ] such that

Tg(x(τ)) =

∫ T

0

e(t)dt,

which implies ē ∈ g(R), and the necessity is proved.

On the other hand, by Lemma 2.2, there exists M > 0 such that, for any solution x(t) of (2.1),

||x|| ≤ M. (3.1)

Meanwhile, there exists x0 ∈ R such that g(x0) = ē since ē ∈ g(R). Let h(t, x(t), x′(t)) = e(t)− g(x(t))−

f(x(t))x′(t) and B = {x ∈ C1
T : ‖x‖ < r} with r = max{M + 1, |x0| + 1}. Then (3.1) implies that (2.1)

has no solution on ∂B for all λ ∈ (0, 1), and condition (i) of Lemma 3 is satisfied. Furthermore, we have

g(r) < ē < g(−r), (3.2)

since g(x) is strictly decreasing in R. By the definition of F in Lemma 3 we get

F (a) =
1

T

∫ T

0

h(t, a, 0)dt =
1

T

∫ T

0

(e(t) − g(a))dt = ē − g(a).

This together with (3.2) yields that F (r)F (−r) < 0, i.e. condition (ii) of Lemma 3 is satisfied. Therefore,

it follows from Lemma 3 that there exists a T -periodic solution x(t) of (1.1). The uniqueness of this x(t)

is guaranteed by Lemma 1. This completes the proof. �

Remark 2. In [6], The sufficient conditions for the existence of T -periodic solutions for (1.1) are

(H1) and the following condition:
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(A2) there exists constant d > 0 such that x(g(x) − e(t)) < 0 for |x| > d.

Noticing (2.3), it is easy to verify that the condition (H2) is weaker than the condition (A2) since

mint∈R e(t) < ē < maxt∈R e(t) when e(t) 6= constant. So our results improve and extend the main results

in [6].

Finally, we close this work by two examples.

Example 1. Consider the following differential equation:

(ϕp(x
′(t)))′ + f(x(t))x′(t) − arctan(x(t) + 1) =

π

4
(1 + 3 cos t), (3.3)

where f ∈ C(R, R) and p > 1.

In this example, g(x) = − arctan(x + 1), e(t) = π
4 (1 + 3 cos t) and T = 2π. It is obvious that the

condition (A1) of theorem 1 in [6] holds. However, it is easy to verify that the condition (A2) does not

hold. Therefore, Theorem 1 in [6] fails, while, our criterion in Theorem 1 in this paper remains applicable,

as we now show. According to the above arguments, the condition (H1) holds; since ē = π
4 , it is easy to

see that the condition (H2) also holds. Hence, Theorem 1 in this paper shows that (3.3) has a unique

2π-periodic solution.

Example 2. Consider the following differential equation:

(ϕp(x
′(t)))′ + f(x(t))x′(t) − arctan(x(t) + 1) = π(1 + 3 cos t), (3.4)

where f ∈ C(R, R) and p > 1.

In this example, g(x) = − arctan(x + 1), e(t) = π(1 + 3 cos t) and T = 2π. It is obvious that the

condition (A1) of theorem 1 in [6] holds. However, it is easy to verify that the condition (A2) does not

hold. Therefore, Theorem 1 in [6] fails, while, our criterion in Theorem 1 in this paper remains applicable,

as we now show. According to the above arguments, the condition (H1) holds; since ē = π, it is easy

to see that the condition (H2) does not hold. Hence, Theorem 1 in this paper shows that (3.4) has no

2π-periodic solutions.
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